
Slides credited from Hsu-Chun Hsiao

 Greedy Algorithms

 Greedy #1: Activity-Selection / Interval Scheduling

 Greedy #2: Coin Changing

 Greedy #3: Fractional Knapsack Problem

 Greedy #4: Breakpoint Selection

 Greedy #5: Huffman Codes

 Greedy #6: Scheduling to Minimize Lateness

 Greedy #7: Task-Scheduling

2

To yield an optimal solution, the problem should exhibit

1. Greedy-Choice Property : making locally optimal (greedy)
choices leads to a globally optimal solution

2. Optimal Substructure : an optimal solution to the problem
contains within it optimal solutions to subproblems

3

4

 Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 tasks, their processing time
𝑡1, 𝑡2, … , 𝑡𝑛, and integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛

 Output: a schedule that minimizes the maximum lateness

5

Job 1 2 3 4

Processing Time (𝑡𝑖) 3 5 3 2

Deadline (𝑑𝑖) 4 6 7 8

𝑎4 𝑎1 𝑎3 𝑎2

0 2 5 8 13

Lateness 0 1 1 7

 Let a schedule 𝐻 contains 𝑠 𝐻, 𝑗 and 𝑓 𝐻, 𝑗 as the start time and finish
time of job 𝑗
 𝑓 𝐻, 𝑗 − 𝑠 𝐻, 𝑗 = 𝑡𝑗

 Lateness of job 𝑗 in 𝐻 is 𝐿 𝐻, 𝑗 = max 0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

 The goal is to minimize max
𝑗

𝐿 𝐻, 𝑗 = max
𝑗

0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

6

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

 Idea
 Shortest-processing-time-first w/o idle time?

 Earliest-deadline-first w/o idle time?

7

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Practice: prove that any schedule w/ idle is not optimal

 Idea
 Shortest-processing-time-first w/o idle time?

8

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Job 1 2

Processing Time (𝑡𝑖) 1 2

Deadline (𝑑𝑖) 10 2

𝑎1 𝑎2

0 1 3

Lateness 0 1

𝑎2 𝑎1

0 2 3

Lateness 0 0

 Idea
 Earliest-deadline-first w/o idle time?

 Greedy algorithm

9

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Min-Lateness(n, t[], d[])

sort tasks by deadlines s.t. d[1]≤d[2]≤ ...≤d[n]

ct = 0 // current time

for j = 1 to n

assign job j to interval (ct, ct + t[j])

s[j] = ct

f[j] = s[j] + t[j]

ct = ct + t[j]

return s[], f[]

 Greedy choice: first select the task with the earliest deadline

 Proof via contradiction
 Assume that there is no OPT including this greedy choice

 If OPT processes 𝑎1 as the 𝑖-th task (𝑎𝑘), we can switch 𝑎𝑘 and 𝑎1 into OPT’

 The maximum lateness must be equal or lower, because 𝐿 OPT′ ≤ 𝐿 OPT

10

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness



11

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

𝑎𝑘 𝑎1

L(OPT, k)

𝑎1 𝑎𝑘

L(OPT’, 1) L(OPT’, k)

L(OPT, 1)

OPT

OPT’

If 𝑎𝑘 is not late in OPT’: If 𝑎𝑘 is late in OPT’:

Generalization of
this property?

 There is an optimal scheduling w/o inversions given 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
 𝑎𝑖 and 𝑎𝑗 are inverted if 𝑑𝑖 < 𝑑𝑗 but 𝑎𝑗 is scheduled before 𝑎𝑖

 Proof via contradiction
 Assume that OPT has 𝑎𝑖 and 𝑎𝑗 that are inverted

 Let OPT’ = OPT but 𝑎𝑖 and 𝑎𝑗 are swapped

 OPT’ is equal or better than OPT, because 𝐿 OPT′ ≤ 𝐿 OPT

12

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness



13

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

𝑎𝑗 𝑎𝑖

L(OPT, j)

𝑎𝑖 𝑎𝑗

L(OPT’, i) L(OPT’, j)

L(OPT, i)

OPT

OPT’

If 𝑎𝑗 is not late in OPT’: If 𝑎𝑗 is late in OPT’: ……

……

The earliest-deadline-first greedy algorithm is optimal

Optimal
Solution

Greedy
Choice

Subproblem
Solution

+=

Textbook Chapter 16.5 – A task-scheduling problem as a matroid

14

 Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 unit-time tasks, their
corresponding integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 (1 ≤ 𝑑𝑖 ≤ 𝑛), and
nonnegative penalties 𝑤1, 𝑤2, … , 𝑤𝑛 if 𝑎𝑖 is not finished by time 𝑑𝑖

 Output: a schedule that minimizes the total penalty

15

Job 1 2 3 4 5 6

Deadline (𝑑𝑖) 1 2 3 4 4 6

Penalty (w𝑖) 30 60 50 20 70 10

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 30

𝑎7 𝑎1𝑎4

20

 Let a schedule 𝐻 is the OPT
 A task 𝑎𝑖 is late in 𝐻 if 𝑓 𝐻, 𝑖 > 𝑑𝑗

 A task 𝑎𝑖 is early in 𝐻 if 𝑓 𝐻, 𝑖 ≤ 𝑑𝑗

 We can have an early-first schedule 𝐻′ with the same total penalty (OPT)

16

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 20

𝑎7 𝑎4

Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10

𝑎1

30

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 30

𝑎7 𝑎1𝑎4

20

𝐻′

𝐻

If the late task proceeds the early task,
switching them makes the early one
earlier and late one still late

 Rethink the problem: “maximize the total penalty for the set of early tasks”

 Idea
 Largest-penalty-first w/o idle time?

 Earliest-deadline-first w/o idle time?

17

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 20

𝑎7 𝑎4 𝑎1

30Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10

60 40 70 50 10

 Greedy choice: select the largest-penalty task into the early set if feasible

 Proof via contradiction
 Assume that there is no OPT including this greedy choice

 If OPT processes 𝑎𝑖 after 𝑑𝑖, we can switch 𝑎𝑗 and 𝑎𝑖 into OPT’

 The maximum penalty must be equal or lower, because 𝑤𝑖 ≥ 𝑤𝑗

18

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

𝑎𝑗
0 n

Penalty 𝑤𝑖

𝑎𝑖
𝑑𝑖

𝑎𝑖
0 n

Penalty

𝑎𝑗
𝑑𝑖

𝑤𝑗

 Greedy algorithm

19

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛
Output: the schedule that minimizes the total penalty

Task-Scheduling(n, d[], w[])

sort tasks by penalties s.t. w[1] ≥ w[2] ≥ … ≥ w[n]

for i = 1 to n

find the latest available index j <= d[i]

if j > 0

A = A ∪ {i}

mark index j unavailable

return A // the set of early tasks

Can it be
better?

Practice: reduce the time for finding the latest available index

20

Job 1 2 3 4 5 6 7

Deadline (𝑑𝑖) 4 2 4 3 1 4 6

Penalty (w𝑖) 70 60 50 40 30 20 10

𝑎1𝑎3𝑎4 𝑎2

0 1 2 3 4 5 6 7

Total penalty = 30 + 20 = 50

20

𝑎7 𝑎5 𝑎6

30

 “Greedy”: always makes the choice that looks best at the moment in
the hope that this choice will lead to a globally optimal solution

 When to use greedy
 Whether the problem has optimal substructure

 Whether we can make a greedy choice and remain only one subproblem

 Common for optimization problem

 Prove for correctness
 Optimal substructure

 Greedy choice property

21

Optimal
Solution

Greedy
Choice

Subproblem
Solution

+=

Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw

22

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

