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 Mini-HW 8 released
 Due on 12/07 (Thur) 17:20

 Homework 3 released
 Due on 12/14 (Thur) 17:20 (two weeks)

 Next-week room changed!!
 12/07 (Thur) to forever

 Location: R103

 Midterm discussion
 Today 16:30-17:20

 Location: R103
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Frequently check the website for the updated information!
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 Minimal Spanning Trees (MST)
 Boruvka’s Algorithm

 Kruskal’s Algorithm

 Prim’s Algorithm

 Single-Source Shortest Paths
 Bellman-Ford Algorithm

 Lawler Algorithm (SSSP in DAG)

 Dijkstra Algorithm
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Textbook Chapter 23 – Minimal Spanning Trees
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 Definition
 a subgraph that is a tree and connects all vertices

 Exactly 𝑛 − 1 edges

 Acyclic

 There can be many spanning trees of a graph

 BFS and DFS also generate spanning trees
 BFS tree is typically “short and bushy”

 DFS tree is typically “long and stringy”
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 Input: a connected 𝑛-node 𝑚-edge graph 𝐺 with edge weights 𝑤

 Output: a spanning tree 𝑇 of 𝐺 with minimum 𝑤(𝑇)
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WLOG: we may assume that all edge weights are distinct



 Q: What if the graph is unweighted?

 Q: What if the graph contains edges with negative weights?

8

Trivial

Add a large constant to every edge; a MST remains the same



 Proof by contradiction
 Suppose there are two MSTs 𝐴 and 𝐵

 Let 𝑒 be the least-weight edge in 𝐴⋃𝐵 and 𝑒 is not in both

 WLOG, assume 𝑒 is in 𝐴

 Add 𝑒 to 𝐵; 𝑒 ⋃𝐵 contains a cycle 𝐶

 B includes at least one edge 𝑒′ that is not in 𝐴 but on 𝐶

 Replacing 𝑒′ with 𝑒 yields a MST with less cost
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Theorem: MST is unique if all edge weights are distinct

If edge weights are not all distinct, then the (multi-)set of weights in 
MST is unique
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Otakar Borůvka
 Czech scientist

 Introduced the problem

 Gave an 𝑂 𝑚 log 𝑛 time algorithm

 The original paper was written in Czech in 1926

 The purpose was to efficiently provide electric coverage of 
Bohemia
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 Repeat the following procedure until the resulting graph 
becomes a single node
 For each node 𝑢, mark its lightest incident edge 

 From the marked edges form a forest 𝐹, add the edges of 𝐹 into the 
set of edges to be reported

 Contract each maximal subtree of 𝐹 into a single node
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 Proof via contradiction
 An MST 𝑇 of 𝐺 that does not contain 𝑢, 𝑣

 A cycle 𝐶 = 𝑇 ∪ 𝑢, 𝑣 contains an edge 𝑢,𝑤 in 𝐶 that has 
larger weight than 𝑢, 𝑣

 𝑇′ = 𝑇 ∪ 𝑢, 𝑣 \ 𝑢, 𝑤 must be a spanning tree of 𝐺 lighter 
than 𝑇
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Claim: If 𝑢, 𝑣 is the lightest edge incident to 𝑢 in 𝐺, 𝑢, 𝑣 must 
belong to any MST of 𝐺

u

v

w



 The recurrence relation

 We check all edges in each phase

 After each contraction phase, the number of nodes is reduced 
by at least one half

 Time complexity:
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 Proof by contradiction
 Suppose 𝑒 is in the MST

 Removing 𝑒 disconnects the MST into two components T1 and T2

 There exists another edge 𝑒′ in 𝐶 that can reconnect T1 and T2

 Since 𝑤 𝑒’ < 𝑤(𝑒), the new tree has a lower weight

 Contradiction!
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Let 𝐶 be any cycle in the graph 𝐺, and let 𝑒 be an edge with the 
maximum weight on 𝐶. Then the MST does not contain 𝑒.
• For simplicity, assume all edge weights are distinct



 Proof by contradiction
 Suppose 𝑒 is not in the current MST

 Adding 𝑒 creates a cycle in the MST

 There exists another edge 𝑒′ in 𝐶 that can break the cycle

 Since 𝑤 𝑒’ > 𝑤(𝑒), the new tree has a lower weight

 Contradiction!
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Let 𝐶 be a cut in the graph, and let 𝑒 be the edge with the 
minimum cost in 𝐶. Then the MST contains 𝑒.
• Cut = a partition of the vertices
• For simplicity, assume all edge weights are distinct



Textbook Chapter 23.2 – The algorithms of Kruskal and Prim 
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 For each node 𝑢
 Make-set(𝑢): create a set consisting of 𝑢

 For each edge 𝑢, 𝑣 , taken in non-decreasing order by weights
 if Find-set(𝑢) ≠Find-set(𝑣) (i.e., 𝑢 and 𝑣 are not in the same 

set) then
 Output edge 𝑢, 𝑣

 Union(𝑢, 𝑣): union the sets containing 𝑢 and 𝑣 into a single set
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The lightest edge incident to a vertex must be in the MST



 Consider whether adding 𝑒 creates a cycle:
 If adding 𝑒 to 𝑇 creates a cycle 𝐶

 Then 𝑒 is the max weight edge in 𝐶

 The cycle property ensures that 𝑒 is not in the MST

 If adding 𝑒 = 𝑢, 𝑣 to 𝑇 does not create a cycle

 Before adding 𝑒, the current MST can be divided into two trees T1 
and T2 such that 𝑢 in T1 and 𝑉 in T2

 𝑒 is the minimum-cost edge on the cut of T1 and T2

 The cut property ensures that 𝑒 is in the MST
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MST-KRUSKAL(G, w) // w = weights

A = empty // edge set of MST

for v in G.V

MAKE-SET(v)

sort edges of G.E into non-decreasing order by weight w

for (u, v) in G.E, taken in non-decreasing order by weight

if FIND-SET(u) ≠ FIND-SET(v)

A = A ∪ {u, v}

UNION(u, v)

return A

 Disjoint-set data structure with union-by-rank (Textbook Ch. 21)
 MAKE-SET:

 FIND-SET:

 UNION:

 The amortized cost of 𝑚 operations on 𝑛 elements (Exercise 21.4-4):

 Total complexity:



Textbook Chapter 23.2 – The algorithms of Kruskal and Prim 
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 Let 𝑇 consist of an arbitrary node

 For 𝑖 = 1 to 𝑛 − 1
 add the least-weighted edge incident to the current subtree
𝑇 that does not incur a cycle
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The lightest edge incident to a vertex must be in the MST
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MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY

 Binary min-heap (Textbook Ch. 6)
 BUILD-MIN-HEAP:

 EXTRACT-MIN:

 DECREASE-KEY:

 Total complexity:
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 Fibonacci heap (Textbook Ch. 19)
 BUILD-MIN-HEAP:

 EXTRACT-MIN:        (amortized)

 DECREASE-KEY:    (amortized)

 Total complexity:

MST-PRIM(G, w, r) // w = weights, r = root

for u in G.V

u.key = ∞

u.π = NIL

r.key = 0

Q = G.V

while Q ≠ empty

u = EXTRACT-MIN(Q)

for v in G.adj[u]

if v ∈ Q and w(u, v) < v.key

v.π = u

v.key = w(u, v) // DECREASE-KEY



Textbook Chapter 24 – Single-Source Shortest Paths
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 Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸
 Weights can be arbitrary numbers, not necessarily distance

 Weight function needs not satisfy triangle inequality

 Output: a minimal-cost path from 𝑠 to 𝑡 s.t. 𝛿 𝑠, 𝑡 is the 
minimum weight from 𝑠 to 𝑡

 Problem Variants
 Single-source shortest-path problem
 Single-destination shortest-path problem
 Single-pair shortest-path problem
 All-pair shortest path problem
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 Can a shortest path contain a negative-weight edge?

 Can a shortest path contain a negative-weight cycle?

 Can a shortest path contain a cycle?

40

Yes.

Doesn’t make sense.

No.



 Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸 and a source 
vertex 𝑠

 Output: a minimal-cost path from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉
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 Let 𝐺 = 𝑉, 𝐸 be a weighted, directed graph with no 
negative-weight cycles reachable from 𝑠

 A shortest path tree 𝐺′ = 𝑉′, 𝐸′ of 𝑠 is a subgraph of 𝐺 s.t.
 𝑉′ is the set of vertices reachable from 𝑠 in 𝐺

 𝐺′ forms a rooted tree with root 𝑠

 For all 𝑣 ∈ 𝑉′, the unique simple path from 𝑠 to 𝑣 in 𝐺′ is a 
shortest path from 𝑠 to 𝑣 in 𝐺
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 Input: a weighted, directed graph 𝐺 = 𝑉, 𝐸 and a vertex 𝑠

 Output: a tree 𝑇 rooted at 𝑠 s.t. the path from 𝑠 to 𝑢 of 𝑇 is 
a shortest path from 𝑠 to 𝑢 in 𝐺
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 The shortest path tree problem is equivalent to finding the 
minimal cost 𝛿 𝑠, 𝑢 from 𝑠 to each node 𝑢 in 𝐺
 The minimal cost from 𝑠 to 𝑢 in 𝐺 is the length of any 

shortest path from 𝑠 to 𝑢 in 𝐺
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“equivalence”: a solution to either problem can be obtained 
from a solution to the other problem in linear time

Shortest Path Tree 
Problem

Single-Source Shortest 
Path Problem

=



Textbook Chapter 24.1 – The Bellman-Ford algorithm
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Richard Bellman, 1920~1984

 Norbert Wiener Prize in Applied 
Mathematics, 1970

 Dickson Prize, Carnegie-Mellon 
University, 1970

 John von Neumann Theory 
Award, 1976.

 IEEE Medal of Honor, 1979, 

 Fellow of the American Academy 
of Arts and Sciences, 1975.

 Membership in the National 
Academy of Engineering, 1977

Lester R. Ford, Jr. 1927~2017

 A important contributor to the 
theory of network flow.
 We will learn Ford and 

Fulkerson’s maximum flow 
algorithm in a couple of weeks.
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 Idea: estimate the value of 𝑑 𝑢 to approximate 𝛿 𝑠, 𝑢

 Initialization
 Let 𝑑 𝑢 = ∞ for 𝑢 ∈ 𝐺

 Let 𝑑 𝑠 = 0

 Repeat the following step for sufficient number of phases
 For each edge 𝑢, 𝑣 ∈ 𝐸, relax edge 𝑢, 𝑣

 Relaxing: If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣 , let 𝑑 𝑣 = 𝑑 𝑢 + 𝑤 𝑢, 𝑣
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 improve the estimation of 𝑑 𝑢
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 Observation: let 𝑃 be a shortest path from 𝑠 to 𝑟
 For any vertex 𝑢 in 𝑃, the subpath of 𝑃 from 𝑠 to 𝑢 has to be a 

shortest path from 𝑠 to 𝑢 optimal substructure

 For any edge 𝑢, 𝑣 in 𝑃, if 𝑑 𝑢 = 𝛿 𝑠, 𝑢 , then 𝑑 𝑣 = 𝛿 𝑠, 𝑣 also 
holds after relaxing edge 𝑢, 𝑣

 If 𝐺 contains no negative cycles, then each node 𝑢 has a shortest 
path from 𝑠 to 𝑢 that has at most n – 1 edges

 From observation, after the first 𝑖 phases of improvement via 
relaxation, the estimation of 𝑑 𝑢 for the first 𝑖 + 1 nodes 𝑢 in 
the path is precise (= 𝛿 𝑠, 𝑢 )
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s
ru

 𝑛 − 1 phases
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s u



 Time complexity: 
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BELLMAN-FORD(G, w, s)

INITIALIZATION(G, s)

for i = 1 to |G.V| - 1

for (u, v) in G.E

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

How to do if there is a 
negative cycle in the graph?



 Q: How do we know 𝐺 has negative cycles?

 A: Using another phase of improvement via relaxation
 Run another phase of improving the estimation of 𝑑 𝑢 for 

each vertex 𝑢 ∈ 𝑉 via relaxing all edges 𝐸

 If in the 𝑛-th phase, there are still some 𝑑 𝑢 being modified, 
we know that 𝐺 has negative cycles
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 Proof by contradiction
 Let 𝐶 be a negative cycle of 𝑘 nodes 𝑣1, 𝑣2, … , 𝑣𝑘 (𝑣𝑘+1 = 𝑣1)

 Assume 𝑑 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 are not changed in a phase of 
improvement, then for 1 ≤ 𝑖 ≤ 𝑘

 Summing all 𝑘 inequalities, the sum of edge weights of 𝐶 is 
nonnegative
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If there exists a negative cycle in 𝐺, in the 𝑛-th phase, there are still some 
𝑑 𝑢 being modified.

negative



 Time complexity: 

 Finding a shortest-path tree of 𝐺:
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BELLMAN-FORD(G, w, s)

INITIALIZATION(G, s)

for i = 1 to |G.V| - 1

for (u, v) in G.E

RELAX(u, v, w)

for (u, v) in G.E

if v.d > u.d + w(u, v)

return FALSE

return TRUE

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u

negative cycle detection



Textbook Chapter 24.2 – Single-source shortest paths in directed 
acyclic graphs

57



 Input: a weighted, directed, and acyclic graph 𝐺 = 𝑉, 𝐸
and a source vertex 𝑠

 Output: a shortest-path distance from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

58
No negative cycle!



 Idea: one phase relaxation

 Perform a topological sort in linear time on the input DAG

 For 𝑖 = 1 to 𝑛
 Let 𝑣𝑖 be the 𝑖-th node in the above order

 Relax each outgoing edge (𝑣𝑖, 𝑢) from 𝑣𝑖

Time complexity: 
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s



 Assume this is a shortest path from 𝑠 to 𝑢

 If we follow the order from topological sort to relax the 
vertices’ edges, in this shortest path, the left edge must be 
relaxed before the right edge

 One phase of improvement is enough

60

s u



Textbook Chapter 24.3 – Dijkstra’s algorithm
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 Input: a non-negative weighted, directed, graph 𝐺 = 𝑉, 𝐸
and a source vertex 𝑠

 Output: a shortest-path distance from 𝑠 to 𝑡, where 𝑡 ∈ 𝑉

62
No negative cycle!



 Idea: BFS finds shortest paths on unweighted graph by 
expanding the search frontier

 Initialization

 Loops for 𝑛 iterations, where each iteration 
 relax outgoing edges of an unprocessed node 𝑢 with minimal 𝑑 𝑢

 marks 𝑢 as processed
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 Prove by contradiction
 Assume 𝑢 is the first vertex for 

being processed

 Let a shortest path 𝑃 from 𝑠 to 𝑢,

 𝑥 is the last vertex in 𝑃 from 𝑆

 𝑦 is the first vertex in 𝑃 not from 𝑆

 𝑑 𝑦 = 𝛿 𝑠, 𝑦 because 𝑥, 𝑦 is 
relaxed when putting 𝑥 into 𝑆

71

s

x y

u

processed 
nodes 𝑆

The vertex selected by Dijkstra’s algorithm into the processed set must 
precise estimation of its shortest path distance.

The first node

a shortest path 
from 𝑠 to 𝑢



 Min-priority queue
 INSERT:

 EXTRACT-MIN:     

 DECREASE-KEY:    

 Total complexity:
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DIJKSTRA(G, w, s)

INITIALIZATION(G, s)

S = empty

Q = G.v // INSERT

while Q ≠ empty

u = EXTRACT-MIN(Q)

S = S∪{u}
for v in G.adj[u]

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u



 Fibonacci heap (Textbook Ch. 19)
 BUILD-MIN-HEAP:

 EXTRACT-MIN:        (amortized)

 DECREASE-KEY:    (amortized)

 Total complexity:
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DIJKSTRA(G, w, s)

INITIALIZATION(G, s)

S = empty

Q = G.v // INSERT

while Q ≠ empty

u = EXTRACT-MIN(Q)

S = S∪{u}
for v in G.adj[u]

RELAX(u, v, w)

INITIALIZATION(G, s)

for v in G.V

v.d = ∞

v.π = NIL

s.d = 0

RELAX(u, v, w)

if v.d > u.d + w(u, v)

// DECREASE-KEY

v.d = u.d + w(u, v)

v.π = u



 Minimal Spanning Trees (MST)
 Boruvka’s Algorithm:

 Kruskal’s Algorithm:

 Prim’s Algorithm:                               with Fabonacci heap

 Single-Source Shortest Paths
 Bellman-Ford Algorithm (general graph and weights)

 and detecting negative cycles

 Lawler Algorithm (acyclic graph)



 Dijkstra Algorithm (non-negative weights)

 with Fabonacci heap

74



Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

