

Sep 18th & 21st, 2017

ADL x MLDS

YUN-NUNG (VIVIAN) CHEN HTTP://ADL.MIULAB.TW HTTP://MLDS.MIULAB.TW

Announcement

Contact

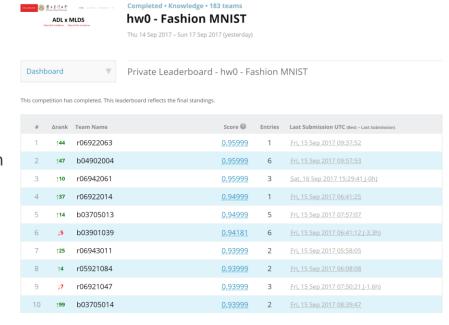
- TA email: adlxmlds@gmail.com
- 。 Please include your 學號 and 姓名 in the email

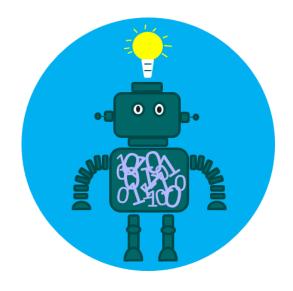
Course Registration

- Registration codes for ADL were sent out
- Registration codes for MLDS will be sent out soon
- You are free to come to the class on Mon/Thur

Others

- Additional bonus if you pass the HW0
- Please register the course ASAP
- The registration for GPU resources will be announced by the end of today's class





What is Machine Learning?

What Computers Can Do?

Programs can do the things you ask them to do

Program for Solving Tasks

Task: predicting positive or negative given a product review

Some tasks are complex, and we don't know how to write a program to solve them.

Learning ≈ Looking for a Function

Task: predicting positive or negative given a product review

"I love this product!" "It claims too much." "It's a little expensive."

"台灣第一波上市!" "規格好雞肋..." "樓下買了我才考慮"

Given a large amount of data, the machine learns what the function f should be.

Learning ≈ Looking for a Function

Speech Recognition

Handwritten Recognition

Weather forecast

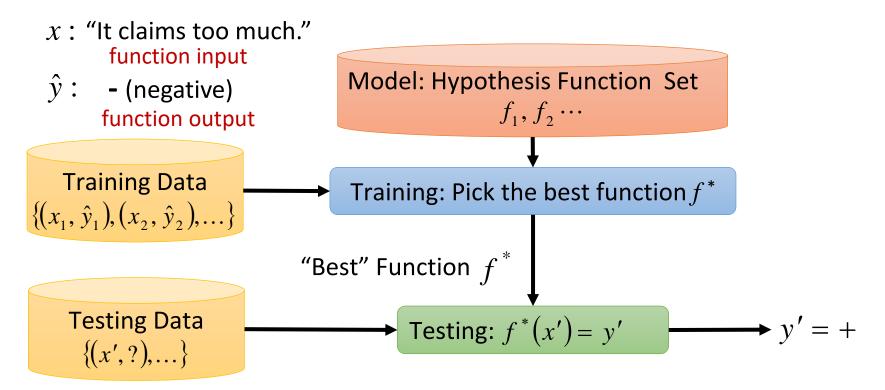
Thursday

Saturday"

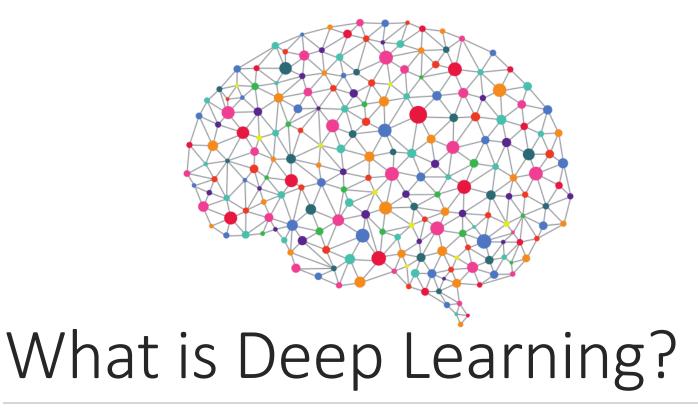
Play video games

)= "move left"

Machine Learning Framework



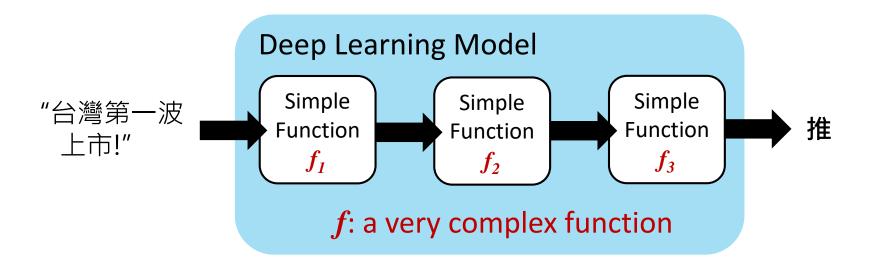
Training is to pick the best function given the observed data Testing is to predict the label using the learned function



A subfield of machine learning

Stacked Functions Learned by Machine

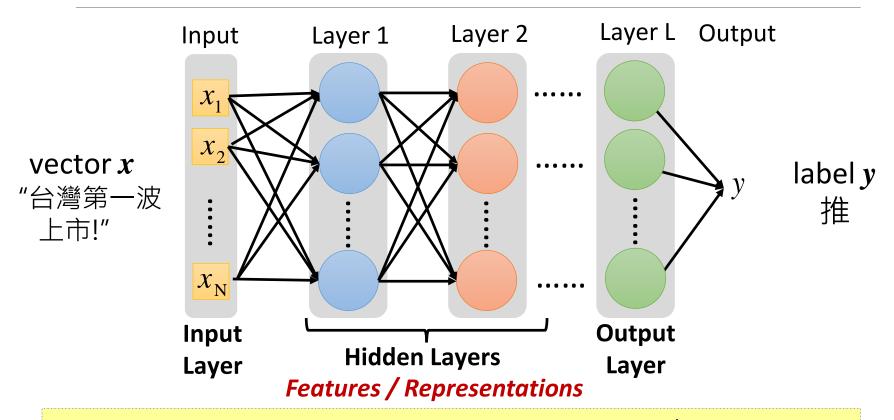
Production line (生產線)



End-to-end training: what each function should do is learned automatically

Deep learning usually refers to neural network based model

Stacked Functions Learned by Machine

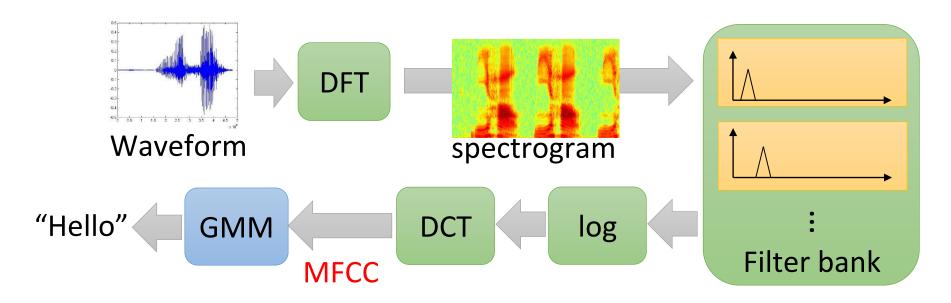


Representation Learning attempts to learn good features/representations

Deep Learning attempts to learn (multiple levels of) representations and an output

Deep v.s. Shallow – Speech Recognition

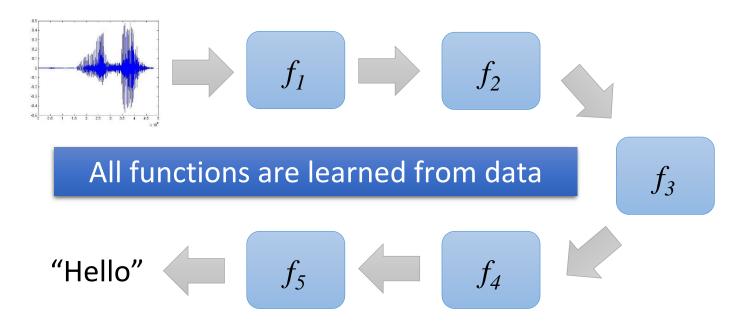
Shallow Model



Each box is a simple function in the production line:

Deep v.s. Shallow – Speech Recognition

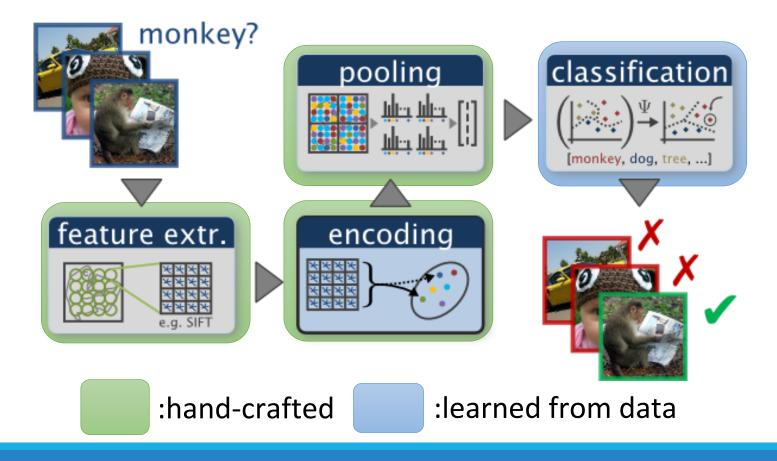
Deep Model



Less engineering labor, but machine learns more

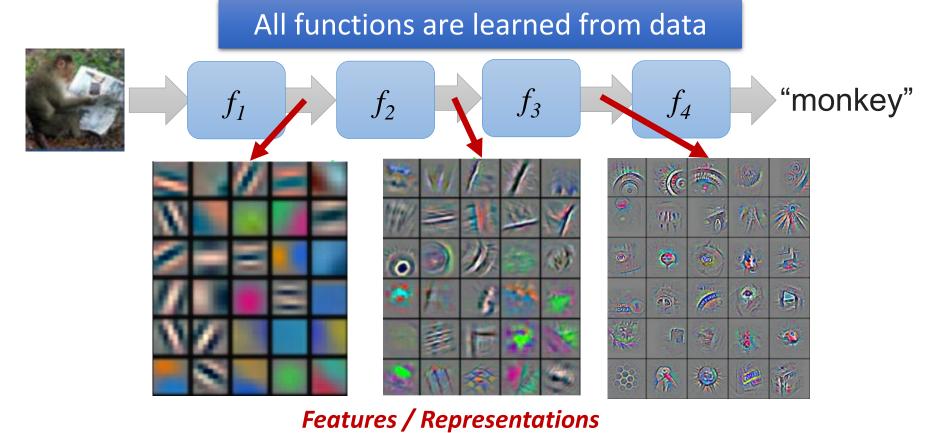
Deep v.s. Shallow – Image Recognition

Shallow Model

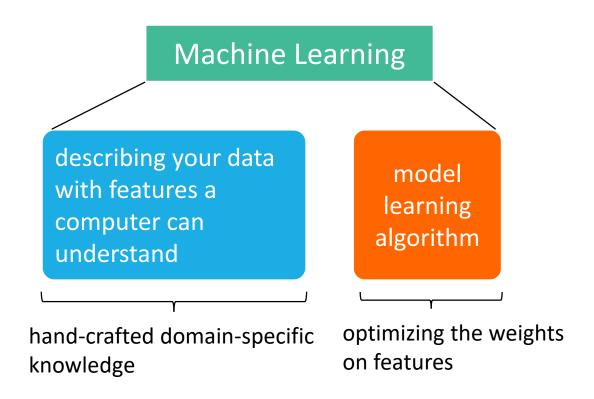


Deep v.s. Shallow – Image Recognition

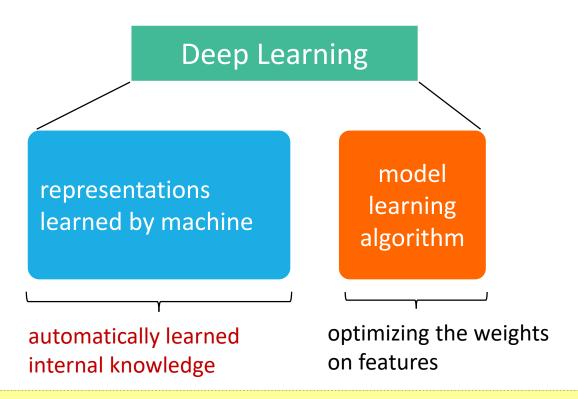
Deep Model



Machine Learning v.s. Deep Learning

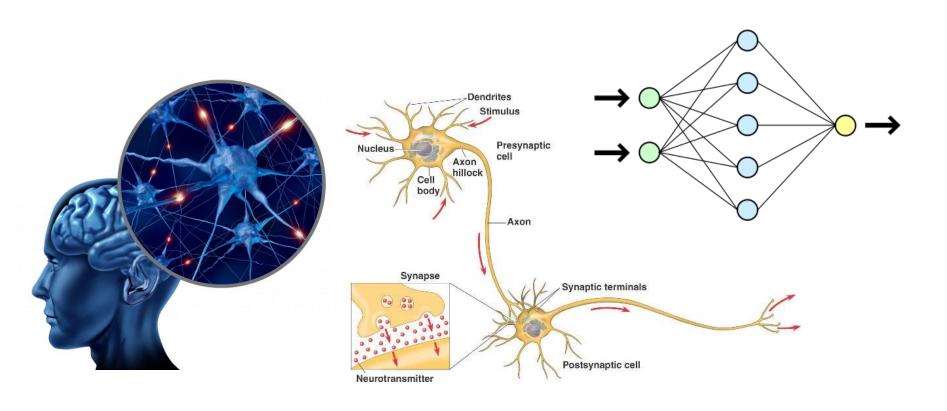


Machine Learning v.s. Deep Learning

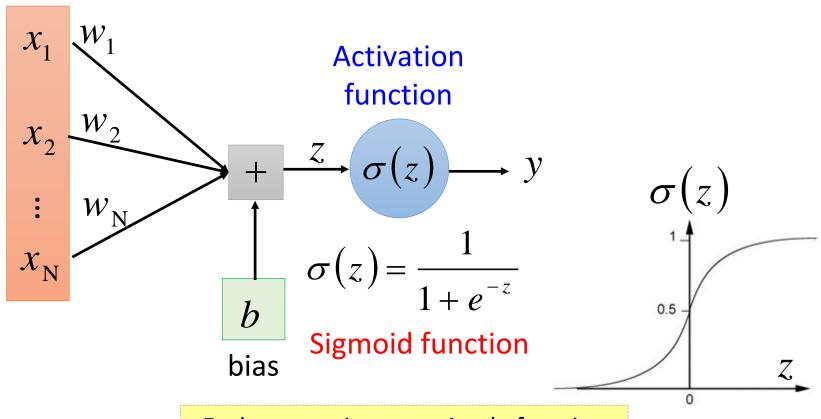


Deep learning usually refers to *neural network* based model

Inspired by Human Brain



A Single Neuron



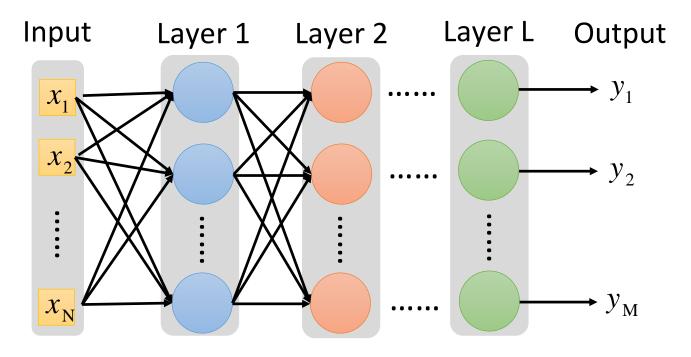
Each neuron is a very simple function

A neural network is a complex function:

$$f:R^N\to R^M$$

Deep Neural Network

Cascading the neurons to form a neural network



Each layer is a simple function in the production line

History of Deep Learning

1960s: Perceptron (single layer neural network)

1969: Perceptron has limitation

1980s: Multi-layer perceptron

1986: Backpropagation

1989: 1 hidden layer is "good enough", why deep?

2006: RBM initialization (breakthrough)

2009: GPU

2010: breakthrough in Speech Recognition (Dahl et al., 2010)

2012: breakthrough in ImageNet (Krizhevsky et al. 2012)

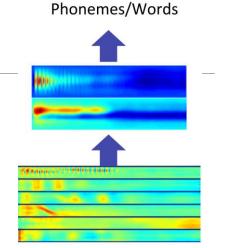
2015: "superhuman" results in Image and Speech Recognition

Deep Learning Breakthrough

First: Speech Recognition

Acoustic Model	WER on RT03S FSH	WER on Hub5 SWB
Traditional Features	27.4%	23.6%
Deep Learning	18.5% (-33%)	16.1% (-32%)

Second: Computer Vision



History of Deep Learning

1960s: Perceptron (single layer neural network)

1969: Perceptron has limitation

1980s: Multi-layer perceptron

1986: Backpropagation

1989: 1 hidden layer is "good enough", why deep?

2006: RBM initialization (breakthrough)

2009: GPU

2010: breakthrough in Speech Recognition (Dahl et al., 2010)

2012: breakthrough in ImageNet (Krizhevsky et al. 2012)

2015: "superhuman" results in Image and Speech Recognition

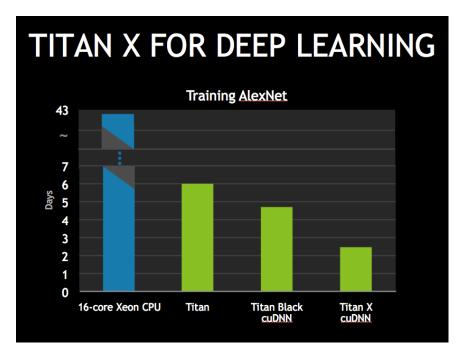
Why does deep learning show breakthrough in applications after 2010?

Reasons why Deep Learning works

Big Data

2007 ANALOG **Global Information Storage Capacity** 19 exabytes in optimally compressed bytes Paper, film, audiotape and vinyl: 6% Analog videotapes (VHS, etc): 94 % ANALOG Portable media, flash drives: 2 % Portable hard disks: 2.4 % CDs and minidisks: 6.8 % Computer servers and mainframes: 8.9 % Digital tape: 11.8 % 1986 ANALOG 2.6 exabytes ANALOG STORAGE DIGITAL STORAGE 0.02 exabytes PC hard disks: 44.5 % 123 billion gigabytes 2002: "beginning of the digital age' Others: < 1 % (incl. chip cards, memory cards, floppy disks, % digital: 1 % 3 % 25 % DIGITAL 280 exabytes Source: Hilbert, M., & López, P. (2011). The World's Technological Capacity to Store, Communicate, and Compute Information. Science, 332(6025), 60 -65. http://www.martinhilbert.net/WorldInfoCapacity.html

GPU



Why to Adopt GPU for Deep Learning?

GPU is like a brain

Human brains create graphical imagination for mental thinking

台灣好吃牛肉麵

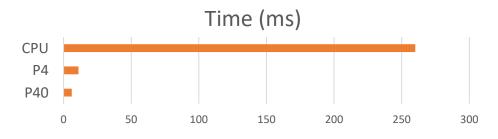
Why Speed Matters?

Training time

- Big data increases the training time
- Too long training time is not practical

Inference time

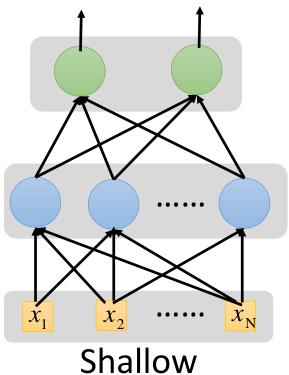
Users are not patient to wait for the responses

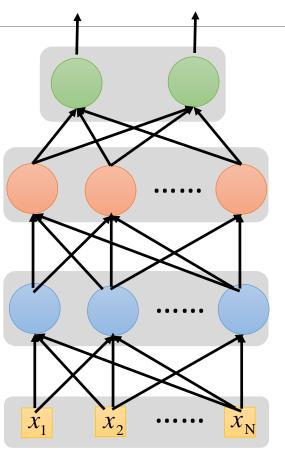


GPU enables the real-world applications using the computational power

Why Deeper is Better?

Deeper → More parameters





Deep

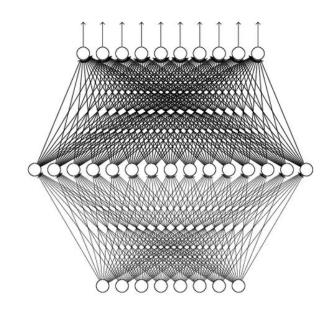
Universality Theorem

Any continuous function f

$$f:R^N\to R^M$$

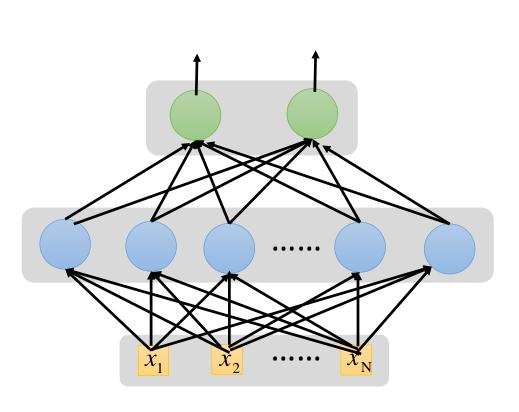
can be realized by a network with only hidden layer

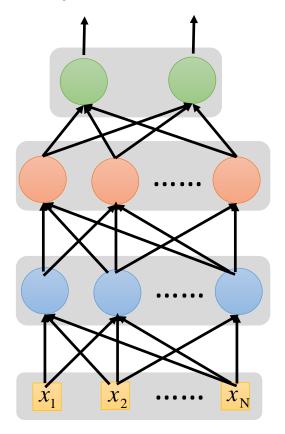
Why "deep" not "fat"?



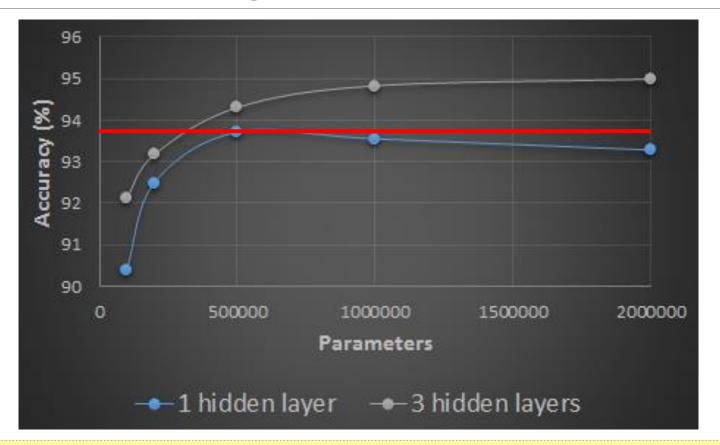
Fat + Shallow v.s. Thin + Deep

Two networks with the same number of parameters





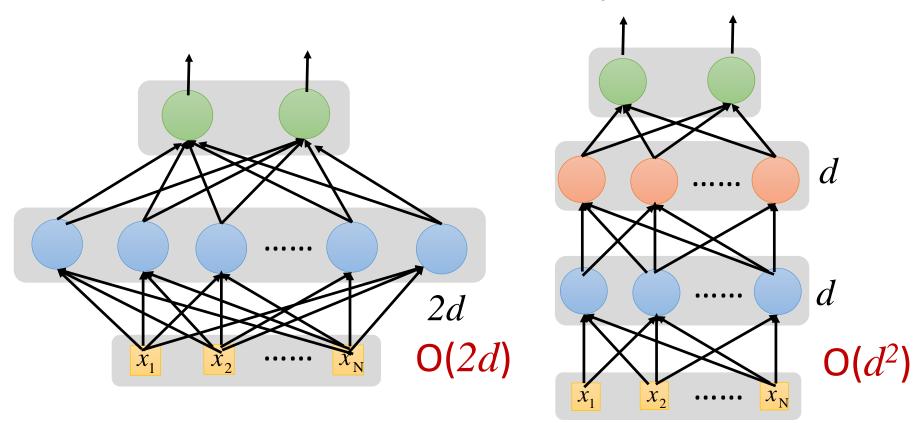
Fat + Shallow v.s. Thin + Deep Hand-Written Digit Classification



The deeper model uses less parameters to achieve the same performance

Fat + Shallow v.s. Thin + Deep

Two networks with the same number of parameters



How to Apply?

How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the output domain Y

$$f: X \to Y$$

Input domain: word, word sequence, audio signal, click logs Output domain: single label, sequence tags, tree structure, probability distribution

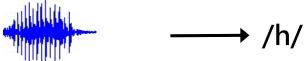
Output Domain – Classification

Sentiment Analysis

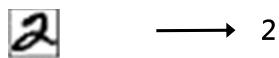
"這規格有誠意!" → → +

"太爛了吧~" → → -

Speech Phoneme Recognition



Handwritten Recognition



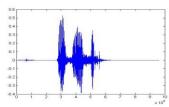
Output Domain – Sequence Prediction

POS Tagging

"推薦我台大後門的餐廳"

→ 推薦/VV 我/PN 台大/NR 後門/NN 的/DEG 餐廳/NN

Speech Recognition



→ "大家好"

Machine Translation

"How are you doing today?" → → "你好嗎?"

Learning tasks are decided by the output domains

Input Domain — How to Aggregate Information

Input: word sequence, image pixels, audio signal, click logs

Property: continuity, temporal, importance distribution

Example

- CNN (convolutional neural network): local connections, shared weights, pooling
 - AlexNet, VGGNet, etc.
- RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties

How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the output domain Y

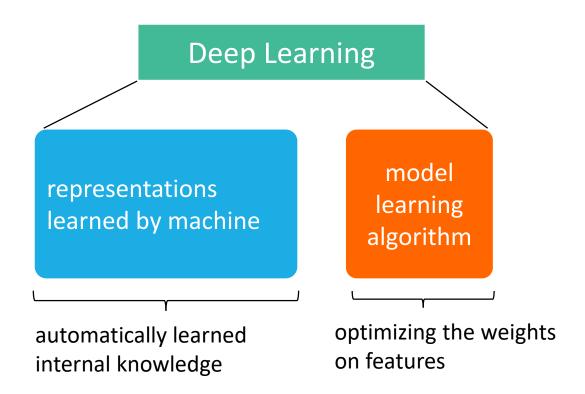
$$f: X \to Y$$

Input domain: word, word sequence, audio signal, click logs

Output domain: single label, sequence tags, tree structure, probability distribution

Network design should leverage input and output domain properties

"Applied" Deep Learning

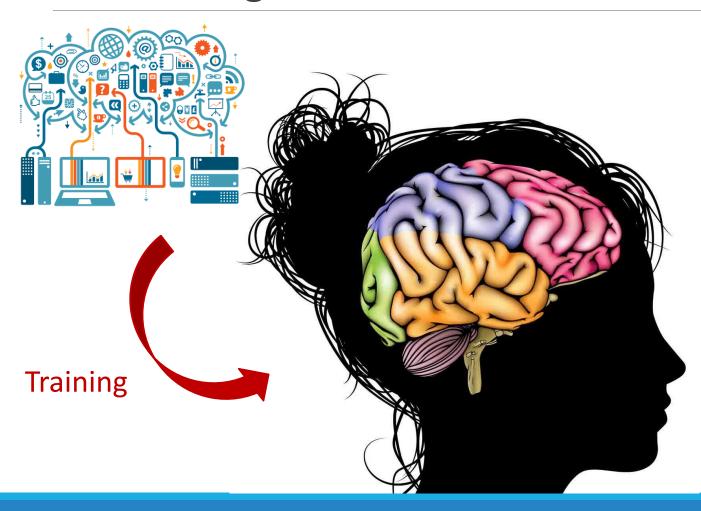


How to frame a task into a learning problem and design the corresponding model

Core Factors for Applied Deep Learning

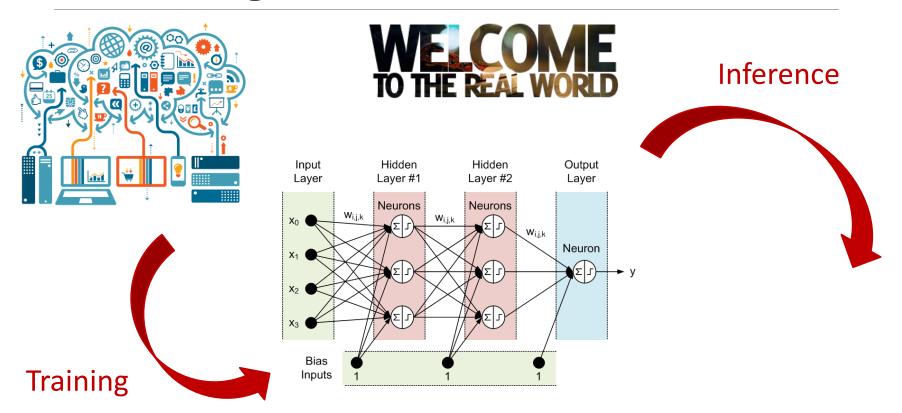
- Data: big data
- Hardware: GPU computing
- Talent: design algorithms to allow networks to work for the specific problems

Concluding Remarks



Concluding Remarks

Concluding Remarks



Main focus: how to apply deep learning to the real-world problems

Reference

Reading Materials

Academic papers will be put in the website

Deep Learning

- Goodfellow, Bengio, and Courville, "Deep Learning," 2016.
 http://www.deeplearningbook.org
- Michael Nielsen, "Neural Networks and Deep Learning" http://neuralnetworksanddeeplearning.com