

Nov 9th, 20 Algorithm Design and Analysis YUN-NUNG (VIVIAN) CHEN HTTP://ADA17.CSIE.ORG

2

а

Slides credited from Hsu-Chun Hsiao

Outline

- Greedy Algorithms
- Greedy #1: Activity-Selection / Interval Scheduling
- Greedy #2: Coin Changing
- Greedy #3: Fractional Knapsack Problem
- Greedy #4: Breakpoint Selection
- Greedy #5: Huffman Codes
- Greedy #6: Scheduling to Minimize Lateness
- Greedy #7: Task-Scheduling

Greedy Algorithms

To yield an optimal solution, the problem should exhibit

- 1. Greedy-Choice Property : making locally optimal (greedy) choices leads to a globally optimal solution
- 2. Optimal Substructure : an optimal solution to the problem contains within it optimal solutions to subproblems

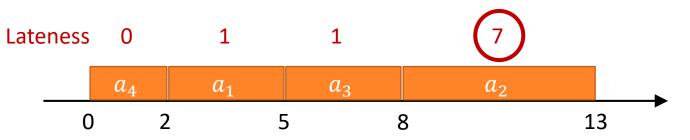
Scheduling to Minimize Lateness

Scheduling to Minimize Lateness

• Input: a finite set $S = \{a_1, a_2, ..., a_n\}$ of n tasks, their processing time $t_1, t_2, ..., t_n$, and integer deadlines $d_1, d_2, ..., d_n$

Job	1	2	3	4
Processing Time (t_i)	3	5	3	2
Deadline (d_i)	4	6	7	8

• Output: a schedule that minimizes the maximum lateness



Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem

- Let a schedule H contains s(H, j) and f(H, j) as the start time and finish time of job j
 - $f(H,j) s(H,j) = t_j$
 - Lateness of job j in H is $L(H, j) = \max\{0, f(H, j) d_j\}$
- The goal is to minimize $\max_{j} L(H, j) = \max_{j} \{0, f(H, j) d_j\}$

Scheduling to Minimize Lateness Problem

- Idea
 - Shortest-processing-time-first w/o idle time?
 - Earliest-deadline-first w/o idle time?
 Practice: prove that any schedule w/ idle is not optimal

Scheduling to Minimize Lateness Problem

- Idea
 - Shortest-processing-time-first w/o idle time?

Job	1	2
Processing Time (t_i)	1	2
Deadline (d_i)	10	2

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

Idea

```
Earliest-deadline-first w/o idle time?
```

Greedy algorithm

```
Min-Lateness(n, t[], d[])
sort tasks by deadlines s.t. d[1]≤d[2]≤ ...≤d[n]
ct = 0 // current time
for j = 1 to n
assign job j to interval (ct, ct + t[j])
s[j] = ct
f[j] = s[j] + t[j]
ct = ct + t[j]
return s[], f[]
```

$$T(n) = \Theta(n \log n)$$

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

- Greedy choice: first select the task with the earliest deadline
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_1 as the *i*-th task (a_k), we can switch a_k and a_1 into OPT'
 - The maximum lateness must be equal or lower, because $L(OPT') \leq L(OPT)$

Prove Correctness – Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

• $L(OPT') \leq L(OPT)$ $\iff \max(L(\text{OPT}', 1), L(\text{OPT}', k)) \le \max(L(\text{OPT}, k), L(\text{OPT}, 1))$ $\iff \max(L(\text{OPT}', 1), L(\text{OPT}', k)) \le L(\text{OPT}, 1)$ $\iff L(\text{OPT}', k) \le L(\text{OPT}, 1) :: L(\text{OPT}', 1) \le L(\text{OPT}, 1)$ L(OPT, k) L(OPT, 1) OPT a_{ν} a_1 If a_k is not late in OPT': If a_k is late in OPT': $L(OPT', k) = f(OPT', k) - d_k$ L(OPT', k) = 0L(OPT', 1) L(OPT', k) $= f(OPT, 1) - d_k$ OPT' a_1 a_{k} $\leq f(OPT, 1) - d_1$ Generalization of this property? = L(OPT, 1)

Prove Correctness – No Inversions

Scheduling to Minimize Lateness Problem

- There is an optimal scheduling w/o $\mathit{inversions}$ given $d_1 \leq d_2 \leq \cdots \leq d_n$
 - a_i and a_j are *inverted* if $d_i < d_j$ but a_j is scheduled before a_i
- Proof via contradiction
 - Assume that OPT has a_i and a_j that are inverted
 - Let OPT' = OPT but a_i and a_j are swapped
 - OPT' is equal or better than OPT, because $L(OPT') \leq L(OPT)$

Prove Correctness – No Inversions

Scheduling to Minimize Lateness Problem

Input: *n* tasks with their processing time $t_1, t_2, ..., t_n$, and deadlines $d_1, d_2, ..., d_n$ Output: the schedule that minimizes the maximum lateness

• $L(OPT') \leq L(OPT)$ $\iff \max(L(\text{OPT}', i), L(\text{OPT}', j)) \le \max(L(\text{OPT}, j), L(\text{OPT}, i))$ $\iff \max(L(\text{OPT}', i), L(\text{OPT}', j)) \le L(\text{OPT}, i) :: d_i < d_j$ $\iff L(\text{OPT}', j) \le L(\text{OPT}, i) :: L(\text{OPT}', i) \le L(\text{OPT}, i)$ L(OPT, j) L(OPT, i) <u>If a_i is not late in OPT'</u>: <u>If a_j is late in OPT'</u>: OPT a_i a_i L(OPT', j) = 0 $L(OPT', j) = f(OPT', j) - d_j$ L(OPT', i) L(OPT', j) $= f(OPT, i) - d_i$ Optimal Subproblem OPT' Greedy $\leq f(\text{OPT}, i) - d_i$ a_i a_i + Solution Solution Choice = L(OPT, i)The earliest-deadline-first greedy algorithm is optimal

Task-Scheduling

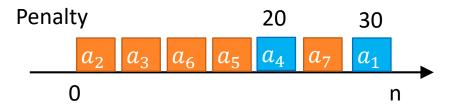
Textbook Chapter 16.5 – A task-scheduling problem as a matroid

Task-Scheduling Problem

• Input: a finite set $S = \{a_1, a_2, ..., a_n\}$ of n unit-time tasks, their corresponding integer deadlines $d_1, d_2, ..., d_n$ $(1 \le d_i \le n)$, and nonnegative penalties $w_1, w_2, ..., w_n$ if a_i is not finished by time d_i

Job	1	2	3	4	5	6
Deadline (d_i)	1	2	3	4	4	6
Penalty (w_i)	30	60	50	20	70	10

Output: a schedule that minimizes the total penalty



Task-Scheduling Problem

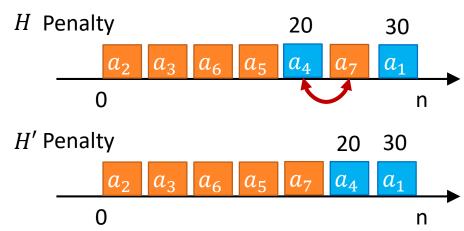
Task-Scheduling Problem

Input: n tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

- Let a schedule H is the OPT
 - A task a_i is late in H if $f(H, i) > d_j$
 - A task a_i is early in H if $f(H, i) \le d_j$

Task	1	2	3	4	5	6	7
d_i	1	2	3	4	4	4	6
w _i	30	60	40	20	50	70	10

We can have an early-first schedule H' with the same total penalty (OPT)



If the late task proceeds the early task, switching them makes the early one earlier and late one still late

Task-Scheduling Problem

Input: n tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

Rethink the problem: "maximize the total penalty for the set of early tasks"

Task	1	2	3	4	5	6	7	Penalty	60	40	70	50
d_i	1	2	3	4	4	4	6		<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₆	a_5
w _i	30	60	40	20	50	70	10)			

Idea

- Largest-penalty-first w/o idle time?
- Earliest-deadline-first w/o idle time?

10

20

 a_{4}

30

 a_1

n

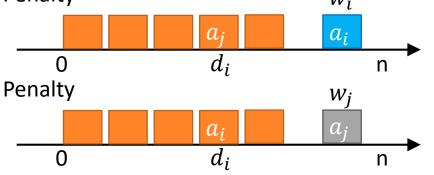
Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

- Greedy choice: select the largest-penalty task into the early set if feasible
- Proof via contradiction
 - Assume that there is no OPT including this greedy choice
 - If OPT processes a_i after d_i , we can switch a_i and a_i into OPT'

• The maximum penalty must be equal or lower, because $w_i \ge w_j$ Penalty w_i

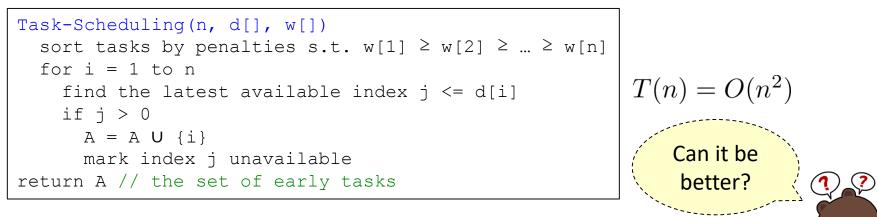


Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines $d_1, d_2, ..., d_n$ and penalties $w_1, w_2, ..., w_n$ Output: the schedule that minimizes the total penalty

Greedy algorithm

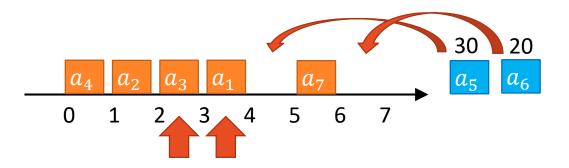


Practice: reduce the time for finding the latest available index

Þ

Example Illustration

Job	1	2	3	4	5	6	7
Deadline (d_i)	4	2	4	3	1	4	6
Penalty (w_i)	70	60	50	40	30	20	10



Total penalty = 30 + 20 = 50

Concluding Remarks

- "Greedy": always makes the choice that looks best at the moment in the hope that this choice will lead to a globally optimal solution
- When to use greedy
 - Whether the problem has optimal substructure
 - Whether we can make a greedy choice and remain only one subproblem
 - Common for <u>optimization</u> problem

- Prove for correctness
 - Optimal substructure
 - Greedy choice property

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw