d -d d

O e

Outline

= Greedy Algorithms
= Greedy #1: Activity-Selection / Interval Scheduling

= Greedy #2: Coin Changing

= Greedy #3: Fractional Knapsack Problem

= Greedy #4: Breakpoint Selection

= Greedy #5: Huffman Codes

= Greedy #6: Scheduling to Minimize Lateness

= Greedy #7: Task-Scheduling

Greedy Algorithms

To yield an optimal solution, the problem should exhibit

1. Greedy-Choice Property : making locally optimal (greedy)
choices leads to a globally optimal solution

2. Optimal Substructure : an optimal solution to the problem
contains within it optimal solutions to subproblems

7 Scheduling to
= Minimize Lateness

Scheduling to Minimize Lateness

= Input: a finite set S = {a4, a,, ..., a,,} of n tasks, their processing time
t1,ty, ..., ty, and integer deadlines d{, d>, ..., d,,

Job 1 2 3 4
Processing Time (t;) 3 5 3
Deadline (d;) 4 6 7 8

= Qutput: a schedule that minimizes the maximum lateness

Lateness O 1 1 @

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,
Output: the schedule that minimizes the maximum lateness

= Let a schedule H contains s(H,j) and f(H,j) as the start time and finish
time of job j

« f(H,j) —s(H,j) =t
= Lateness of jobjin His L(H,j) = maX{O,f(H,j) — dj}

» The goal is to minimize max L(H, j) = max{0, f(H,) — d;}
j J

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,
Output: the schedule that minimizes the maximum lateness

= |dea
= Shortest-processing-time-first w/o idle time?
= Earliest-deadline-first w/o idle time?

__

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4,d>, ..., d,
Output: the schedule that minimizes the maximum lateness

= |dea
= Shortest-processing-time-first w/o idle time?

Lateness O Job 1
Processing Time (t;) 1
0 1 3 Deadline (d;) 10

Lateness

Possible Greedy Choices

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,,

..., typ, and deadlines d{, d>, ..., d,,

Output: the schedule that minimizes the maximum lateness

= |dea
= Earliest-deadline-first w/o idle time?

= Greedy algorithm

Min-Lateness(n, t[], d[])
sort tasks by deadlines s.t.
ct = 0 // current time
for J =1 ton
assign job j to interval
s[j] = ct
f[3] = s3] + tlJ]
ct = ct + t[7]
return s[], f[]

d[1]1=d[2]

(ct, ct + t[3])

< ...<d[n]

T(n) =0O(nlogn)

Prove Correctness
— Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,
Output: the schedule that minimizes the maximum lateness

= Greedy choice: first select the task with the earliest deadline

= Proof via contradiction
= Assume that there is no OPT including this greedy choice
= If OPT processes a; as the i-th task (ay), we can switch a; and a, into OPT’

= The maximum lateness must be equal or lower, because L(OPT") < L(OPT)

Prove Correctness
— Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,
Output: the schedule that minimizes the maximum lateness

- L(OPT’) < L(OPT)
<= max(L(OPT", 1), L(OPT", k)) < max(L(OPT, k), L(OPT, 1))
< max(L(OPT’, 1), L(OPT’, k)) < L(OPT, 1)

« L(OPT’, k) < L(OPT,1) - L(OPT",1) < L(OPT, 1)

L(OPT, k) L(OPT, 1)

If a;, is not late in OPT’: If ay, is late in OPT’: OPT
L(OPT’ k) =0 L(OPT’, k) = f(OPT", k) — di L(OPT’, 1) L(OPT’, k)
= f(OPT,1) — d; OPT’
< f(OPT,1) — d4

— L(OPT, 1) (o)

Prove Correctness
— No Inversicns

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4, d>, ..., d,,

Output: the schedule that minimizes the maximum lateness

= There is an optimal scheduling w/o inversions givend; < d, < -

= a; and q; are inverted if d; < d; but q; is scheduled before a;

= Proof via contradiction
= Assume that OPT has a; and a; that are inverted
= Let OPT’ = OPT but a; and a; are swapped
= OPT’ is equal or better than OPT, because L(OPT') < L(OPT)

<d,

Prove Correctness
— No Inversicns

Scheduling to Minimize Lateness Problem
Input: n tasks with their processing time t4, t,, ..., t,;, and deadlines d4,d>, ..., d,

Output: the schedule that minimizes the maximum lateness
= L(OPT’) < L(OPT)

<= max(L(OPT", i), L(OPT’, j)) < max(L(OPT,j), L(OPT,1))
<= max(L(OPT", i), L(OPT",5)) < L(OPT,i) "~ d; < d;
< L(OPT",j) < L(OPT,i) - L(OPT",i) < L(OPT,1)

L(OPT, j) L(OPT, i)
If a; is not late in OPT’: If g; is late in OPT’: OPT| o | “
L(OPT’,j) =0 L(OPT’, j) = OPT’,j) d;
_ f (OPT,i) — d, L(OPT, i) L(OPT’, j)
ot o
Solution Choice Solution
= L OPT z)

&) Task-Scheduling

Textbook Chapter 16.5 — A task-scheduling problem as a matroid

Task-Scheduling Problem

= Input: a finite set S = {a4, a,, ..., a,,} of n unit-time tasks, their
corresponding integer deadlines d{, d>, ...,d,, (1 < d; < n), and

nonnegative penalties wy, w,, ..., w,, if a; is not finished by time d;

Job 1 2 3 4 5 6
Deadline (d;) 1 2 3 4 4 6

Penalty(w;) 30 60 50 20 70 10

= Qutput: a schedule that minimizes the total penalty

Penalty 20 30
a, jas jag as a4 a7 gaq
0 n

Task-Scheduling Problem

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d>, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Let a schedule H is the OPT Task 1 2 3 4 5 6 7
= Ataska;islatein H if f(H,i) > d; d; 1 2 3 4 4 4 6
= Atask a; isearlyin H if f(H,i) < d; w; 30 60 40 20 50 70 10

= We can have an early-first schedule H' with the same total penalty (OPT)
H Penalty 20 30

az a3 a6 a5 ay a7 a1

w, If the late task proceeds the early task,

switching them makes the early one
H' Penalty 20 30 earlier and late one still late

a; a3 A A5 A7 | A4 Q04
0

0

Possible Greedy Choices

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d>, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Rethink the problem: “maximize the total penalty for the set of early tasks”

w; 30 60 40 20 50 70 10 0

= |dea
= Largest-penalty-first w/o idle time?
= Earliest-deadline-first w/o idle time?

Task 1 2 3 4 5 6 7 Penalty |60 40 70 50 10 |20 30
d; 1 2 3 4 4 4 6 a, jas jag jas §ay ‘a4 a,

n

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Greedy choice: select the largest-penalty task into the early set if feasible

= Proof via contradiction
= Assume that there is no OPT including this greedy choice

= If OPT processes a; after d;, we can switch a; and a; into OPT’

= The maximum penalty must be equal or lower, because w; = w;

Penalty w; B
o IR
0 di n
Penalty w;

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines d4, d,, ..., d,, and penalties wy, w,, ..., w,
Output: the schedule that minimizes the total penalty

= Greedy algorithm

Task-Scheduling(n, d[], w[])
sort tasks by penalties s.t. w[l] 2 w[2] 2 .. 2 w[n]

for 1 =1 ton
find the latest available index j <= d[i] T(n) = O(n?)
if 93>0
A =AU {i} “
mark index j unavailable / Can it be

return A // the set of early tasks

better?

Example lllustration

Job 2
Deadline (d;) 4 2 4 3 1 6
Penalty (w;) 70 60 50 40 30 20 10

s §az fasz a4

012|3|4567

Total penalty =30+ 20 =50

Concluding Remarks

= “Greedy”: always makes the choice that looks best at the moment in
the hope that this choice will lead to a globally optimal solution

= When to use greedy
= Whether the problem has optimal substructure

= Whether we can make a greedy choice and remain only one subproblem

= Common for optimization problem

Optimal g Greedy N
Solution | Choice

= Prove for correctness
= Optimal substructure

= Greedy choice property

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website:

Email:

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

