

Announcement

Mini-HW 8 released
= Due on 12/07 (Thur) 17:20

Homework 3 released
= Due on 12/14 (Thur) 17:20 (two weeks)

Next-week room changed!!
= 12/07 (Thur) to forever
= Location: R103

Midterm discussion
= Today 16:30-17:20
= Location: R103

——

Mini-HW 8

Mini HW #8

Due Time: 2017/12/07 (Thu.) 17:20
Contact TAs: ada-ta@csie.ntu.edu.tw

Let G be a weighted undirected graph and the weight of each edge is either 0 or 1. Now given a
number k, we would like to determine whether there exists a spanning tree of G with its weight being
k.

(a) How would you modify the existing algorithm for minimum spanning tree to find a maximum
spanning tree? (3pt)

(b) Describe how to determine whether there exists a spanning tree of weight k. Can the weight
of a maximum spanning tree help you? (4pt)

(¢) Explain why your algorithm is correct. (3pt)

)

Outline Q/ V_W.:‘&M

= Minimal Spanning Trees (MST)
= Boruvka’s Algorithm
= Kruskal’s Algorithm
= Prim’s Algorithm

= Single-Source Shortest Paths
= Bellman-Ford Algorithm
= Lawler Algorithm (SSSP in DAG)
= Dijkstra Algorithm

@ Minimal Spanning
= Tree (MST)

Textbook Chapter 23 — Minimal Spanning Trees

Spanning Tree

= Definition
= a subgraph that is a tree and connects all vertices
= Exactlyn — 1 edges
= Acyclic
= There can be many spanning trees of a graph

= BFS and DFS also generate spanning trees
= BFS tree is typically “short and bushy”

= DFS tree is typically “long and stringy”

Minimal Spanning Tree Problem

= Input: a connected n-node m-edge graph G with edge weights w

= Qutput: a spanning tree T of G with minimum w(T)

Minimal Spanning Tree Problem

= Q: What if the graph is unweighted?
Trivial
= Q: What if the graph contains edges with negative weights?

Add a large constant to every edge; a MST remains the same

Uniqueness of MIST

Theorem: MST is unique if all edge weights are distinct

= Proof by contradiction
= Suppose there are two MSTs A and B

= Let e be the least-weight edge in AUB and e is not in both
= WLOG, assume eisin A

= Add e to B; {e}UB contains a cycle C

= B includes at least one edge e’ that is not in 4 but on C

= Replacing e’ with e yields a MST with less cost

If edge weights are not all distinct, then the (multi-)set of weights in
MST is unique

&) Borlvka’s Alg

Inventor of MST

= Otakar Boruvka
= Czech scientist
= Introduced the problem
= Gave an O(mlogn) time algorithm

= The original paper was written in Czech in 1926

= The purpose was to efficiently provide electric coverage of
Bohemia

Boruvka’s Algorithm

= Repeat the following procedure until the resulting graph
becomes a single node
= For each node u, mark its lightest incident edge

= From the marked edges form a forest F, add the edges of F into the
set of edges to be reported

= Contract each maximal subtree of F into a single node

Boruvka’s Algorithm Illustration

Algorithm Correctness

Claim: If (u, v) is the lightest edge incident to u in G, (u, v) must
belong to any MST of G

= Proof via contradiction
= An MST T of G that does not contain (u, v)

= Acycle C =T U (u, v) contains an edge (u,w) in C that has
larger weight than (u, v)

=T" =T U (u,v)\(u, w) must be a spanning tree of G lighter
than T

Time Complexity

= The recurrence relation

T(m,n) <T(m,n/2)+ O(m)

= We check all edges in each phase ® O(m)

= After each contraction phase, the number of nodes is reduced
by at least one half

= Time complexity: O(m log n)

Cycle Property

Let C be any cycle in the graph G, and let e be an edge with the

maximum weight on C. Then the MST does not contain e.
e For simplicity, assume all edge weights are distinct

= Proof by contradiction
= Suppose e is in the MST
= Removing e disconnects the MST into two components T1 and T2
= There exists another edge e’ in C that can reconnect T1 and T2
= Since w(e’) < w(e), the new tree has a lower weight
= Contradiction!

Cut Property

Let C be a cut in the graph, and let e be the edge with the

minimum cost in C. Then the MST contains e.
e Cut = a partition of the vertices
e For simplicity, assume all edge weights are distinct

= Proof by contradiction
= Suppose e is not in the current MST
= Adding e creates a cycle in the MST
= There exists another edge e’ in C that can break the cycle
= Since w(e’) > w(e), the new tree has a lower weight
= Contradiction!

) Kruskal’s Algorithm

Textbook Chapter 23.2 — The algorithms of Kruskal and Prim

Kruskal’s Algorithm

= For each node u
= Make-set(u): create a set consisting of u

= For each edge (u, v), taken in non-decreasing order by weights

= if Find-set(u) #Find-set(v) (i.e., u and v are not in the same
set) then
= Qutput edge (u, v)
= Union(u, v): union the sets containing u and v into a single set

Kruskal’s Algorithm lllustration

Kruskal’s Algorithm Correctness

Kruskal’s Algorithm Correctness

= Consider whether adding e creates a cycle:
= |f adding e to T creates a cycle C
= Then e is the max weight edge in C
= The cycle property ensures that e is not in the MST
= |f adding e = (u, v) to T does not create a cycle

= Before adding e, the current MST can be divided into two trees T1
and T2 suchthatuinTland V' in T2

= ¢ is the minimum-cost edge on the cut of T1 and T2
= The cut property ensures that e is in the MST

Kruskal’s Time Complexity

MST-KRUSKAL (G, w) // w = weights
A = empty // edge set of MST
for v in G.V

MAKE-SET (v)

sort edges of G.E into non-decreasing order by weight w ()Unlogﬂﬂ
for (u, v) in G.E, taken in non-decreasing order by weight m times
if FIND-SET (u) # FIND-SET (V)
A =AU {u v}
UNION (u, v)
return A

= Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
= MAKE-SET: O(1)

= FIND-SET: O(logn)
= UNION: O(logn)

= The amortized cost of m operations on n elements (Exercise 21.4-4): O(m logn)

= Total complexity: O(m log m) = O(mlogn) @

&) Prim’s Al gorithm

Textbook Chapter 23.2 — The algorithms of Kruskal and Prim

Prim’s Algorithm

= Let T consist of an arbitrary node

sFori=1ton—1
= add the least-weighted edge incident to the current subtree
T that does not incur a cycle

Prim’s Algorithm lllustration

8 12
o—0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

I S
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

. { |
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

1 1|
o—0—©

Prim’s Algorithm lllustration

8 12
o——O0—0

1 1|
o—0—©

Prim’s Algorithm lllustration

8 12
o—O0—0

1 1|
o—0—©

Prim’s Algorithm lllustration

8 12
o—O0—0

1 1|
o—0—©

Prim’s Algorithm Correctness

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V
u.key = e
u.mr = NIL
r.key =
QO = G.V
while Q # empty
u = EXTRACT-MIN (Q)
for v in G.adj[u]
if v € Q and w(u, v) < v.key
V.II = U

v.key w(u, v) // DECREASE-KEY

O(n)

n times
O(logn)

m times

O(logn)

= Binary min-heap (Textbook Ch. 6)
= BUILD-MIN-HEAP: O(n)
= EXTRACT-MIN: O(logn)
* DECREASE-KEY: O(logn)

= Total complexity:O(n logn + mlogn) = O(mlogn)

©

Prim’s Time Complexity

MST-PRIM(G, w, r) // w = weights, r = root
for u in G.V
u.key = e
u.mr = NIL
r.key =
QO = G.V
while Q # empty
u = EXTRACT-MIN (Q)
for v in G.adj[u]
if v € Q and w(u, v) < v.key
V.II = U

v.key w(u, v) // DECREASE-KEY

O(n)

n times
O(logn)

m times

O(1)

= Fibonacci heap (Textbook Ch. 19)
= BUILD-MIN-HEAP: O(n)
» EXTRACT-MIN: O(logn) (amortized)
= DECREASE-KEY:(O(1) (amortized)

= Total complexity: O(m + n logn)

7 Single-Source
=~ Shortest Paths

Textbook Chapter 24 — Single-Source Shortest Paths

Shortest Path Problem

= Input: a weighted, directed graph G = (V,E)
= Weights can be arbitrary numbers, not necessarily distance
= Weight function needs not satisfy triangle inequality

= Qutput: a minimal-cost path from s to t s.t. (s, t) is the
minimum weight fromstot

= Problem Variants
= Single-source shortest-path problem
= Single-destination shortest-path problem
= Single-pair shortest-path problem
= All-pair shortest path problem

Cycles in Graph

= Can a shortest path contain a negative-weight edge?
Yes.
= Can a shortest path contain a negative-weight cycle?

Doesn’t make sense.

= Can a shortest path contain a cycle?
No.

Single-Source Shortest Path Problem

= [nput: a weighted, directed graph G = (VV, E) and a source
vertex s

= Qutput: a minimal-cost path from s to t, wheret € V

Shortest Path Tree

=Let G = (V,E) be a weighted, directed graph with no
negative-weight cycles reachable from s

= A shortest path tree G' = (V',E") of s is a subgraph of G s.t.
= /' is the set of vertices reachable from s in G

= ¢’ forms a rooted tree with root s

= For all v € V', the unique simple path fromstovinG'is a
shortest path fromstovin G

Shortest Path Tree Problem

= Input: a weighted, directed graph ¢ = (V,E) and a vertex s

= Qutput: a tree T rooted at s s.t. the path from s tou of T is
a shortest path fromstouin G

Problem Equivalence

= The shortest path tree problem is equivalent to finding the
minimal cost (s, u) from s to each node u in G

= The minimal cost from s to u in G is the length of any
shortest path fromstouin G

. “equivalence”: a solution to either problem can be obtained
from a solution to the other problem in linear time

Shortest Path Tree |l Single-Source Shortest
Problem Path Problem

7 Bellman-Foro
= Algorithm

Textbook Chapter 24.1 — The Bellman-Ford algorithm

Bellman and Ford

Richard Bellman, 1920~1984

= Norbert Wiener Prize in Applied
Mathematics, 1970

= Dickson Prize, Carnegie-Mellon
University, 1970

= John von Neumann Theory
Award, 1976.

= |EEE Medal of Honor, 1979,

= Fellow of the American Academy
of Arts and Sciences, 1975.

= Membership in the National
Academy of Engineering, 1977

Lester R. Ford, Jr. 1927~2017

= A important contributor to the
theory of network flow.

= We will learn Ford and
Fulkerson’s maximum flow

algorithm in a couple of weeks.

Bellman-Ford Algorithm

= |dea: estimate the value of d|u] to approximate §(s, u)

= |nitialization
= letd[u] = o foru € G

= letd[s] =0
= Repeat the following step for sufficient number of phases

= For each edge (u,v) € E, relax edge (u, v)
= Relaxing: If d[v] > d|u] + w(u, v), let d|v] = d|u] + w(u, v)

Bellman-Ford Algorithm lllustration

Bellman-Ford Algorithm lllustration

Bellman-Ford Algorithm lllustration

Bellman-Ford Algorithm Correctness

= Observation: let P be a shortest path from s tor

= For any vertex u in P, the subpath of P from s to u has to be a
shortest path from s to u > optimal substructure

= For any edge (u,v) in P, if d[u] = 6(s,u), then d[v] = 6(s, v) also
holds after relaxing edge (u, v)

= |[f G contains no negative cycles, then each node u has a shortest
path from s to u that has at most n — 1 edges

= From observation, after the first i phases of improvement via
relaxation, the estimation of d[u] for the first i + 1 nodes u in
the path is precise (= 6 (s, u))

> 71— 1 phases | ©

Bellman-Ford Algorithm Correctness

olClo
® @@@@@

Bellman-Ford Time Complexity

BELLMAN-FORD (G, w, s)

INITIALIZATION (G, s)

INITIALIZATION (G, s) for v in G.V
for 1 =1 to |G.V] - 1 mn—1 times v.d = e O
for (u, v) in G.E O(m) v.n = NIL (n)
RELAX (u, v, W) s.d = 0
= Time complexity: O(mn) RELAX (u, Vv, w) O(1)

| How todo if thereis a \
negative cycle in the graph? .~

if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d u.d + w(u, v)
V.II u

Detection

Negative Cycle

= Q: How do we know G has negative cycles?

= A: Using another phase of improvement via relaxation

= Run another phase of improving the estimation of d[u] for
each vertex u € V via relaxing all edges E

= If in the n-th phase, there are still some d[u] being modified,
we know that G has negative cycles

y L3
negative

Detection ¢ 4

RN P 4

Negative Cycle

If there exists a negative cycle in G, in the n-th phase, there are still some
d|u] being modified.
= Proof by contradiction

= Let C be a negative cycle of k nodes vy, V5, ..., Vg (V41 = V1)

= Assume d[v;] forall 1 < i < k are not changed in a phase of
improvement, thenfor1 <i <k

dlvit1] < dlv;] + w(vi, viy1)

= Summing all k inequalities, the sum of edge weights of C is
nonnegative

U’La U’L—I—].

™
fy
S
+
| A\
g
fY
s
+
™
€
S
<
t
||M?r

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)
INITIALIZATION (G, s)

for 1 =1 to |G.V] - 1 mn—1 times
for (u, v) in G.E ()On)
RELAX (u, v, w)
for (u, v) in G.E

if v.d > u.d + w(u, v)
return FALSE
return TRUE negative cycle detection

INITIALIZATION (G, s)
for v in G.V
v.d =

A Q
I
8

V.II =
s.d 0

= Time complexity: O(mn)

RELAX (u, v, w)
if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U

O(1)

= Finding a shortest-path tree of G: O(mn) -+ O(m + TL) — O(mn)

©

Lawler Algorithm

Textbook Chapter 24.2 — Single-source shortest paths in directed
acyclic graphs

Single-Source Shortest Path Problem

= Input: a weighted, directed, and acyclic graph ¢ = (V,E)
and a source vertex s

= Qutput: a shortest-path distance from s to t, wheret € IV

No negative cycle!

Lawler Algorithm

= |dea: one phase relaxation

= Perform a topological sort in linear time on the input DAG

=Fori=1ton
= Let v; be the i-th node in the above order

= Relax each outgoing edge (v;, u) from v,

Time complexity: O(m + n)
DN
0-0 0-0-0-0
_— b
©

Lawler Algorithm Correctness

= Assume this is a shortest path from s to u

= |f we follow the order from topological sort to relax the
vertices’ edges, in this shortest path, the left edge must be

relaxed before the right edge

= One phase of improvement is enough

ol
® @@@@@

Y Dijkstra’s Algorithm

Textbook Chapter 24.3 — Dijkstra’s algorithm

Single-Source Shortest Path Problem

= [nput: a non-negative weighted, directed, graph G = (V/, E)
and a source vertex s

= Qutput: a shortest-path distance from s to t, wheret € IV

No negative cycle!

Dijkstra’s Algorithm

= |dea: BFS finds shortest paths on unweighted graph by
expanding the search frontier oY

= |nitialization -5 4

= Loops for n iterations, where each iteration
= relax outgoing edges of an unprocessed node u with minimal d[u]

= marks u as processed

©

Dijkstra’s Algorithm lllustration

Dijkstra’s Algorithm lllustration

Dijkstra’s Algorithm lllustration

Dijkstra’s Algorithm lllustration

Dijkstra’s Algorithm lllustration

Dijkstra’s Algorithm lllustration

Dijkstra’s Algorithm lllustration

Dijkstra’s Algorithm Correctness

The vertex selected by Dijkstra’s algorithm into the processed set must
precise estimation of its shortest path distance.

= Prove by contradiction The first node |

= Assume u is the first vertex for dlu] # 6(s,u) >
being processed

*, a shortest path :
. fromstou |

= Let a shortest path P from s to u,
= x is the last vertex in P from S
= y is the first vertex in P not from S

~~~~~

= d[y] = 8(s,y) because (x,y) is L p e i
relaxed when putting x into S

_____________________

d[u] > 3(s,u) > 8(s,y) = d[y|



Dijkstra’s Time Complexity

DIJKSTRA (G, w, s)
INITIALIZATION (G, s)
S = empty
Q = G.v // INSERT
while Q # empty
u = EXTRACT-MIN (Q)
S = SU{u}
for v in G.adj[u]
RELAX (u, v, w)

n times
n times

O(n)

m times

INITIALIZATION (G, s)
for v in G.V

= O

Qg d
a3 Q
I

S. 0

= Min-priority queue
= INSERT: O(1)
= EXTRACT-MIN: O(n)
= DECREASE-KEY: Of1

)

= Total complexity: O(an + m)

RELAX (u, v, w) CKl)
if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U




Dijkstra’s Time Complexity

DIJKSTRA (G, w, s)
INITIALIZATION (G, s)

S = empty

Q = G.v // INSERT O(n)

while Q # empty n times
u = EXTRACT-MIN (Q) O(logn)
S = suU{u}
for v in G.adj[u] m times

RELAX (u, v, w)

INITIALIZATION (G, s)
for v in G.V

= Fibonacci heap (Textbook Ch. 19)
= BUILD-MIN-HEAP: O(n)
= EXTRACT-MIN: O(logn) (amortized)
= DECREASE-KEY: O(1) (amortized)

= Total complexity: O(m + nlogn)

v.d = o
v.m = NIL O(n)
s.d = 0
RELAX (u, v, w) O(1)

if v.d > u.d + w(u, v)
// DECREASE-KEY
v.d = u.d + w(u, v)
V.II = U




Concluding Remarks

= Minimal Spanning Trees (MST)
= Boruvka’s Algorithm: O(m logn)
= Kruskal’s Algorithm: O(m log n)
= Prim’s Algorithm: O(m + n logn) with Fabonacci heap

= Single-Source Shortest Paths
= Bellman-Ford Algorithm (general graph and weights)
= O(mmn) and detecting negative cycles
= Lawler Algorithm (acyclic graph)
= O(m+n)
= Dijkstra Algorithm (non-negative weights)
= O(m + nlogn)with Fabonacci heap



Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website:

Email:


http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

