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 Mini-HW 8 released
 Due on 12/07 (Thur) 17:20

 Homework 3 released
 Due on 12/14 (Thur) 17:20 (two weeks)

 Next-week room changed!!
 12/07 (Thur) to forever

 Location: R103

 Midterm discussion
 Today 16:30-17:20

 Location: R103
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Frequently check the website for the updated information!
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 Minimal Spanning Trees (MST)
 Boruvka’s Algorithm

 Kruskal’s Algorithm

 Prim’s Algorithm

 Single-Source Shortest Paths
 Bellman-Ford Algorithm

 Lawler Algorithm (SSSP in DAG)

 Dijkstra Algorithm
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Textbook Chapter 23 – Minimal Spanning Trees
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 Definition
 a subgraph that is a tree and connects all vertices

 Exactly 𝑛 − 1 edges

 Acyclic

 There can be many spanning trees of a graph

 BFS and DFS also generate spanning trees
 BFS tree is typically “short and bushy”

 DFS tree is typically “long and stringy”
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 Input: a connected 𝑛-node 𝑚-edge graph 𝐺 with edge weights 𝑤

 Output: a spanning tree 𝑇 of 𝐺 with minimum 𝑤(𝑇)

7

2

1

1

1

2

2

2

3

1

WLOG: we may assume that all edge weights are distinct



 Q: What if the graph is unweighted?

 Q: What if the graph contains edges with negative weights?
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Trivial

Add a large constant to every edge; a MST remains the same



 Proof by contradiction
 Suppose there are two MSTs 𝐴 and 𝐵

 Let 𝑒 be the least-weight edge in 𝐴⋃𝐵 and 𝑒 is not in both

 WLOG, assume 𝑒 is in 𝐴

 Add 𝑒 to 𝐵; 𝑒 ⋃𝐵 contains a cycle 𝐶

 B includes at least one edge 𝑒′ that is not in 𝐴 but on 𝐶

 Replacing 𝑒′ with 𝑒 yields a MST with less cost

9

Theorem: MST is unique if all edge weights are distinct

If edge weights are not all distinct, then the (multi-)set of weights in 
MST is unique
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Otakar Borůvka
 Czech scientist

 Introduced the problem

 Gave an 𝑂 𝑚 log 𝑛 time algorithm

 The original paper was written in Czech in 1926

 The purpose was to efficiently provide electric coverage of 
Bohemia
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 Repeat the following procedure until the resulting graph 
becomes a single node
 For each node 𝑢, mark its lightest incident edge 

 From the marked edges form a forest 𝐹, add the edges of 𝐹 into the 
set of edges to be reported

 Contract each maximal subtree of 𝐹 into a single node
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 Proof via contradiction
 An MST 𝑇 of 𝐺 that does not contain 𝑢, 𝑣

 A cycle 𝐶 = 𝑇 ∪ 𝑢, 𝑣 contains an edge 𝑢,𝑤 in 𝐶 that has 
larger weight than 𝑢, 𝑣

 𝑇′ = 𝑇 ∪ 𝑢, 𝑣 \ 𝑢, 𝑤 must be a spanning tree of 𝐺 lighter 
than 𝑇
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Claim: If 𝑢, 𝑣 is the lightest edge incident to 𝑢 in 𝐺, 𝑢, 𝑣 must 
belong to any MST of 𝐺
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 The recurrence relation

 We check all edges in each phase

 After each contraction phase, the number of nodes is reduced 
by at least one half

 Time complexity:
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 Proof by contradiction
 Suppose 𝑒 is in the MST

 Removing 𝑒 disconnects the MST into two components T1 and T2

 There exists another edge 𝑒′ in 𝐶 that can reconnect T1 and T2

 Since 𝑤 𝑒’ < 𝑤(𝑒), the new tree has a lower weight

 Contradiction!
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Let 𝐶 be any cycle in the graph 𝐺, and let 𝑒 be an edge with the 
maximum weight on 𝐶. Then the MST does not contain 𝑒.
• For simplicity, assume all edge weights are distinct



 Proof by contradiction
 Suppose 𝑒 is not in the current MST

 Adding 𝑒 creates a cycle in the MST

 There exists another edge 𝑒′ in 𝐶 that can break the cycle

 Since 𝑤 𝑒’ > 𝑤(𝑒), the new tree has a lower weight

 Contradiction!

17

Let 𝐶 be a cut in the graph, and let 𝑒 be the edge with the 
minimum cost in 𝐶. Then the MST contains 𝑒.
• Cut = a partition of the vertices
• For simplicity, assume all edge weights are distinct



Textbook Chapter 23.2 – The algorithms of Kruskal and Prim 
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 For each node 𝑢
 Make-set(𝑢): create a set consisting of 𝑢

 For each edge 𝑢, 𝑣 , taken in non-decreasing order by weights
 if Find-set(𝑢) ≠Find-set(𝑣) (i.e., 𝑢 and 𝑣 are not in the same 

set) then
 Output edge 𝑢, 𝑣

 Union(𝑢, 𝑣): union the sets containing 𝑢 and 𝑣 into a single set
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The lightest edge incident to a vertex must be in the MST



 Consider whether adding 𝑒 creates a cycle:
 If adding 𝑒 to 𝑇 creates a cycle 𝐶

 Then 𝑒 is the max weight edge in 𝐶

 The cycle property ensures that 𝑒 is not in the MST

 If adding 𝑒 = 𝑢, 𝑣 to 𝑇 does not create a cycle

 Before adding 𝑒, the current MST can be divided into two trees T1 
and T2 such that 𝑢 in T1 and 𝑉 in T2

 𝑒 is the minimum-cost edge on the cut of T1 and T2

 The cut property ensures that 𝑒 is in the MST
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MST-KRUSKAL(G, w) // w = weights

A = empty // edge set of MST

for v in G.V

MAKE-SET(v)

sort edges of G.E into non-decreasing order by weight w

for (u, v) in G.E, taken in non-decreasing order by weight

if FIND-SET(u) ≠ FIND-SET(v)

A = A ∪ {u, v}

UNION(u, v)

return A

 Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
 MAKE-SET:

 FIND-SET:

 UNION:

 The amortized cost of 𝑚 operations on 𝑛 elements (Exercise 21.4-4):

 Total complexity:



Textbook Chapter 23.2 – The algorithms of Kruskal and Prim 
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 Let 𝑇 consist of an arbitrary node

 For 𝑖 = 1 to 𝑛 − 1
 add the least-weighted edge incident to the current subtree
𝑇 that does not incur a cycle
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The lightest edge incident to a vertex must be in the MST
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MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY

 Binary min-heap (Textbook Ch. 6)
 BUILD-MIN-HEAP:

 EXTRACT-MIN:

 DECREASE-KEY:

 Total complexity:
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 Fibonacci heap (Textbook Ch. 19)
 BUILD-MIN-HEAP:

 EXTRACT-MIN:        (amortized)

 DECREASE-KEY:    (amortized)

 Total complexity:

MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY



Textbook Chapter 24 – Single-Source Shortest Paths
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 Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸
 Weights can be arbitrary numbers, not necessarily distance

 Weight function needs not satisfy triangle inequality

 Output: a minimal-cost path from 𝑠 to 𝑡 s.t. 𝛿 𝑠, 𝑡 is the 
minimum weight from 𝑠 to 𝑡

 Problem Variants
 Single-source shortest-path problem
 Single-destination shortest-path problem
 Single-pair shortest-path problem
 All-pair shortest path problem

39



 Can a shortest path contain a negative-weight edge?

 Can a shortest path contain a negative-weight cycle?

 Can a shortest path contain a cycle?

40

Yes.

Doesn’t make sense.

No.



 Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸 and a source 
vertex 𝑠

 Output: a minimal-cost path from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

41



 Let 𝐺 = 𝑉, 𝐸 be a weighted, directed graph with no 
negative-weight cycles reachable from 𝑠

 A shortest path tree 𝐺′ = 𝑉′, 𝐸′ of 𝑠 is a subgraph of 𝐺 s.t.
 𝑉′ is the set of vertices reachable from 𝑠 in 𝐺

 𝐺′ forms a rooted tree with root 𝑠

 For all 𝑣 ∈ 𝑉′, the unique simple path from 𝑠 to 𝑣 in 𝐺′ is a 
shortest path from 𝑠 to 𝑣 in 𝐺
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 Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸 and a vertex 𝑠

 Output: a tree 𝑇 rooted at 𝑠 s.t. the path from 𝑠 to 𝑢 of 𝑇 is 
a shortest path from 𝑠 to 𝑢 in 𝐺

43



 The shortest path tree problem is equivalent to finding the 
minimal cost 𝛿 𝑠, 𝑢 from 𝑠 to each node 𝑢 in 𝐺
 The minimal cost from 𝑠 to 𝑢 in 𝐺 is the length of any 

shortest path from 𝑠 to 𝑢 in 𝐺

44

“equivalence”: a solution to either problem can be obtained 
from a solution to the other problem in linear time

Shortest Path Tree 
Problem

Single-Source Shortest 
Path Problem

=



Textbook Chapter 24.1 – The Bellman-Ford algorithm
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Richard Bellman, 1920~1984

 Norbert Wiener Prize in Applied 
Mathematics, 1970

 Dickson Prize, Carnegie-Mellon 
University, 1970

 John von Neumann Theory 
Award, 1976.

 IEEE Medal of Honor, 1979, 

 Fellow of the American Academy 
of Arts and Sciences, 1975.

 Membership in the National 
Academy of Engineering, 1977

Lester R. Ford, Jr. 1927~2017

 A important contributor to the 
theory of network flow.
 We will learn Ford and 

Fulkerson’s maximum flow 
algorithm in a couple of weeks.
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 Idea: estimate the value of 𝑑 𝑢 to approximate 𝛿 𝑠, 𝑢

 Initialization
 Let 𝑑 𝑢 = ∞ for 𝑢 ∈ 𝐺

 Let 𝑑 𝑠 = 0

 Repeat the following step for sufficient number of phases
 For each edge 𝑢, 𝑣 ∈ 𝐸, relax edge 𝑢, 𝑣

 Relaxing: If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣 , let 𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣

47

 improve the estimation of 𝑑 𝑢
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 Observation: let 𝑃 be a shortest path from 𝑠 to 𝑟
 For any vertex 𝑢 in 𝑃, the subpath of 𝑃 from 𝑠 to 𝑢 has to be a 

shortest path from 𝑠 to 𝑢 optimal substructure

 For any edge 𝑢, 𝑣 in 𝑃, if 𝑑 𝑢 = 𝛿 𝑠, 𝑢 , then 𝑑 𝑣 = 𝛿 𝑠, 𝑣 also 
holds after relaxing edge 𝑢, 𝑣

 If 𝐺 contains no negative cycles, then each node 𝑢 has a shortest 
path from 𝑠 to 𝑢 that has at most n – 1 edges

 From observation, after the first 𝑖 phases of improvement via 
relaxation, the estimation of 𝑑 𝑢 for the first 𝑖 + 1 nodes 𝑢 in 
the path is precise (= 𝛿 𝑠, 𝑢 )

51

s
ru

 𝑛 − 1 phases
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 Time complexity: 

53

BELLMAN-FORD(G, w, s)

INITIALIZATION(G, s)

for i = 1 to |G.V| - 1

for (u, v) in G.E

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

How to do if there is a 
negative cycle in the graph?



 Q: How do we know 𝐺 has negative cycles?

 A: Using another phase of improvement via relaxation
 Run another phase of improving the estimation of 𝑑 𝑢 for 

each vertex 𝑢 ∈ 𝑉 via relaxing all edges 𝐸

 If in the 𝑛-th phase, there are still some 𝑑 𝑢 being modified, 
we know that 𝐺 has negative cycles
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 Proof by contradiction
 Let 𝐶 be a negative cycle of 𝑘 nodes 𝑣1, 𝑣2, … , 𝑣𝑘 (𝑣𝑘+1 = 𝑣1)

 Assume 𝑑 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 are not changed in a phase of 
improvement, then for 1 ≤ 𝑖 ≤ 𝑘

 Summing all 𝑘 inequalities, the sum of edge weights of 𝐶 is 
nonnegative

55

If there exists a negative cycle in 𝐺, in the 𝑛-th phase, there are still some 
𝑑 𝑢 being modified.

negative



 Time complexity: 

 Finding a shortest-path tree of 𝐺:

56

BELLMAN-FORD(G, w, s)

INITIALIZATION(G, s)

for i = 1 to |G.V| - 1

for (u, v) in G.E

RELAX(u, v, w)

for (u, v) in G.E

if v.d > u.d + w(u, v)

return FALSE

return TRUE

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

negative cycle detection



Textbook Chapter 24.2 – Single-source shortest paths in directed 
acyclic graphs
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 Input: a weighted, directed, and acyclic graph 𝐺 = 𝑉, 𝐸
and a source vertex 𝑠

 Output: a shortest-path distance from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

58
No negative cycle!



 Idea: one phase relaxation

 Perform a topological sort in linear time on the input DAG

 For 𝑖 = 1 to 𝑛
 Let 𝑣𝑖 be the 𝑖-th node in the above order

 Relax each outgoing edge (𝑣𝑖, 𝑢) from 𝑣𝑖

Time complexity: 

59

s



 Assume this is a shortest path from 𝑠 to 𝑢

 If we follow the order from topological sort to relax the 
vertices’ edges, in this shortest path, the left edge must be 
relaxed before the right edge

 One phase of improvement is enough

60

s u



Textbook Chapter 24.3 – Dijkstra’s algorithm
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 Input: a non-negative weighted, directed, graph 𝐺 = 𝑉, 𝐸
and a source vertex 𝑠

 Output: a shortest-path distance from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

62
No negative cycle!



 Idea: BFS finds shortest paths on unweighted graph by 
expanding the search frontier

 Initialization

 Loops for 𝑛 iterations, where each iteration 
 relax outgoing edges of an unprocessed node 𝑢 with minimal 𝑑 𝑢

 marks 𝑢 as processed
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 Prove by contradiction
 Assume 𝑢 is the first vertex for 

being processed

 Let a shortest path 𝑃 from 𝑠 to 𝑢,

 𝑥 is the last vertex in 𝑃 from 𝑆

 𝑦 is the first vertex in 𝑃 not from 𝑆

 𝑑 𝑦 = 𝛿 𝑠, 𝑦 because 𝑥, 𝑦 is 
relaxed when putting 𝑥 into 𝑆

71

s

x y

u

processed 
nodes 𝑆

The vertex selected by Dijkstra’s algorithm into the processed set must 
precise estimation of its shortest path distance.

The first node

a shortest path 
from 𝑠 to 𝑢



 Min-priority queue
 INSERT:

 EXTRACT-MIN:     

 DECREASE-KEY:    

 Total complexity:
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DIJKSTRA(G, w, s)

INITIALIZATION(G, s)

S = empty

Q = G.v // INSERT

while Q ≠ empty

u = EXTRACT-MIN(Q)

S = S∪{u}
for v in G.adj[u]

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u



 Fibonacci heap (Textbook Ch. 19)
 BUILD-MIN-HEAP:

 EXTRACT-MIN:        (amortized)

 DECREASE-KEY:    (amortized)

 Total complexity:
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DIJKSTRA(G, w, s)

INITIALIZATION(G, s)

S = empty

Q = G.v // INSERT

while Q ≠ empty

u = EXTRACT-MIN(Q)

S = S∪{u}
for v in G.adj[u]

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u



 Minimal Spanning Trees (MST)
 Boruvka’s Algorithm:

 Kruskal’s Algorithm:

 Prim’s Algorithm:                               with Fabonacci heap

 Single-Source Shortest Paths
 Bellman-Ford Algorithm (general graph and weights)

 and detecting negative cycles

 Lawler Algorithm (acyclic graph)



 Dijkstra Algorithm (non-negative weights)

 with Fabonacci heap
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Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

