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▪ Mini-HW 5 released
▪ Due on 10/26 (Thu) 17:20

▪ Homework 1 due soon

▪ Homework 2
▪ Due on 11/09 (Thur) 17:20 (4 weeks)

▪ TA Recitation (next week)
▪ 10/26 (Thu) at R103

▪ Homework 1 QA

▪ Another course website you can get the videos sooner
▪ http://ada.miulab.tw

▪ Note: if you have questions about the homework, please find TAs

2Frequently check the website for the updated information!

http://ada.miulab.tw/
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▪ Dynamic Programming

▪ DP #1: Rod Cutting

▪ DP #2: Stamp Problem

▪ DP #3: Matrix-Chain Multiplication

▪ DP #4: Sequence Alignment Problem
▪ Longest Common Subsequence (LCS) / Edit Distance

▪ Space Efficient Algorithm

▪ Viterbi Algorithm

▪ DP #5: Weighted Interval Scheduling

▪ DP #6: Knapsack Problem
▪ 0-1 Knapsack

▪ Unbounded Knapsack

▪ Multidimensional Knapsack

▪ Multi-Choice Knapsack

▪ Fractional Knapsack
4



▪ 有100個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。

▪ 當隔天執行死刑時，每人頭上戴一頂帽子(黑或白)排成一隊伍，在
死刑執行前，由隊伍中最後的囚犯開始，每個人可以猜測自己頭上
的帽子顏色(只允許說黑或白)，猜對則免除死刑，猜錯則執行死刑。

▪ 若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以
使總共存活的囚犯數量期望值最高？
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▪ 囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己
及後面囚犯的。

▪ 由最後一個囚犯開始猜測，依序往前。

▪ 每個囚犯皆可聽到之前所有囚犯的猜測內容。

6

……

Example: 奇數者猜測內
容為前面一位的帽子顏
色存活期望值為75人

有沒有更多人可以存活的好策略?



▪ http://qstn.co/q/OOZK7sYQ

7

http://qstn.co/q/OOZK7sYQ
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▪ Divide-and-Conquer
▪ partition the problem into 

independent or disjoint
subproblems

▪ repeatedly solving the common 
subsubproblems

 more work than necessary

▪ Dynamic Programming
▪ partition the problem into 

dependent or overlapping
subproblems

▪ avoid recomputation

✓ Top-down with memoization

✓ Bottom-up method

9



1. Characterize the structure of an optimal solution
✓ Overlapping subproblems: revisit same subproblems

✓ Optimal substructure: an optimal solution to the problem contains 
within it optimal solutions to subproblems

2. Recursively define the value of an optimal solution
✓ Express the solution of the original problem in terms of optimal 

solutions for subproblems

3. Compute the value of an optimal solution
✓ typically in a bottom-up fashion

4. Construct an optimal solution from computed information
✓ Step 3 and 4 may be combined

10



Textbook Chapter 15.4 – Longest common subsequence

Textbook Problem 15-5 – Edit distance
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▪ 猴子們各自講話，經過語音辨識系統後，哪一支猴子發出最接近英
文字”banana”的語音為優勝者

▪ How to evaluate the similarity between two sequences?

12

aeniqadikjaz

svkbrlvpnzanczyqza

banana



▪ Input: two sequences 

▪ Output: longest common subsequence of two sequences
▪ The maximum-length sequence of characters that appear left-to-right (but 

not necessarily a continuous string) in both sequences

13

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

4 5



▪ Input: two sequences 

▪ Output: the minimum cost of transformation from X to Y
▪ Quantifier of the dissimilarity of two strings

14

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

1 deletion, 7 insertions, 1 substitution 12 insertions, 1 substitution

9 13



▪ Input: two sequences 

▪ Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences
▪ Cost = #insertions × 𝐶INS + #deletions × 𝐶DEL + #substitutions × 𝐶𝑝,𝑞

15



▪ Subproblems
▪ SA(i, j): sequence alignment between prefix strings 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗
▪ Goal: SA(m, n)

▪ Optimal substructure: suppose OPT is an optimal solution to SA(i, j), 
there are 3 cases:
▪ Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)

▪ OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

▪ Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)
▪ OPT is an optimal solution of SA(i-1, j)

▪ Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)
▪ OPT is an optimal solution of SA(i, j-1)

16

Sequence Alignment Problem
Input: two sequences 
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences



▪ Suppose OPT is an optimal solution to SA(i, j), there are 3 cases:
▪ Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)

▪ OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

▪ Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)

▪ OPT is an optimal solution of SA(i-1, j)

▪ Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)

▪ OPT is an optimal solution of SA(i, j-1)

▪ Recursively define the value

17

Sequence Alignment Problem
Input: two sequences 
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences



▪ Bottom-up method: solve smaller subproblems first

18

X\Y 0 1 2 3 4 5 … n

0

1

:

m

Sequence Alignment Problem
Input: two sequences 
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences



▪ Bottom-up method: solve smaller subproblems first

19

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

Sequence Alignment Problem
Input: two sequences 
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

a  e  n  i q  a  d  i k  j  a  z

b

a

n

a

n

a
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Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]

▪ Bottom-up method: solve smaller subproblems first

Sequence Alignment Problem
Input: two sequences 
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences
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▪ Bottom-up method: solve smaller subproblems first

Sequence Alignment Problem
Input: two sequences 
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

a  e  n  i q  a  d  i k  j  a  z

b

a

n

a

n

a
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▪ Bottom-up method: solve smaller subproblems first

Sequence Alignment Problem
Input: two sequences 
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution
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Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution

Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]



▪ Space complexity

▪ If only keeping the most recent two rows: Space-Seq-Align(X, Y)

24

X\Y 0 1 2 3 … j … n

i - 1

i

The optimal value can be computed, but the solution cannot be reconstructed

X\Y 0 1 2 3 4 5 … n

0

1

:

m



▪ Problem: find the min-cost alignment  find the shortest path

25

Divide-and-Conquer
+

Dynamic Programming

a

e

p

p

l

p ea

X\Y 0 1 2 3

0 0 4 8 12

1 4 7 11 15

2 8 4 8 12

3 12 8 12 8

4 16 12 15 12

5 20 16 19 15

a   p   e

p

p

l

e

a

→ distance = CINS
↓ distance = CDEL
↘ distance = Cu,v for edge (u, v)

START

END



𝐹 2,3 = distance of the 
shortest path

▪ Each edge has a length/cost

▪ 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START  𝑖, 𝑗 )

▪ 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛 ( 𝑖, 𝑗  END)

▪ 𝐹 𝑚, 𝑛 = 𝐵 0,0

26

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐵 2,3 = distance of the 
shortest path



▪ Each edge has a length/cost

▪ 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START  𝑖, 𝑗 )

▪ 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛 ( 𝑖, 𝑗  END)

▪ Forward formulation

▪ Backward formulation
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i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5



▪ Observation 1: the length of the shortest path from 0,0 to 𝑚, 𝑛 that 
passes through 𝑖, 𝑗 is 𝐹 𝑖, 𝑗 + 𝐵 𝑖, 𝑗

28

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐹 𝑖, 𝑗

𝐵 𝑖, 𝑗

 optimal substructure



▪ Observation 2: for any 𝑣 in {0, … , 𝑛}, there exists a 𝑢 s.t. the shortest 
path between (0,0) and 𝑚, 𝑛 goes through (𝑢, 𝑣)
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𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

 the shortest path must go across a vertical cut



▪ Observation 1+2:

30

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0
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1

2

3

j = 0 51 2 3 4 6 7

5

i = 0

4
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j = 0 51 2 3 4 6 7
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▪ Goal: finds optimal solution

31

How to find the value of 𝑢∗?

▪ Idea: utilize sequence alignment algo.
▪ Call Space-Seq-Align(X,Y[1:v]) to find 
𝐹 0, 𝑣 , 𝐹 1, 𝑣 , … , 𝐹 𝑚, 𝑣

▪ Call Back-Space-Seq-Align(X,Y[v+1:n]) 
to find 𝐵 0, 𝑣 , 𝐵 1, 𝑣 , … , 𝐵 𝑚, 𝑣

▪ Let 𝑢 be the index minimizing 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣



▪ Goal: finds optimal solution – DC-Align(X, Y)

32

1. Divide

2. Conquer

3. Combine

▪ Divide the sequence of size n into 2 
subsequences
▪ Find 𝑢 to minimize 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣

▪ Recursive case (𝑛 > 1)
▪ prefix 

= DC-Align(X[1:u], Y[1:v])

▪ suffix

= DC-Align(X[u+1:m], Y[v+1:n])

▪ Base case (𝑛 = 1)
▪ Return Seq-Align(X, Y)

▪ Return prefix + suffix

▪ 𝑇 𝑚, 𝑛 = time for running DC-Align(X, Y) with 𝑋 = 𝑚, 𝑌 = 𝑛

Space Complexity:



▪ Theorem

▪ Proof
▪ There exists positive constants 𝑎, 𝑏 s.t. all

▪ Use induction to prove

33

Inductive 
hypothesis

when 

Practice to check the initial condition



▪ Given a graph 𝐺 = 𝑉, 𝐸 , each edge 𝑢, 𝑣 ∈ 𝐸 has an associated non-
negative probability 𝑝 𝑢, 𝑣 of traversing the edge 𝑢, 𝑣 and producing 
the corresponding character. Find the most probable path with the 
label 𝑠 = 𝜎1, 𝜎2, … , 𝜎𝑛 .

34

ㄨ ㄅ ㄒ ㄎ ㄕ

START

我

烏

為

問

END

爸

不

想

續

小

考

看

卡

書

試

上

白
鄉

Find the path from 
START to END with 

highest prob
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𝜎1 𝜎2 … … 𝜎𝑛

START END

produce 𝜎1

produce 𝜎𝑗

V: vocabulary size

Viterbi has been applied to many AI applications, e.g. speech recognition
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▪ Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖

▪ Output: the maximum number of compatible jobs

▪ The interval scheduling problem can be solved using an “early-finish-time-
first” greedy algorithm in 𝑂(𝑛) time

37

“Greedy Algorithm”
Next topic!

time

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9



▪ Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖, and values 𝑣𝑖

▪ Output: the maximum total value obtainable from compatible jobs

38time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Assume that the requests are sorted in non-decreasing order (𝑓𝑖 ≤ 𝑓𝑗 when 𝑖 < 𝑗)

𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
e.g. 𝑝 1 = 0, 𝑝 2 = 0, 𝑝 3 = 1, 𝑝 4 = 1, 𝑝 5 = 4, 𝑝 6 = 3



▪ Subproblems
▪ WIS(i): weighted interval scheduling for the first 𝑖 jobs

▪ Goal: WIS(n)

▪ Optimal substructure: suppose OPT is an optimal solution to WIS(i), 
there are 2 cases:
▪ Case 1: job 𝑖 in OPT

▪ OPT\{𝑖} is an optimal solution of WIS(p(i))

▪ Case 2: job 𝑖 not in OPT

▪ OPT is an optimal solution of WIS(i-1)

39

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible 

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9
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1



▪ Optimal substructure: suppose OPT is an optimal solution to WIS(i), 
there are 2 cases:
▪ Case 1: job 𝑖 in OPT

▪ OPT\{𝑖} is an optimal solution of WIS(p(i))

▪ Case 2: job 𝑖 not in OPT

▪ OPT is an optimal solution of WIS(i-1)

▪ Recursively define the value

40

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible 



▪ Bottom-up method: solve smaller subproblems first

41

i 0 1 2 3 4 5 … n

M[i]

WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible 
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▪ Bottom-up method: solve smaller subproblems first

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible 

i 0 1 2 3 4 5 6

M[i] 0 1 3 4 5 6 7

time

1

3

3

4
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job index

21 3 4 5 6 7 8 9
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WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible 

Find-Solution(M, n)

if n = 0

return {}

if v[n] + M[p[n]] > M[n-1] // case 1

return {n} ∪ Find-Solution(p[n])

return Find-Solution(n-1) // case 2



Textbook Exercise 16.2-2
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▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分
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▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分
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▪ Subproblems

▪ ZO-KP(i, w): 0-1 knapsack problem within 𝑤 capacity for the first 𝑖 items

▪ Goal: ZO-KP(n, W)

▪ Optimal substructure: suppose OPT is an optimal solution to ZO-KP(i, w), 
there are 2 cases:
▪ Case 1: item 𝑖 in OPT

▪ OPT\{𝑖} is an optimal solution of ZO-KP(i - 1, w - wi)

▪ Case 2: item 𝑖 not in OPT

▪ OPT is an optimal solution of ZO-KP(i - 1, w)
47

0-1 Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

ZO-KP(i) ZO-KP(i, w)

consider the available capacity



▪ Optimal substructure: suppose OPT is an optimal solution to ZO-KP(i, w), 
there are 2 cases:
▪ Case 1: item 𝑖 in OPT

▪ OPT\{𝑖} is an optimal solution of ZO-KP(i - 1, w - wi)

▪ Case 2: item 𝑖 not in OPT

▪ OPT is an optimal solution of ZO-KP(i - 1, w)

▪ Recursively define the value

48

0-1 Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once



▪ Bottom-up method: solve smaller subproblems first

49

i\w 0 1 2 3 … w … W

0

1

2

i

n

0-1 Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once



▪ Bottom-up method: solve smaller subproblems first

50

i\w 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 4 4 4 4 4

2 0 4 9 13 13 13

3 0 4 9 13 20 24

0-1 Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once

i wi vi

1 1 4

2 2 9

3 4 20

𝑊 = 5



▪ Bottom-up method: solve smaller subproblems first
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ZO-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 0 to W

if(wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max(vi + M[i-1, w-wi], M[i-1, w])

return M[n, W]

0-1 Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where each item is chosen at most once
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ZO-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 0 to W

if(wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max(vi + M[i-1, w-wi], M[i-1, w])

return M[n, W]

Find-Solution(M, n, W)

S = {}

w = W

for i = n to 1

if M[i, w] > M[i – 1, w] // case 1

w = w – wi
S = S ∪ {i}

return S



▪ Polynomial: polynomial in the length of the input (#bits for the input)

▪ Pseudo-polynomial: polynomial in the numeric value

▪ The time complexity of 0-1 knapsack problem is Θ 𝑛𝑊
▪ 𝑛: number of objects

▪ 𝑊: knapsack’s capacity (non-negative integer)

▪ polynomial in the numeric value 

= pseudo-polynomial in input size

= exponential in the length of the input

▪ Note: the size of the representation of 𝑊 is log2𝑊
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= 2𝑚 = 𝑚



▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分

54



▪ Subproblems
▪ U-KP(i, w): unbounded knapsack problem with 𝑤 capacity for the first 𝑖 items

▪ Goal: U-KP(n, W)
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Unbounded Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖, each has unlimited supplies
Output: the max value within 𝑊 capacity

0-1 Knapsack Problem Unbounded Knapsack Problem

each item can be chosen at most once each item can be chosen multiple times

a sequence of binary choices: whether 
to choose item 𝑖

a sequence of 𝑖 choices: which one 
(from 1 to 𝑖) to choose

Time complexity = Θ 𝑛𝑊 Time complexity = Θ 𝑛2𝑊

Can we do better?



▪ Subproblems
▪ U-KP(w): unbounded knapsack problem with 𝑤 capacity
▪ Goal: U-KP(W)

▪ Optimal substructure: suppose OPT is an optimal solution to U-KP(w), there are 
𝑛 cases:
▪ Case 1: item 1 in OPT

▪ Removing an item 1 from OPT is an optimal solution of U-KP(w – w1)

▪ Case 2: item 2 in OPT
▪ Removing an item 2 from OPT is an optimal solution of U-KP(w – w2)

:

▪ Case 𝑛: item 𝑛 in OPT
▪ Removing an item 𝑛 from OPT is an optimal solution of U-KP(w - wn)
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Unbounded Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖, each has unlimited supplies
Output: the max value within 𝑊 capacity



▪ Optimal substructure: suppose OPT is an optimal solution to U-KP(w), there 
are 𝑛 cases:
▪ Case 𝑖: item 𝑖 in OPT

▪ Removing an item i from OPT is an optimal solution of U-KP(w – w1)

▪ Recursively define the value
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Unbounded Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖, each has unlimited supplies
Output: the max value within 𝑊 capacity

只考慮背包還裝的下的情形



▪ Bottom-up method: solve smaller subproblems first
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Unbounded Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖, each has unlimited supplies
Output: the max value within 𝑊 capacity

w 0 1 2 3 4 5 … W

M[w]

i wi vi

1 1 4

2 2 9

3 4 20

𝑊 = 5



▪ Bottom-up method: solve smaller subproblems first
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Unbounded Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖, each has unlimited supplies
Output: the max value within 𝑊 capacity

w 0 1 2 3 4 5

M[w] 0

i wi vi

1 1 4

2 2 9

3 4 17

𝑊 = 5

4 9 13 18 22



▪ Bottom-up method: solve smaller subproblems first
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U-KP(v, W)

for w = 0 to W

M[w] = 0

for w = 0 to W

for i = 1 to n

if(wi <= w)

tmp = vi + M[w - wi]

M[w] = max(M[w], tmp)

return M[W]

Unbounded Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖, each has unlimited supplies
Output: the max value within 𝑊 capacity
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U-KP(v, W)

for w = 0 to W

M[w] = 0

for w = 0 to W

for i = 1 to n

if(wi <= w)

tmp = vi + M[w - wi]

M[w] = max(M[w], tmp)

return M[W]

Find-Solution(M, n, W)

for i = 1 to n

C[i] = 0 // C[i] = # of item i in solution

w = W

for i = i to n

while w > 0

if(wi <= w && M[w] == (vi + M[w - wi]))

w = w - wi
C[i] += 1

return C



▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分
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▪ Subproblems
▪ M-KP(i, w, d): multidimensional knapsack problem with 𝑤 capacity and 𝑑 size 

for the first 𝑖 items

▪ Goal: M-KP(n, W, D)

▪ Optimal substructure: suppose OPT is an optimal solution to M-KP(i, w, 
d), there are 2 cases:
▪ Case 1: item 𝑖 in OPT

▪ OPT\{𝑖} is an optimal solution of M-KP(i - 1, w - wi, d – di)

▪ Case 2: item 𝑖 not in OPT
▪ OPT is an optimal solution of M-KP(i - 1, w, d)
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Multidimensional Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is 
chosen at most once



▪ Optimal substructure: suppose OPT is an optimal solution to M-KP(i, w, 
d), there are 2 cases:
▪ Case 1: item 𝑖 in OPT

▪ OPT\{𝑖} is an optimal solution of M-KP(i - 1, w - wi, d – di)

▪ Case 2: item 𝑖 not in OPT

▪ OPT is an optimal solution of M-KP(i - 1, w, d)

▪ Recursively define the value
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Multidimensional Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is 
chosen at most once



▪ Step 3: Compute Value of an OPT Solution

▪ Step 4: Construct an OPT Solution by Backtracking

▪ What is the time complexity?
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Multidimensional Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖, weighs 𝑤𝑖, and size 𝑑𝑖
Output: the max value within 𝑊 capacity and with the size of 𝑫, where each item is 
chosen at most once



▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分
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▪ Input: 𝑛 items 
▪ 𝑣𝑖,𝑗: value of 𝑗-th item in the group 𝑖

▪ 𝑤𝑖,𝑗: weight of 𝑗-th item in the group 𝑖

▪ 𝑛𝑖: number of items in group 𝑖

▪ 𝑛: total number of items (σ𝑛𝑖)

▪ 𝐺: total number of groups

▪ Output: the maximum value for the knapsack with capacity of 𝑊, 
where the item from each group can be selected at most once
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group 1 group 2 group 3



▪ Subproblems
▪ MC-KP(w): 𝑤 capacity

▪ MC-KP(i, w): 𝑤 capacity for the first 𝑖 groups

▪ MC-KP(i, j, w): 𝑤 capacity for the first 𝑗 items from first 𝑖 groups
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Multiple-Choice Knapsack Problem
Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

Which one is more suitable for this problem?

the constraint is for groups



▪ Subproblems
▪ MC-KP(i, w): multi-choice knapsack problem with 𝑤 capacity for the first 𝑖

groups

▪ Goal: MC-KP(G, W)

▪ Optimal substructure: suppose OPT is an optimal solution to MC-KP(i, w), 
for the group 𝑖, there are 𝑛𝑖 + 1 cases:
▪ Case 1: no item from 𝑖-th group in OPT

▪ OPT is an optimal solution of MC-KP(i - 1, w)

:

▪ Case 𝑗 + 1: 𝑗-th item from 𝑖-th group (itemi,j) in OPT
▪ OPT\itemi,j is an optimal solution of MC-KP(i - 1, w – wi,j)
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Multiple-Choice Knapsack Problem
Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once



▪ Optimal substructure: suppose OPT is an optimal solution to MC-KP(i, w), 
for the group 𝑖, there are 𝑛𝑖 + 1 cases:
▪ Case 1: no item from 𝑖-th group in OPT

▪ OPT is an optimal solution of MC-KP(i - 1, w)

▪ Case 𝑗 + 1: 𝑗-th item from 𝑖-th group (itemi,j) in OPT

▪ OPT\itemi,j is an optimal solution of MC-KP(i - 1, w – wi,j)

▪ Recursively define the value
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Multiple-Choice Knapsack Problem
Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once

𝑛𝑖 + 1



▪ Bottom-up method: solve smaller subproblems first
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i\w 0 1 2 3 … w … W

0

1

2

i

n

Multiple-Choice Knapsack Problem
Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once



▪ Bottom-up method: solve smaller subproblems first
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MC-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to G // consider groups 1 to i

for w = 0 to W // consider capacity = w

M[i, w] = M[i - 1, w]

for j = 1 to ni // check j-th item in group i

if(vi,j + M[i - 1, w - wi,j] > M[i, w])

M[i, w] = vi,j + M[i - 1, w - wi,j]

return M[G, W]

Multiple-Choice Knapsack Problem
Input: 𝑛 items with value 𝑣𝑖,𝑗 and weighs 𝑤𝑖,𝑗 (𝑛𝑖: #items in group 𝑖, 𝐺: #groups)

Output: the max value within 𝑊 capacity, where each group is chosen at most once
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MC-KP(n, v, W)

for w = 0 to W

M[0, w] = 0

for i = 1 to G // consider groups 1 to i

for w = 0 to W // consider capacity = w

M[i, w] = M[i - 1, w]

for j = 1 to ni // check items in group i

if(vi,j + M[i - 1, w - wi,j] > M[i, w])

M[i, w] = vi,j + M[i - 1, w - wi,j]

B[i, w] = j

return M[G, W], B[G, W]

Practice to write the pseudo code for Find-Solution()



▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分
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▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊, 
where we can take any fraction of items

▪ Dynamic programming algorithm should work

▪ Choose maximal  
𝑣𝑖

𝑤𝑖
(類似CP值) first
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“Greedy Algorithm”
Next topic!

Can we do better?



▪ “Dynamic Programming”: solve many subproblems in polynomial time 
for which a naïve approach would take exponential time

▪ When to use DP
▪ Whether subproblem solutions can combine into the original solution

▪ When subproblems are overlapping

▪ Whether the problem has optimal substructure

▪ Common for optimization problem

▪ Two ways to avoid recomputation
▪ Top-down with memoization

▪ Bottom-up method

▪ Complexity analysis
▪ Space for tabular filling

▪ Size of the subproblem graph 76



Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

