

Slides credited from Hsueh-I Lu & Hsu-Chun Hsiao

Graph (2) Nov 30th, 2017

Announcement

- Mini-HW 8 released
 - Due on 12/07 (Thur) 17:20
- Homework 3 released
 - Due on 12/14 (Thur) 17:20 (two weeks)
- Next-week room changed!!
 - 12/07 (Thur) to forever
 - Location: R103
- Midterm discussion
 - Today 16:30-17:20
 - Location: R103

Frequently check the website for the updated information!

Mini-HW 8

Mini HW #8

Due Time: 2017/12/07 (Thu.) 17:20 Contact TAs: ada-ta@csie.ntu.edu.tw

Let G be a weighted undirected graph and the weight of each edge is either 0 or 1. Now given a number k, we would like to determine whether there exists a spanning tree of G with its weight being k.

(a) How would you modify the existing algorithm for minimum spanning tree to find a maximum spanning tree? (3pt)

(b) Describe how to determine whether there exists a spanning tree of weight k. Can the weight of a maximum spanning tree help you? (4pt)

(c) Explain why your algorithm is correct. (3pt)

Mine

Outline

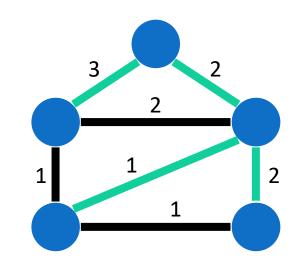
- Minimal Spanning Trees (MST)
 - Boruvka's Algorithm
 - Kruskal's Algorithm
 - Prim's Algorithm
- Single-Source Shortest Paths
 - Bellman-Ford Algorithm
 - Lawler Algorithm (SSSP in DAG)
 - Dijkstra Algorithm

Minimal Spanning Tree (MST)

Textbook Chapter 23 – Minimal Spanning Trees

Spanning Tree

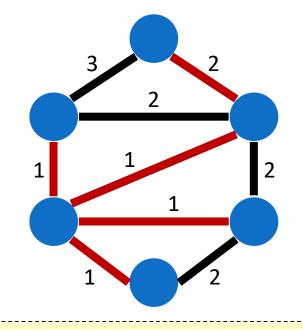
Definition



- a subgraph that is a tree and connects all vertices
 - Exactly n − 1 edges
 - Acyclic
- There can be many spanning trees of a graph
- BFS and DFS also generate spanning trees
 - BFS tree is typically "short and bushy"
 - DFS tree is typically "long and stringy"

Minimal Spanning Tree Problem

- Input: a connected n-node m-edge graph G with edge weights w
- Output: a spanning tree T of G with minimum w(T)



WLOG: we may assume that all edge weights are distinct

Minimal Spanning Tree Problem

- Q: What if the graph is unweighted?
 Trivial
- Q: What if the graph contains edges with negative weights?
 Add a large constant to every edge; a MST remains the same

Uniqueness of MST

Theorem: MST is unique if all edge weights are distinct

- Proof by contradiction
 - Suppose there are two MSTs A and B
 - Let e be the least-weight edge in $A \cup B$ and e is not in both
 - WLOG, assume e is in A
 - Add e to B; $\{e\} \cup B$ contains a cycle C
 - B includes at least one edge e' that is not in A but on C
 - Replacing e' with e yields a MST with less cost

If edge weights are not all distinct, then the (multi-)set of weights in MST is unique

Borůvka's Algorithm

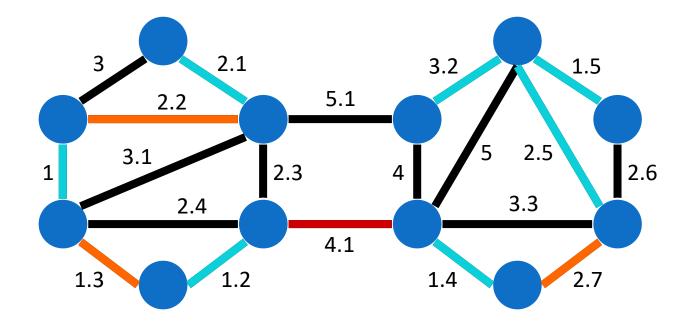
Inventor of MST

- Otakar Borůvka
 - Czech scientist
 - Introduced the problem
 - Gave an $O(m \log n)$ time algorithm
 - The original paper was written in Czech in 1926
 - The purpose was to efficiently provide electric coverage of Bohemia

Borůvka's Algorithm

- Repeat the following procedure until the resulting graph becomes a single node
 - For each node *u*, mark its lightest incident edge
 - From the marked edges form a forest F, add the edges of F into the set of edges to be reported
 - Contract each maximal subtree of F into a single node

Borůvka's Algorithm Illustration

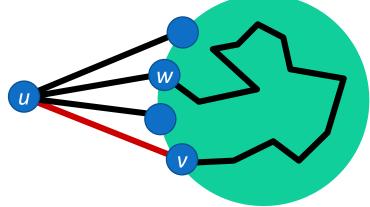


Algorithm Correctness

<u>Claim</u>: If (u, v) is the lightest edge incident to u in G, (u, v) must belong to any MST of G

Proof via contradiction

- An MST T of G that does not contain (u, v)
- A cycle C = T ∪ (u, v) contains an edge (u, w) in C that has larger weight than (u, v)
- $T' = T \cup (u, v) \setminus (u, w)$ must be a spanning tree of G lighter than T



Time Complexity

The recurrence relation

$$T(m,n) \le T(m,n/2) + O(m)$$

- We check all edges in each phase $\blacklozenge O(m)$
- After each contraction phase, the number of nodes is reduced by at least one half
- Time complexity: $O(m \log n)$

Cycle Property

Let C be any cycle in the graph G, and let e be an edge with the maximum weight on C. Then the MST does not contain e.

- For simplicity, assume all edge weights are distinct
- Proof by contradiction
 - Suppose e is in the MST
 - Removing e disconnects the MST into two components T1 and T2
 - There exists another edge e' in C that can reconnect T1 and T2
 - Since w(e') < w(e), the new tree has a lower weight
 - Contradiction!

Cut Property

Let C be a cut in the graph, and let e be the edge with the minimum cost in C. Then the MST contains e.

- Cut = a partition of the vertices
- For simplicity, assume all edge weights are distinct
- Proof by contradiction
 - Suppose e is not in the current MST
 - Adding e creates a cycle in the MST
 - There exists another edge e' in C that can break the cycle
 - Since w(e') > w(e), the new tree has a lower weight
 - Contradiction!

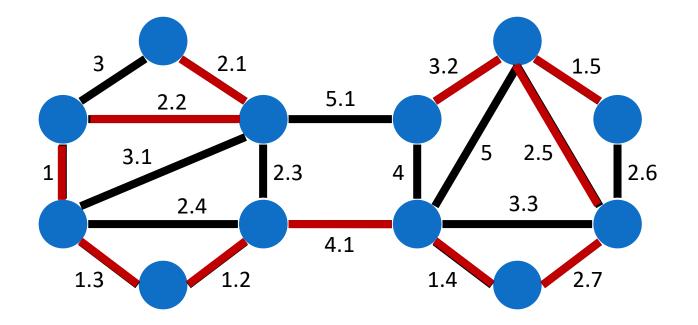
Kruskal's Algorithm

Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

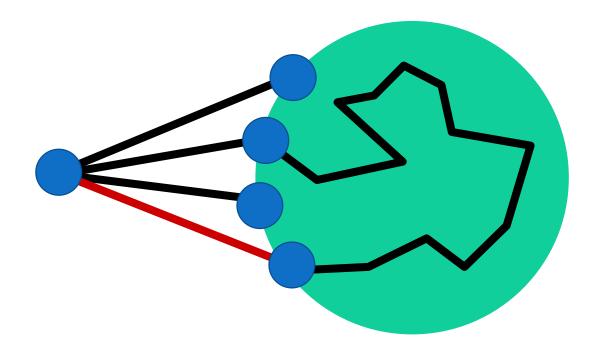
Kruskal's Algorithm

- For each node u
 - Make-set(u): create a set consisting of u
- For each edge (u, v), taken in non-decreasing order by weights
 - if Find-set(u) ≠Find-set(v) (i.e., u and v are not in the same set) then
 - Output edge (u, v)
 - Union(*u*, *v*): union the sets containing *u* and *v* into a single set

Kruskal's Algorithm Illustration



Kruskal's Algorithm Correctness



The lightest edge incident to a vertex must be in the MST

Kruskal's Algorithm Correctness

- Consider whether adding e creates a cycle:
 - If adding e to T creates a cycle C
 - Then *e* is the max weight edge in *C*
 - The cycle property ensures that *e* is not in the MST
 - If adding e = (u, v) to T does not create a cycle
 - Before adding e, the current MST can be divided into two trees T1 and T2 such that u in T1 and V in T2
 - *e* is the minimum-cost edge on the cut of T1 and T2
 - The cut property ensures that e is in the MST

Kruskal's Time Complexity

```
MST-KRUSKAL(G, w) // w = weights
A = empty // edge set of MST
for v in G.V
MAKE-SET(v)
sort edges of G.E into non-decreasing order by weight w O(m \log m)
for (u, v) in G.E, taken in non-decreasing order by weight m times
    if FIND-SET(u) ≠ FIND-SET(v)
    A = A U {u, v}
    UNION(u, v)
return A
```

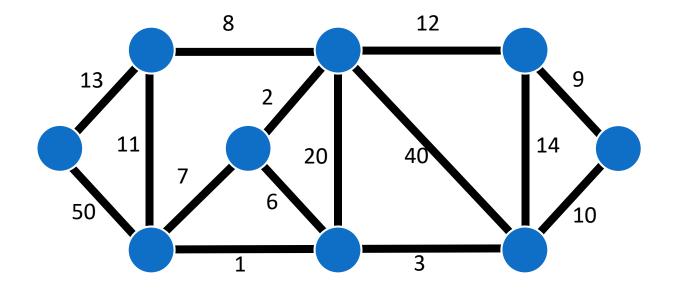
- Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
 - Make-set: O(1)
 - FIND-SET: $O(\log n)$
 - UNION: $O(\log n)$
 - The amortized cost of m operations on n elements (Exercise 21.4-4): $O(m \log n)$
- Total complexity: $O(m\log m) = O(m\log n)$

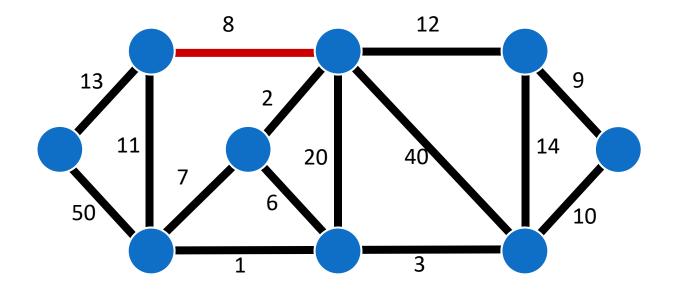
Prim's Algorithm

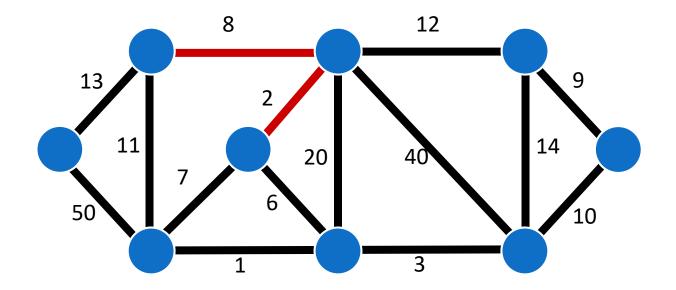
Textbook Chapter 23.2 – The algorithms of Kruskal and Prim

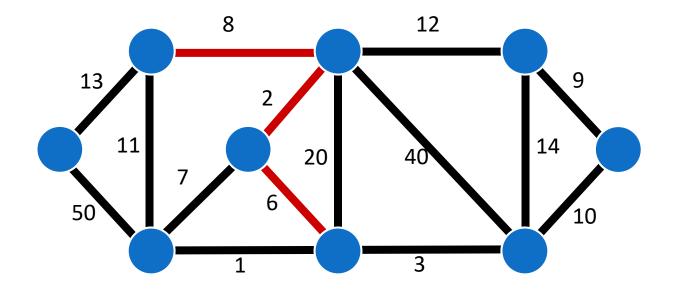
Prim's Algorithm

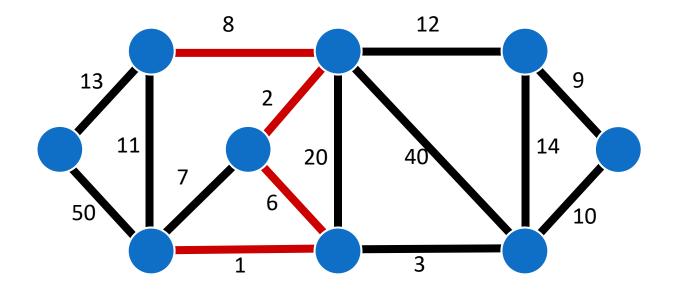
- Let T consist of an arbitrary node
- For i = 1 to n 1
 - add the least-weighted edge incident to the current subtree
 T that does not incur a cycle

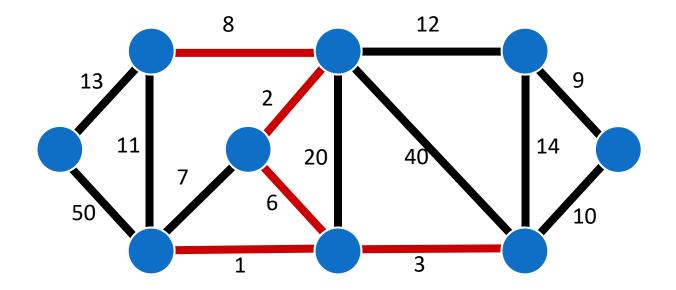


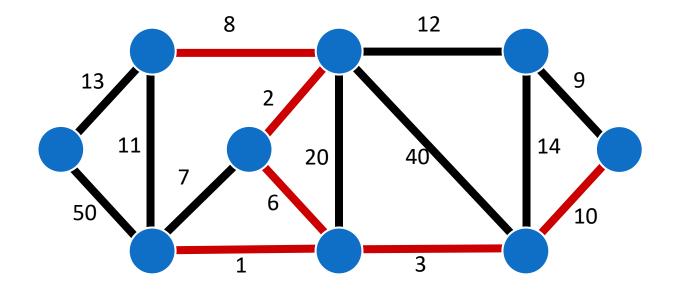


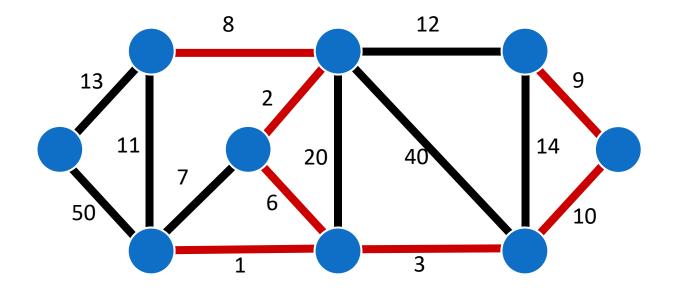


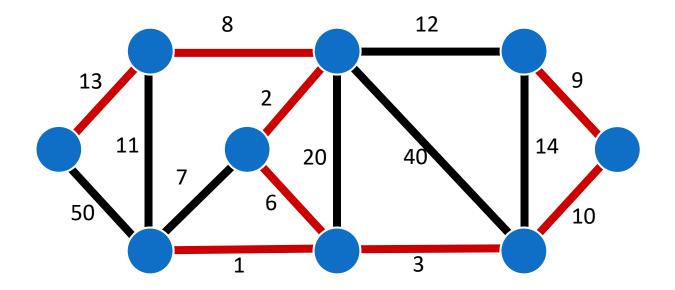




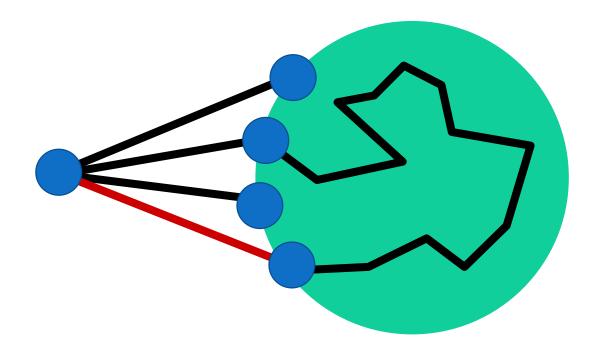








Prim's Algorithm Correctness



The lightest edge incident to a vertex must be in the MST

Prim's Time Complexity

```
MST-PRIM(G, w, r) / / w = weights, r = root
  for u in G.V
    u.key = ∞
                                                      O(n)
    u.n = NIL
  r.key = 0
  Q = G.V
                                                  n \text{ times}
  while Q \neq empty
                                                  O(\log n)
    u = EXTRACT-MIN(Q)
    for v in G.adj[u]
                                                  m times
      if v \in Q and w(u, v) < v.key
        v.п = u
                                                  O(\log n)
        v.key = w(u, v) // DECREASE-KEY
```

- Binary min-heap (Textbook Ch. 6)
 - BUILD-MIN-HEAP: O(n)
 - EXTRACT-MIN: $O(\log n)$
 - Decrease-key: $O(\log n)$
- Total complexity: $O(n \log n + m \log n) = O(m \log n)$

Prim's Time Complexity

```
MST-PRIM(G, w, r) / / w = weights, r = root
  for u in G.V
    u.key = ∞
                                                    O(n)
    u.n = NIL
  r.key = 0
  Q = G.V
                                                n times
  while Q \neq empty
                                                O(\log n)
    u = EXTRACT-MIN(Q)
    for v in G.adj[u]
                                                m times
      if v \in Q and w(u, v) < v.key
        v.п = u
                                                O(1)
        v.key = w(u, v) // DECREASE-KEY
```

- Fibonacci heap (Textbook Ch. 19)
 - BUILD-MIN-HEAP: O(n)
 - EXTRACT-MIN: $O(\log n)$ (amortized)
 - DECREASE-KEY:O(1) (amortized)
- Total complexity: $O(m + n \log n)$

Single-Source Shortest Paths

Textbook Chapter 24 – Single-Source Shortest Paths

Shortest Path Problem

- Input: a weighted, directed graph G = (V, E)
 - Weights can be arbitrary numbers, not necessarily distance
 - Weight function needs not satisfy triangle inequality
- Output: a minimal-cost path from s to t s.t. $\delta(s, t)$ is the minimum weight from s to t
- Problem Variants
 - Single-source shortest-path problem
 - Single-destination shortest-path problem
 - Single-pair shortest-path problem
 - All-pair shortest path problem

Cycles in Graph

- Can a shortest path contain a negative-weight edge?
 Yes.
- Can a shortest path contain a negative-weight cycle?
 Doesn't make sense.
- Can a shortest path contain a cycle?
 No.

Single-Source Shortest Path Problem

- Input: a weighted, directed graph G = (V, E) and a source vertex s
- Output: a minimal-cost path from s to t, where $t \in V$

Shortest Path Tree

- Let G = (V, E) be a weighted, directed graph with no negative-weight cycles reachable from s
- A shortest path tree G' = (V', E') of s is a subgraph of G s.t.
 - V' is the set of vertices reachable from s in G
 - G' forms a rooted tree with root s
 - For all $v \in V'$, the unique simple path from s to v in G' is a shortest path from s to v in G

Shortest Path Tree Problem

- Input: a weighted, directed graph G = (V, E) and a vertex s
- Output: a tree T rooted at s s.t. the path from s to u of T is a shortest path from s to u in G

Problem Equivalence

- The shortest path tree problem is equivalent to finding the minimal cost $\delta(s, u)$ from s to each node u in G
 - The minimal cost from s to u in G is the length of any shortest path from s to u in G

"equivalence": a solution to either problem can be obtained from a solution to the other problem in linear time

=

Shortest Path Tree Problem Single-Source Shortest Path Problem

Bellman-Ford Algorithm

Textbook Chapter 24.1 – The Bellman-Ford algorithm

Bellman and Ford

Richard Bellman, 1920~1984

- Norbert Wiener Prize in Applied Mathematics, 1970
- Dickson Prize, Carnegie-Mellon University, 1970
- John von Neumann Theory Award, 1976.
- IEEE Medal of Honor, 1979,
- Fellow of the American Academy of Arts and Sciences, 1975.
- Membership in the National Academy of Engineering, 1977

Lester R. Ford, Jr. 1927~2017

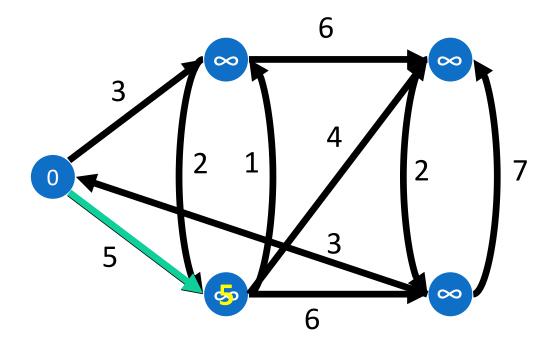
- A important contributor to the theory of network flow.
 - We will learn Ford and Fulkerson's maximum flow algorithm in a couple of weeks.

Bellman-Ford Algorithm

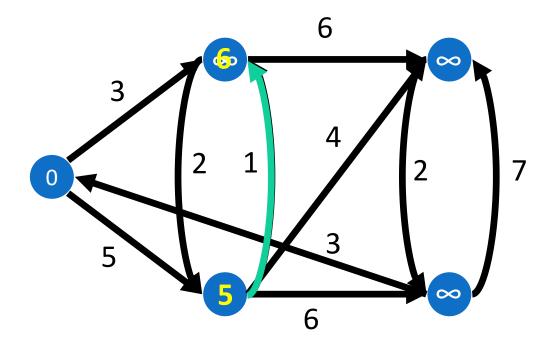
- Idea: estimate the value of d[u] to approximate $\delta(s, u)$
- Initialization
 - Let $d[u] = \infty$ for $u \in G$
 - Let d[s] = 0
- Repeat the following step for sufficient number of phases
 - For each edge $(u, v) \in E$, relax edge (u, v)
 - Relaxing: If d[v] > d[u] + w(u, v), let d[v] = d[u] + w(u, v)

 \rightarrow improve the estimation of d[u]

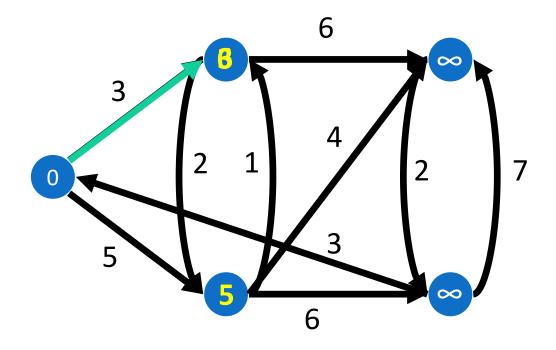
Bellman-Ford Algorithm Illustration



Bellman-Ford Algorithm Illustration



Bellman-Ford Algorithm Illustration



Bellman-Ford Algorithm Correctness

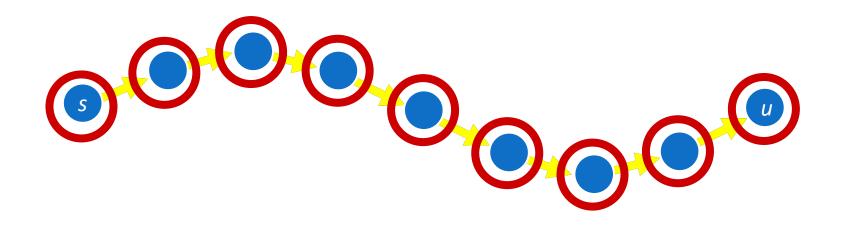
Observation: let P be a shortest path from s to r

- For any vertex u in P, the subpath of P from s to u has to be a shortest path from s to u → optimal substructure
- For any edge (u, v) in P, if $d[u] = \delta(s, u)$, then $d[v] = \delta(s, v)$ also holds after relaxing edge (u, v)

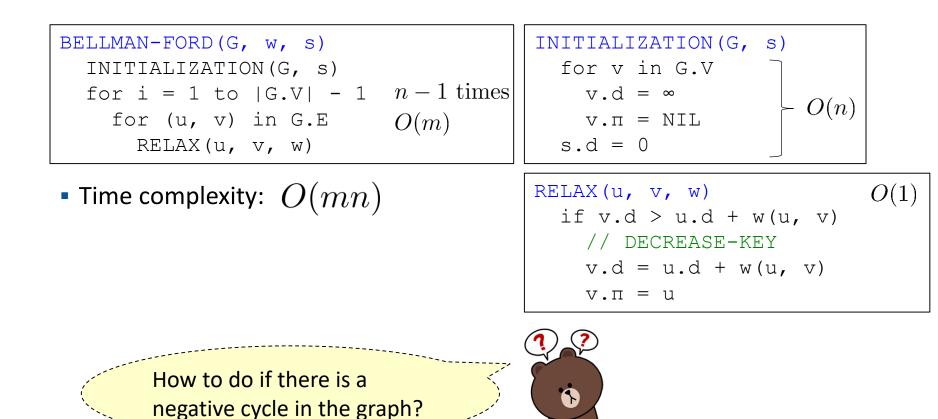
- If G contains no negative cycles, then each node u has a shortest path from s to u that has at most n − 1 edges
- From observation, after the first i phases of improvement via relaxation, the estimation of d[u] for the first i + 1 nodes u in the path is precise (= $\delta(s, u)$)

$$\rightarrow n-1$$
 phases

Bellman-Ford Algorithm Correctness

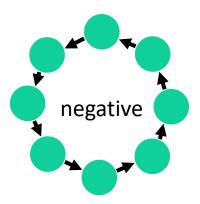


Bellman-Ford Time Complexity



Negative Cycle Detection

- Q: How do we know G has negative cycles?
- A: Using another phase of improvement via relaxation
 - Run another phase of improving the estimation of d[u] for each vertex $u \in V$ via relaxing all edges E
 - If in the n-th phase, there are still some d[u] being modified, we know that G has negative cycles



Negative Cycle Detection

If there exists a negative cycle in G, in the n-th phase, there are still some d[u] being modified.

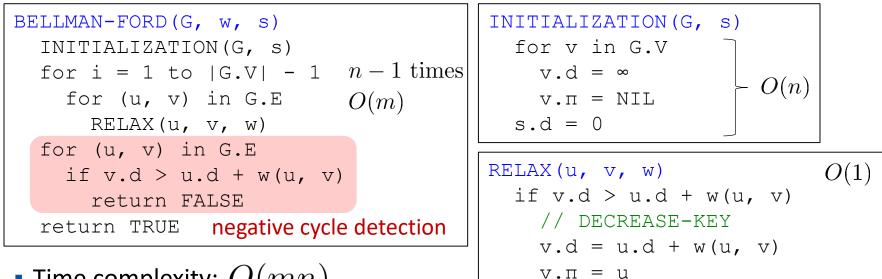
- Proof by contradiction
 - Let C be a negative cycle of k nodes v_1, v_2, \dots, v_k ($v_{k+1} = v_1$)
 - Assume $d[v_i]$ for all $1 \le i \le k$ are not changed in a phase of improvement, then for $1 \le i \le k$

 $d[v_{i+1}] \le d[v_i] + w(v_i, v_{i+1})$

 Summing all k inequalities, the sum of edge weights of C is nonnegative

$$\sum_{i=1}^{k} d[v_{i+1}] \le \sum_{i=1}^{k} d[v_i] + \sum_{i=1}^{k} w(v_i, v_{i+1}) \implies 0 \le \sum_{i=1}^{k} w(v_i, v_{i+1})$$

Bellman-Ford Algorithm



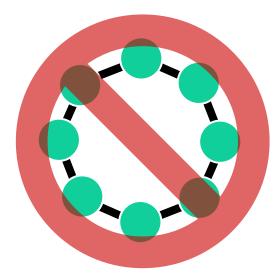
- Time complexity: O(mn)
- Finding a shortest-path tree of G: O(mn) + O(m+n) = O(mn)

Lawler Algorithm

Textbook Chapter 24.2 – Single-source shortest paths in directed acyclic graphs

Single-Source Shortest Path Problem

- Input: a weighted, directed, and acyclic graph G = (V, E)and a source vertex s
- Output: a shortest-path distance from s to t, where $t \in V$

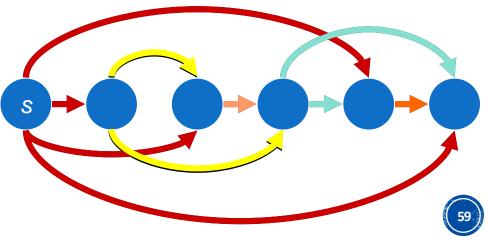


No negative cycle!

Lawler Algorithm

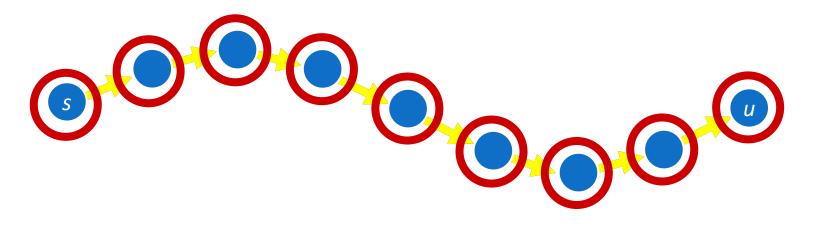
- Idea: one phase relaxation
- Perform a topological sort in linear time on the input DAG
- For i = 1 to n
 - Let v_i be the *i*-th node in the above order
 - Relax each outgoing edge (v_i, u) from v_i

Time complexity: O(m+n)



Lawler Algorithm Correctness

- Assume this is a shortest path from s to u
- If we follow the order from topological sort to relax the vertices' edges, in this shortest path, the left edge must be relaxed before the right edge
- One phase of improvement is enough



Dijkstra's Algorithm

Textbook Chapter 24.3 – Dijkstra's algorithm

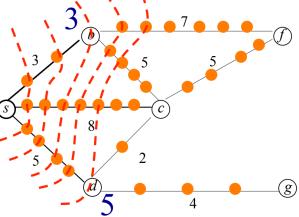
Single-Source Shortest Path Problem

- Input: a non-negative weighted, directed, graph G = (V, E)and a source vertex s
- Output: a shortest-path distance from s to t, where $t \in V$

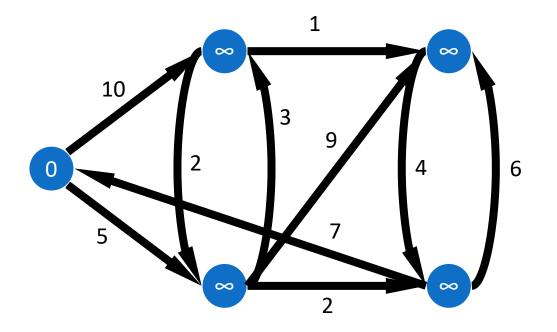
No negative cycle!

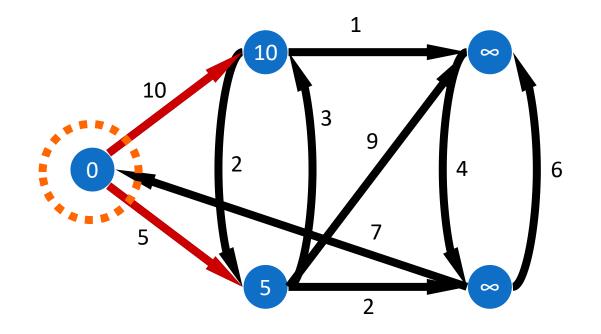
Dijkstra's Algorithm

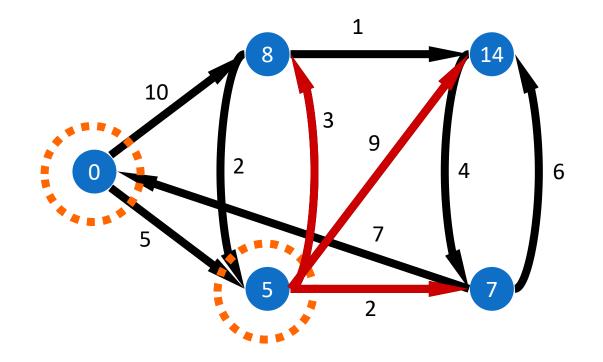
 Idea: BFS finds shortest paths on unweighted graph by expanding the search frontier

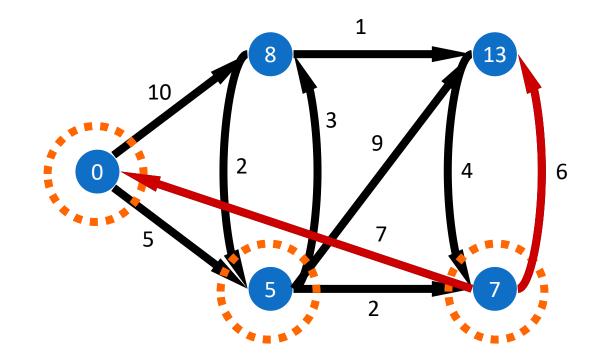


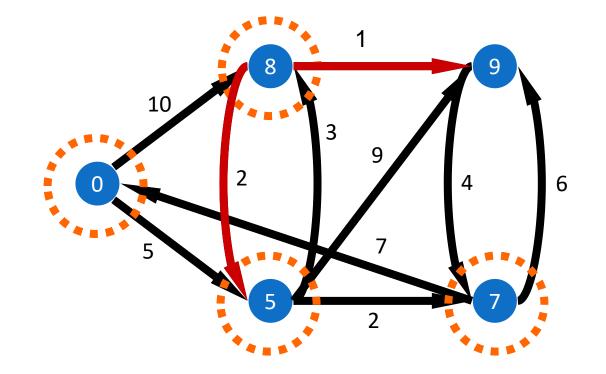
- Initialization
- Loops for n iterations, where each iteration
 - relax outgoing edges of an unprocessed node u with minimal d[u]
 - marks u as processed

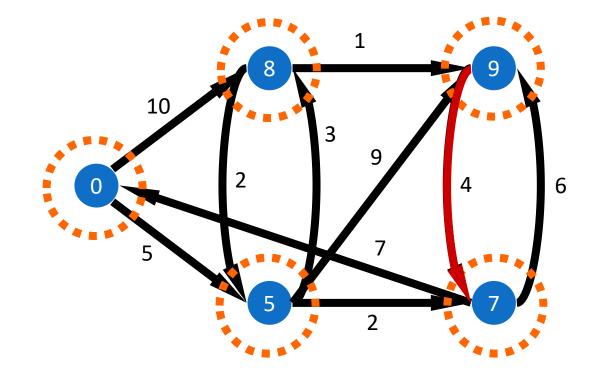


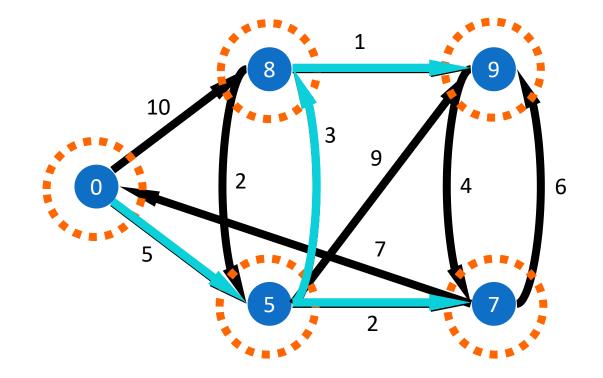










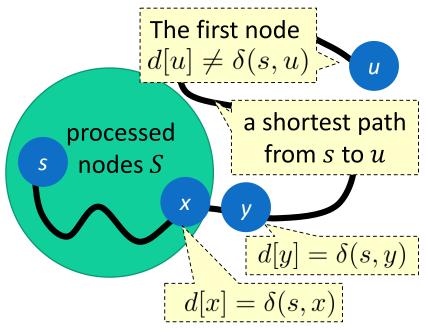


Dijkstra's Algorithm Correctness

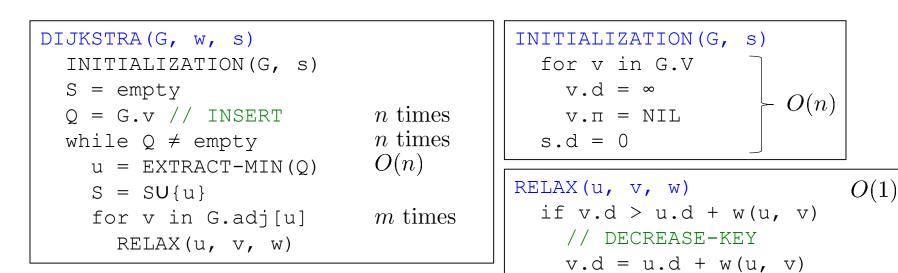
The vertex selected by Dijkstra's algorithm into the processed set must precise estimation of its shortest path distance.

- Prove by contradiction
 - Assume u is the first vertex for being processed
 - Let a shortest path P from s to u,
 - x is the last vertex in P from S
 - y is the first vertex in P not from S
 - $d[y] = \delta(s, y)$ because (x, y) is relaxed when putting x into S

$$d[u] > \delta(s, u) \geq \delta(s, y) = d[y]$$



Dijkstra's Time Complexity

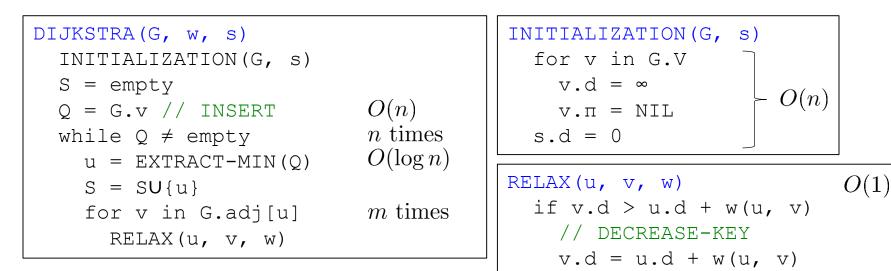


v.п = u

- Min-priority queue
 - INSERT: O(1)
 - EXTRACT-MIN: O(n)
 - DECREASE-KEY: O(1)

- Total complexity: $O(n^2+m)$

Dijkstra's Time Complexity



v.п = u

- Fibonacci heap (Textbook Ch. 19)
 - BUILD-MIN-HEAP: O(n)
 - EXTRACT-MIN: $O(\log n)$ (amortized)
 - DECREASE-KEY: O(1) (amortized)

• Total complexity: $O(m + n \log n)$

Concluding Remarks

- Minimal Spanning Trees (MST)
 - Boruvka's Algorithm: $O(m \log n)$
 - Kruskal's Algorithm: $O(m \log n)$
 - Prim's Algorithm: $O(m + n \log n)$ with Fabonacci heap

Single-Source Shortest Paths

- Bellman-Ford Algorithm (general graph and weights)
 - O(mn) and detecting negative cycles
- Lawler Algorithm (acyclic graph)
 - O(m+n)
- Dijkstra Algorithm (non-negative weights)
 - $O(m + n \log n)$ with Fabonacci heap

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw