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▪ Mini-HW 7 released
▪ Due on 11/30 (Thur) 17:20

▪ Homework 3 released tonight
▪ Due on 12/14 (Thur) 17:20 (three weeks)

▪ Class change!!
▪ Start from 12/07 (Thur) to forever (NOT next week!!)

▪ Location: R103
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Frequently check the website for the updated information!
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▪ Graph Basics

▪ Graph Theory

▪ Graph Representations

▪ Graph Traversal
▪ Breadth-First Search (BFS)

▪ Depth-First Search (DFS)

▪ DFS Applications
▪ Connected Components

▪ Strongly Connected Components

▪ Topological Sorting
4



▪ A graph G is defined as 
▪ V: a finite, nonempty set of vertices

▪ E: a set of edges / pairs of vertices
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▪ Graph type
▪ Undirected: edge 𝑢, 𝑣 = 𝑣, 𝑢

▪ Directed: edge 𝑢, 𝑣 goes from vertex 𝑢 to vertex 𝑣;  𝑢, 𝑣 ≠ 𝑣, 𝑢

▪ Weighted: edges associate with weights
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How many edges at most can a undirected (or directed) graph have?



▪ Adjacent (相鄰)
▪ If there is an edge 𝑢, 𝑣 , then 𝑢 and 𝑣 are adjacent.

▪ Incident (作用)
▪ If there is an edge 𝑢, 𝑣 , the edge 𝑢, 𝑣 is incident from 𝑢 and 

is incident to 𝑣.

▪ Subgraph (子圖)
▪ If a graph 𝐺′ = 𝑉′, 𝐸′ is a subgraph of 𝐺 = 𝑉, 𝐸 , then 𝑉′ ⊆
𝑉 and 𝐸′ ⊆ 𝐸
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▪ Degree
▪ The degree of a vertex 𝑢 is the number of edges incident on 𝑢

▪ In-degree of 𝑢: #edges 𝑥, 𝑢 in a directed graph

▪ Out-degree of 𝑢: #edges 𝑢, 𝑥 in a directed graph

▪ Degree = in-degree + out-degree

▪ Isolated vertex: degree = 0

8

𝐸 =
σ𝑖 𝑑𝑖
2



▪ Path
▪ a sequence of edges that connect a sequence of vertices

▪ If there is a path from 𝑢 (source) to 𝑣 (target), there are a sequence 
of edges 𝑢, 𝑖1 , 𝑖1, 𝑖2 , … , 𝑖𝑘−1, 𝑖𝑘 , (𝑖𝑘 , 𝑣)

▪ Reachable: 𝑣 is reachable from 𝑢 if there exists a path from 𝑢 to 𝑣

▪ Simple Path
▪ All vertices except for 𝑢 and 𝑣 are all distinct

▪ Cycle
▪ A simple path where 𝑢 and 𝑣 are the same

▪ Subpath
▪ A subsequence of the path
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▪ Connected
▪ Two vertices are connected if there is a path between them

▪ A connected graph has a path from every vertex to every other

▪ Tree
▪ a connected, acyclic, undirected graph

▪ Forest
▪ an acyclic, undirected but possibly disconnected graph
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▪ Theorem. Let 𝐺 be an undirected graph. The following 
statements are equivalent:
▪ 𝐺 is a tree

▪ Any two vertices in 𝐺 are connected by a unique simple path

▪ 𝐺 is connected, but if any edge is removed from 𝐸, the 
resulting graph is disconnected.

▪ 𝐺 is connected and 𝐸 = 𝑉 − 1

▪ 𝐺 is acyclic, and 𝐸 = 𝑉 − 1

▪ 𝐺 is acyclic, but if any edge is added to 𝐸, the resulting graph 
contains a cycle

11

Proofs in Textbook Appendix B.5
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▪ How to traverse all bridges where each one can only be 
passed through once
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▪ Euler path
▪ Can you traverse each edge in a connected graph exactly once 

without lifting the pen from the paper?

▪ Euler tour
▪ Can you finish where you started?
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▪ Solved by Leonhard Euler in 1736

▪ 𝐺 has an Euler path iff 𝐺 has exactly 0 or 2 odd vertices

▪ 𝐺 has an Euler tour iff all vertices must be even vertices
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Is it possible to determine whether a graph has an Euler path or an Euler 
tour, without necessarily having to find one explicitly?

Even vertices = vertices with even degrees
Odd vertices = vertices with odd degrees



▪ Hamiltonian Path
▪ A path that visits each vertex exactly once

▪ Hamiltonian Cycle
▪ A Hamiltonian path where the start and destination are the same

▪ Both are NP-complete
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▪Modeling applications using graph theory
▪ What do the vertices represent?

▪ What do the edges represent?

▪ Undirected or directed?

17Social Network Knowledge Graph
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▪ How to represent a graph in computer programs?

▪ Two standard ways to represent a graph 𝐺 = 𝑉, 𝐸
▪ Adjacency matrix

▪ Adjacency list
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Matrix

20

▪ Adjacency matrix = 𝑉 × 𝑉 matrix 𝐴 with 𝐴[𝑢][𝑣] = 1 if 
(𝑢, 𝑣) is an edge

1 2 3 4 5 6

1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1

6 1 1
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• For undirected graphs, 𝐴 is symmetric; i.e., 𝐴 = 𝐴𝑇

• If weighted, store weights instead of bits in 𝐴



Matrix

▪ Space: 

▪ Time for querying an edge: 

▪ Time for inserting an edge:

▪ Time for deleting an edge:

▪ Time for listing all neighbors of a vertex:

▪ Time for identifying all edges:

▪ Time for finding in-degree and out-degree of a vertex?
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List

▪ Adjacency lists = vertex indexed array of lists
▪ One list per vertex, where for 𝑢 ∈ 𝑉, 𝐴[𝑢] consists of all 

vertices adjacent to 𝑢
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If weighted, store weights also in adjacency lists



List

▪ Space: 

▪ Time for querying an edge: 

▪ Time for inserting an edge:

▪ Time for deleting an edge:

▪ Time for listing all neighbors of a vertex:

▪ Time for identifying all edges:

▪ Time for finding in-degree and out-degree of a vertex?
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▪Matrix representation is suitable for dense graphs

▪ List representation is suitable for sparse graphs

▪ Besides graph density, you may also choose a data structure 
based on the performance of other operations
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Textbook Chapter 22 – Elementary Graph Algorithms
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▪ From a source vertex, systematically follow the edges of a 
graph to visit all reachable vertices of the graph

▪ Useful to discover the structure of a graph

▪ Standard graph-searching algorithms
▪ Breadth-First Search (BFS, 廣度優先搜尋)

▪ Depth-First Search (DFS, 深度優先搜尋)
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Textbook Chapter 22.2 – Breadth-first search
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▪ Input: directed/undirected graph 𝐺 = (𝑉, 𝐸) and source 𝑠

▪ Output: a breadth-first tree with root 𝑠 (𝑇BFS) that contains 
all reachable vertices
▪ 𝑣. 𝑑: distance from 𝑠 to 𝑣, for all 𝑣 ∈ 𝑉

▪ Distance is the length of a shortest path in G

▪ 𝑣. 𝑑 = ∞ if 𝑣 is not reachable from 𝑠

▪ 𝑣. 𝑑 is also the depth of 𝑣 in 𝑇BFS

▪ 𝑣. 𝜋 = 𝑢 if (𝑢, 𝑣) is the last edge on shortest path to 𝑣

▪ 𝑢 is 𝑣’s predecessor in 𝑇BFS
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▪ Initially 𝑇BFS contains only 𝑠

▪ As 𝑣 is discovered from 𝑢, 𝑣 and 
(𝑢, 𝑣) are added to 𝑇BFS
▪ 𝑇BFS is not explicitly stored; can be 

reconstructed from 𝑣. 𝜋

▪ Implemented via a FIFO queue

▪ Color the vertices to keep track of 
progress:
▪ GRAY: discovered (first time 

encountered)
▪ BLACK: finished (all adjacent 

vertices discovered)
▪ WHITE: undiscovered
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BFS(G, s)

for each vertex u in G.V-{s}

u.color = WHITE

u.d = ∞
u.pi = NIL

s.color = GRAY

s.d = 0

s.pi = NIL

Q = {}

ENQUEUE(Q, s)

while Q! = {}

u = DEQUEUE(Q)

for each v in G.Adj[u]

if v.color == WHITE

v.color = GRAY

v.d = u.d + 1

v.pi = u

ENQUEUE(Q,v)

u.color = BLACK



𝑠

0

31

𝑤 𝑟

1 1

𝑟 𝑡 𝑥

1 2 2

𝑡 𝑥 𝑣

2 2 2

𝑥 𝑣 𝑢

2 2 3
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▪ Definition of 𝛿(𝑠, 𝑣): the shortest-path distance from 𝑠 to 𝑣 = the 
minimum number of edges in any path from 𝑠 to 𝑣
▪ If there is no path from 𝑠 to 𝑣, then 𝛿 𝑠, 𝑣 = ∞

▪ The BFS algorithm finds the shortest-path distance to each reachable 
vertex in a graph 𝐺 from a given source vertex 𝑠 ∈ 𝑉.
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▪ Proof
▪ Case 1: 𝑢 is reachable from 𝑠

▪ 𝑠- 𝑢- 𝑣 is a path from 𝑠 to 𝑣 with length 𝛿 𝑠, 𝑢 + 1

▪ Hence, 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 1

▪ Case 2: 𝑢 is unreachable from 𝑠

▪ Then 𝑣 must be unreachable too.

▪ Hence, the inequality still holds.
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Lemma 22.1
Let 𝐺 = 𝑉, 𝐸 be a directed or undirected graph, and let 𝑠 ∈ 𝑉 be an 
arbitrary vertex. Then, for any edge 𝑢, 𝑣 ∈ 𝐸, 𝛿 𝑠, 𝑣 ≤ 𝛿 𝑠, 𝑢 + 1.

𝑠-𝑣的最短路徑一定會小於等於𝑠-𝑢的最短路徑距離+1

s
v

u𝛿 𝑠, 𝑢



▪ Proof by induction

▪ Holds when 𝑛 = 1: 𝑠 is in the queue and 𝑣. 𝑑 = ∞ for all 𝑣 ∈ 𝑉 𝑠

▪ After 𝑛 + 1 ENQUEUE ops, consider a white vertex 𝑣 that is
discovered during the search from a vertex 𝑢

▪ Vertex 𝑣 is never enqueued again, so 𝑣. 𝑑 never changes again
35

Lemma 22.2
Let 𝐺 = 𝑉, 𝐸 be a directed or undirected graph, and suppose BFS is run 
on 𝐺 from a given source vertex 𝑠 ∈ 𝑉. Then upon termination, for each 
vertex 𝑣 ∈ 𝑉, the value 𝑣. 𝑑 computed by BFS satisfies 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 . 

BFS算出的d值必定大於等於真正距離

Inductive hypothesis: 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 after 𝑛 ENQUEUE ops

(by induction hypothesis)

(by Lemma 22.1)



▪ Proof by induction

▪ Holds when 𝑄 = 𝑠 .

▪ Consider two operations for inductive step:

▪ Dequeue op: when 𝑄 = 𝑣1, 𝑣2, … , 𝑣𝑟 and dequeue 𝑣1
▪ Enqueue op: when 𝑄 = 𝑣1, 𝑣2, … , 𝑣𝑟 and enqueue 𝑣𝑟+1
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Lemma 22.3
Suppose that during the execution of BFS on a graph 𝐺 = 𝑉, 𝐸 , the 
queue 𝑄 contains the vertices 𝑣1, 𝑣2, … , 𝑣𝑟 , where 𝑣1 is the head of 𝑄
and 𝑣𝑟 is the tail. Then, 𝑣𝑟 . 𝑑 ≤ 𝑣1. 𝑑 + 1 and 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖+1. 𝑑 for 1 ≤ 𝑖 < 𝑟.

• Q中最後一個點的d值 ≤ Q中第一個點的d值+1
• Q中第i個點的d值 ≤ Q中第i+1點的d值

Inductive hypothesis:𝑣𝑟. 𝑑 ≤ 𝑣1. 𝑑 + 1 and 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖+1. 𝑑 after 𝑛 queue ops



▪ Dequeue op

▪ Enqueue op
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Inductive
hypothesis:

𝑣1 𝑣2 … 𝑣𝑟−1 𝑣𝑟

𝑣2 … 𝑣𝑟−1 𝑣𝑟
(induction hypothesis H2)

𝑣1 𝑣2 … 𝑣𝑟−1 𝑣𝑟

(induction hypothesis H2)𝑣1 𝑣2 … 𝑣𝑟−1 𝑣𝑟 𝑣𝑟+1𝑢

Let 𝑢 be 𝑣𝑟+1’s predecessor,

Since 𝑢 has been removed from 𝑄, the new head 
𝑣1 satisfies 

(induction hypothesis H1)

H1

H2

 H1 holds

 H2 holds

 H1 holds

𝑢

(induction hypothesis H1)

 H2 holds

(Q中最後一個點的d值 ≤ Q中第一個點的d值+1)

(Q中第i個點的d值 ≤ Q中第i+1點的d值)



▪ Proof
▪ Lemma 22.3 proves that 𝑣𝑖 . 𝑑 ≤ 𝑣𝑖+1. 𝑑 for 1 ≤ 𝑖 < 𝑟

▪ Each vertex receives a finite 𝑑 value at most once during the course of BFS

▪ Hence, this is proved.
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Corollary 22.4
Suppose that vertices 𝑣𝑖 and 𝑣𝑗 are enqueued during the execution of BFS, 

and that 𝑣𝑖 is enqueued before 𝑣𝑗. Then 𝑣𝑖 . 𝑑 ≤ 𝑣𝑗 . 𝑑 at the time that 𝑣𝑗 is 

enqueued.

若𝑣𝑖比𝑣𝑗早加入queue  𝑣𝑖 . 𝑑 ≤ 𝑣𝑗 . 𝑑



▪ Proof of (1) 
▪ All vertices 𝑣 reachable from 𝑠 must be discovered; otherwise they 

would have 𝑣. 𝑑 = ∞ > 𝛿 𝑠, 𝑣 . (contradicting with Lemma 22.2)

39

Theorem 22.5 – BFS Correctness
Let 𝐺 = 𝑉, 𝐸 be a directed or undirected graph, and and suppose that BFS is 
run on 𝐺 from a given source vertex 𝑠 ∈ 𝑉.
1) BFS discovers every vertex 𝑣 ∈ 𝑉 that is reachable from the source 𝑠
2) Upon termination, 𝑣. 𝑑 = 𝛿 𝑠, 𝑣 for all 𝑣 ∈ 𝑉
3) For any vertex 𝑣 ≠ 𝑠 that is reachable from 𝑠, one of the shortest paths 

from 𝑠 to 𝑣 is a shortest path from 𝑠 to 𝑣. 𝜋 followed by the edge 𝑣. 𝜋, 𝑣



(2)

▪ Proof of (2) by contradiction
▪ Assume some vertices receive 𝑑 values not equal to its shortest-path 

distance

▪ Let 𝑣 be the vertex with minimum 𝛿 𝑠, 𝑣 that receives such an incorrect 
𝑑 value; clearly 𝑣 ≠ 𝑠

▪ By Lemma 22.2, 𝑣. 𝑑 ≥ 𝛿 𝑠, 𝑣 , thus 𝑣. 𝑑 > 𝛿 𝑠, 𝑣 (𝑣 must be reachable)

▪ Let 𝑢 be the vertex immediately preceding 𝑣 on a shortest path from 𝑠 to 
𝑣, so 𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 1

▪ Because 𝛿 𝑠, 𝑢 < 𝛿 𝑠, 𝑣 and 𝑣 is the minimum 𝛿 𝑠, 𝑣 , we have 𝑢. 𝑑 =
𝛿 𝑠, 𝑢

▪ 𝑣. 𝑑 > 𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 1 = 𝑢. 𝑑 + 1

40



(2)

▪ Proof of (2) by contradiction (cont.)
▪ 𝑣. 𝑑 > 𝛿 𝑠, 𝑣 = 𝛿 𝑠, 𝑢 + 1 = 𝑢. 𝑑 + 1

▪ When dequeuing 𝑢 from 𝑄, vertex 𝑣 is either WHITE, GRAY, or BLACK

▪ WHITE: 𝑣. 𝑑 = 𝑢. 𝑑 + 1, contradiction

▪ BLACK: it was already removed from the queue

▪ By Corollary 22.4, we have 𝑣. 𝑑 ≤ 𝑢. 𝑑, contradiction

▪ GRAY: it was painted GRAY upon dequeuing some vertex 𝑤

▪ Thus 𝑣. 𝑑 = 𝑤. 𝑑 + 1 (by construction)

▪ 𝑤 was removed from 𝑄 earlier than 𝑢, so 𝑤. 𝑑 ≤ 𝑢. 𝑑 (by Corollary 22.4)

▪ 𝑣. 𝑑 = 𝑤. 𝑑 + 1 ≤ 𝑢. 𝑑 + 1, contradiction

▪ Thus, (2) is proved.
41



(3) For any vertex 𝑣 ≠ 𝑠 that is reachable from 𝑠, one of the shortest paths 
from 𝑠 to 𝑣 is a shortest path from 𝑠 to 𝑣. 𝜋 followed by the edge 𝑣. 𝜋, 𝑣

▪ Proof of (3)
▪ If 𝑣. 𝜋 = 𝑢, then 𝑣. 𝑑 = 𝑢. 𝑑 + 1. Thus, we can obtain a shortest path 

from 𝑠 to 𝑣 by taking a shortest path from 𝑠 to 𝑣. 𝜋 and then traversing 
the edge 𝑣. 𝜋, 𝑣 .

42



▪ BFS(G, s) forms a BFS tree with all reachable 𝑣 from 𝑠

▪ We can extend the algorithm to find a BFS forest that contains every 
vertex in 𝐺

43

BFS-Visit(G, s)

s.color = GRAY

s.d = 0

s.π = NIL

Q = empty

ENQUEUE(Q, s)

while Q ≠ empty

u = DEQUEUE(Q)

for v in G.adj[u]

if v.color == WHITE

v.color = GRAY

v.d = u.d + 1

v.π = u

ENQUEUE(Q, v)

u.color = BLACK

//explore full graph and builds up 

a collection of BFS trees

BFS(G)

for u in G.V

u.color = WHITE

u.d = ∞

u.π = NIL

for s in G.V

if(s.color == WHITE)

// build a BFS tree

BFS-Visit(G, s)



Textbook Chapter 22.3 – Depth-first search
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▪ Search as deep as possible and then backtrack until finding a 
new path

45Timestamps: discovery time / finishing time
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▪ Implemented via recursion (stack)

▪ Color the vertices to keep track of progress:
▪ GRAY: discovered (first time encountered)

▪ BLACK: finished (all adjacent vertices discovered)

▪ WHITE: undiscovered 46

// Explore full graph and builds up 

a collection of DFS trees

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0 // global timestamp

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time  // discover time

u.color = GRAY

for each v in G.Adj[u]

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time



▪ Parenthesis Theorem
▪ Parenthesis structure: represent the discovery of vertex 𝑢 with a left 

parenthesis “(𝑢” and represent its finishing by a right parenthesis “𝑢)”. In 
DFS, the parentheses are properly nested.

▪ White Path Theorem
▪ In a DFS forest of a directed or undirected graph 𝐺 = 𝑉, 𝐸 ,

▪ vertex 𝑣 is a descendant of vertex 𝑢 in the forest  at the time 𝑢. 𝑑
that the search discovers 𝑢, there is a path from 𝑢 to 𝑣 in 𝐺 consisting 
entirely of WHITE vertices

▪ Classification of Edges in 𝐺
▪ Tree Edge

▪ Back Edge

▪ Forward Edge

▪ Cross Edge
47



▪ Parenthesis Theorem
▪ Parenthesis structure: represent the discovery of vertex 𝑢 with a left 

parenthesis “(𝑢” and represent its finishing by a right parenthesis 
“𝑢)”. In DFS, the parentheses are properly nested.

48

Properly nested: (x (y y) x)
Not properly nested: (x (y x) y)

Proof in textbook p. 608



▪White Path Theorem
▪ In a DFS forest of a directed or undirected graph 𝐺 = 𝑉, 𝐸 ,

▪ vertex 𝑣 is a descendant of vertex 𝑢 in the forest  at the time 
𝑢. 𝑑 that the search discovers 𝑢, there is a path from 𝑢 to 𝑣 in 𝐺
consisting entirely of WHITE vertices

▪ Proof.
▪ 

▪ Since 𝑣 is a descendant of 𝑢, 𝑢. 𝑑 < 𝑣. 𝑑

▪ Hence, 𝑣 is WHITE at time 𝑢. 𝑑

▪ In fact, since 𝑣 can be any descendant of 𝑢, any vertex on the path from 𝑢
to 𝑣 are WHITE at time 𝑢. 𝑑

▪  (textbook p. 608)

49



▪ Classification of Edges in 𝐺
▪ Tree Edge (GRAY to WHITE)

▪ Edges in the DFS forest

▪ Found when encountering a new vertex 𝑣 by exploring 𝑢, 𝑣

▪ Back Edge (GRAY to GRAY)

▪ 𝑢, 𝑣 , from descendant 𝑢 to ancestor 𝑣 in a DFS tree

▪ Forward Edge (GRAY to BLACK)

▪ 𝑢, 𝑣 , from ancestor 𝑢 to descendant 𝑣. Not a tree edge.

▪ Cross Edge (GRAY to BLACK)

▪ Any other edge between trees or subtrees. Can go between vertices in 
same DFS tree or in different DFS trees

50

In an undirected graph, back edge = forward edge.
To avoid ambiguity, classify edge as the first type in the list that applies.



▪ Edge classification by the color of 𝑣 when visiting 𝑢, 𝑣
▪ WHITE: tree edge

▪ GRAY: back edge

▪ BLACK: forward edge or cross edge

▪ 𝑢. 𝑑 < 𝑣. 𝑑 forward edge

▪ 𝑢. 𝑑 > 𝑣. 𝑑 cross edge

51

Why?

Theorem 22.10
In DFS of an undirected graph, there are only tree edges and back edges 
without forward and cross edge.



▪ Connected Components

▪ Strongly Connected Components

▪ Topological Sort

52
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▪ Input: a graph 𝐺 = 𝑉, 𝐸

▪ Output: a connected component of 𝐺
▪ a maximal subset 𝑈 of 𝑉 s.t. any two nodes in 𝑈 are connected in 𝐺

54
Why must the connected components of a graph be disjoint?



55
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Time Complexity:

BFS and DSF both find the connected components with the same complexity
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Textbook Chapter 22.5 – Strongly connected components
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▪ Input: a directed graph 𝐺 = 𝑉, 𝐸

▪ Output: a connected component of 𝐺
▪ a maximal subset 𝑈 of 𝑉 s.t. any two nodes in 𝑈 are reachable in 𝐺

58
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Why must the strongly 
connected components 
of a graph be disjoint?
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▪ Step 1: Run DFS on 𝐺 to obtain the finish time 𝑣. 𝑓 for 𝑣 ∈ 𝑉.

▪ Step 2: Run DFS on the transpose of 𝐺 where the vertices 𝑉 are 
processed in the decreasing order of their finish time.

▪ Step 3: output the vertex partition by the second DFS
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▪ Proof by contradiction
▪ Assume that 𝑣,𝑤 is an incoming edge to 𝐶.

▪ Since 𝐶 is a strongly connected component of 𝐺, there cannot be any 
path from any node of 𝐶 to 𝑣 in 𝐺.

▪ Therefore, the finish time of 𝑣 has to be larger than any node in 𝐶, 
including 𝑢.  𝑣. 𝑓 > 𝑢. 𝑓, contradiction

62

𝑢

G

𝑤
C

𝑣

Lemma
Let 𝐶 be the strongly connected component of 𝐺 (and 𝐺𝑇) that contains 
the node 𝑢 with the largest finish time 𝑢. 𝑓. Then 𝐶 cannot have any 
incoming edge from any node of 𝐺 not in 𝐶.



▪ Practice to prove using induction

63

𝑢

G

C

Theorem
By continuing the process from the vertex 𝑢∗ whose finish time 𝑢∗. 𝑓 is 
the largest excluding those in 𝐶, the algorithm returns the strongly 
connected components.

𝑢

GT

C
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▪ Step 1: Run DFS on 𝐺 to obtain the finish time 𝑣. 𝑓 for 𝑣 ∈ 𝑉.

▪ Step 2: Run DFS on the transpose of 𝐺 where the vertices 𝑉 are 
processed in the decreasing order of their finish time.

▪ Step 3: output the vertex partition by the second DFS

Time Complexity:
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Textbook Chapter 22.4 – Topological sort
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▪ Definition
▪ a directed graph without any directed cycle
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▪ Taking courses should follow the specific order

▪ How to find a course taking order?

71

計程 資料結構 演算法

計概 作業系統

計算機網路

機率微積分上 微積分下

計組
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▪ Input: a directed acyclic graph 𝐺 = (𝑉, 𝐸)

▪ Output: a linear order of 𝑉 s.t. all edges of 𝐺 going from lower-
indexed nodes to higher-indexed nodes

a b df c e

a

b

d

f
c

ef b da c e
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▪ Run DFS on the input DAG G.

▪ Output the nodes in decreasing order of their finish time.

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time

u.color = GRAY

for each v in G.Adj[u] (outgoing)

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time



Example Illustration
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Example Illustration
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▪ Run DFS on the input DAG G.

▪ Output the nodes in decreasing order of their finish time.
▪ As each vertex is finished, insert it onto the front of a linked list

▪ Return the linked list of vertices

DFS(G)

for each vertex u in G.V

u.color = WHITE

u.pi = NIL

time = 0

for each vertex u in G.V

if u.color == WHITE

DFS-VISIT(G, u)

DFS-Visit(G, u)

time = time + 1

u.d = time

u.color = GRAY

for each v in G.Adj[u]

if v.color == WHITE

v.pi = u

DFS-VISIT(G, v)

u.color = BLACK

time = time + 1

u.f = time // finish time

Time Complexity:



▪ Proof
▪ : suppose there is a back edge 𝑢, 𝑣

▪ 𝑣 is an ancestor of 𝑢 in DFS forest

▪ There is a path from 𝑣 to 𝑢 in 𝐺 and 𝑢, 𝑣 completes the cycle 

▪  : suppose there is a cycle 𝑐

▪ Let 𝑣 be the first vertex in 𝑐 to be discovered and 𝑢 is a predecessor of 𝑣 in 𝑐

▪ Upon discovering 𝑣 the whole cycle from 𝑣 to 𝑢 is WHITE

▪ At time 𝑣. 𝑑, the vertices of 𝑐 form a path of white vertices from 𝑣 to 𝑢

▪ By the white-path theorem, vertex 𝑢 becomes a descendant of 𝑣 in the DFS forest

▪ Therefore, 𝑢, 𝑣 is a back edge

77

Lemma 22.11
A directed graph is acyclic  a DFS yields no back edges.



▪ Proof
▪ When 𝑢, 𝑣 is being explored, 𝑢 is GRAY and there are three cases for 𝑣:

▪ Case 1 – GRAY

▪ 𝑢, 𝑣 is a back edge (contradicting Lemma 22.11), so 𝑣 cannot be GRAY

▪ Case 2 – WHITE

▪ 𝑣 becomes descendant of 𝑢

▪ 𝑣 will be finished before 𝑢

▪ Case 3 – BLACK

▪ 𝑣 is already finished
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Theorem 22.12
The algorithm produces a topological sort of the input DAG. That is, if 
𝑢, 𝑣 is a directed edge (from 𝑢 to 𝑣) of 𝐺, then 𝑢. 𝑓 > 𝑣. 𝑓.
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▪ Since cycle detection becomes back edge detection (Lemma 
22.11), DFS can be used to test whether a graph is a DAG

▪ Is there a topological order for cyclic graphs?

▪ Given a topological order, is there always a DFS traversal 
that produces such an order?
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Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

