Dynamic
Programming

BAVEANAS VALY

Announcement

Mini-HW 4 released
= Due on 10/19 (Thu) 17:20

Homework 1 due a week later

Homework 2 released
= Due on 11/09 (Thur) 17:20 (4 weeks)

TA Recitation
= 10/26 (Thu) at R103
= Homework 1 QA

Mid-term date changed
= Original: 11/09 (Thu)
= New: 11/16 (Thu)

——

Mini-HW 4

Mini HW #4

Due Time: 2017/10/19 (Thu.) 17:20
Contact TAs: ada-ta@csie.ntu.edu.tw

Consider the classic LCS (,longest common subsequence) problem of two string s1=“ABCADB”
and s2=“CABDAB?”.

(1) Please fill the DP table below. For example, the 2 in the table means the LCS of “ABC” and
“CAB” has length 2. (5pt)

(2) Explain how to use the DP table to find the LCS (one of “ABAB” and “ABDB”), the unclear
or inefficient method will get penalty. (5pt)

A B C A D B
C 0
A 1
B 2
D 3
A
B 1

Outline \—Q VO

Dynamic Programming
DP #1: Rod Cutting

DP #2: Stamp Problem
DP #3: Matrix-Chain Multiplication

DP #4: Sequence Alignment Problem
= Longest Common Subsequence (LCS) / Edit Distance

= Viterbi Algorithm
= Space Efficient Algorithm

DP #5: Weighted Interval Scheduling

DP #6: Knapsack Problem
= 0/1 Knapsack

= Unbounded Knapsack
= Multidimensional Knapsack
= Fractional Knapsack

wmu

eNhik— & - [NIEE =R

- 5100fE5EA - FRRIITIEH - BRI —(EF &S -
- SR RIITIEAIR - AR L& —TRIE(FREA) B — &R - &

SERIE TR - AXth P EEARIBEHYE - BEATLUSRECEE
HIEFEREB(RArTai=EA) - BERIRERIEH - BiaRIBITIEH -

- AELNIUOI DRI — XK EARRE W - 2B FRTAT

EAXFEENRNILREHEESRS ?

I8 AR Rl

« NJEBER—%F - BEACIUERBIEFRBANIEF - BEAZBEC
KEBANILN -
Example: S EEBAIA

- ERE—ERRREEN RFEA . SR0E waom e
- SERLETRIZAFERLHBINE - &> FEEEER7A

Algorithm Design Strategy

Do not focus on “specific algorithms”

But “some strategies” to “design” algorithms

First Skill: Divide-and-Conquer (& {EZ&4)

Second Skill: Dynamic Programming (BN 88 A7 21))

Dynamic
Programming

~

Textbook Chapter 15 — Dynamic Programming

Textbook Chapter 15.3 — Elements of dynamic programming

What is Dynamic Programming?

= Dynamic programming, like the divide-and-conquer
method, solves problems by combining the solutions to

subproblems
= FHZE BN E
. BEEBNE TED

= “Dynamic”: time-varying

= “Programming”: a tabular method

Algorithm Design

= Divide-and-Conquer
= partition the problem into

independent or disjoint
subproblems

= repeatedly solving the common
subsubproblems

- more work than necessary

Paradigms

= Dynamic Programming

= partition the problem into
dependent or overlapping
subproblems

= avoid recomputation
v Top-down with memoization

v Bottom-up method

Dynamic Programming Procedure

= Apply four steps
1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution, typically in a bottom-
up fashion
4. Construct an optimal solution from computed information

Rethink Fibonacci Sequence

Fibonacci (n)

= Fibonacci sequence (B ARZEES) | ifn < 2 // base case

= Base case: F(0) = F(1) =1 return 1
. // recursive case
= Recursive case: F(n) = F(n-1) + F(n-2) return Fibonacei (n-1) +Fibonacci (n-2)

v'F(3) was computed twice

v'F(2) was computed 3 times

Fibonacci Sequence
Top-Down with Memoization

= Solve the overlapping subproblems recursively with memoization
= Check the memo before making the calls

B %

MEMO
—

F(n)

111111

Fibonacci Sequence
Top-Down with Memoization

Memoized-Fibonacci (n)
// initialize memo (array all])

al0] =1

all] =1

for i = 2 ton
ali] = 0

return Memoized-Fibonacci-Aux(n, a)

Memoized-Fibonacci-Aux (n, a)
if a[n] > O
return al[n]
// save the result to avoid recomputation
a[n] = Memoized-Fibonacci-Aux(n-1, a) + Memoized-Fibonacci-Aux (n-2, a)
return al[n]

©

Fibonacci Sequence
Bottom-Up Method

= Building up solutions to larger and larger subproblems

Bottom-Up-Fibonacci (n)
if n < 2
return 1
al0] 1
alll 1
for 1 = 2 .. n
ali] = al[i-1] + al[i-2]
return al[n]

Optimization Problem

= Principle of Optimality
= Any subpolicy of an optimum policy must itself be an optimum policy with
regard to the initial and terminal states of the subpolicy

= Two key properties of DP for optimization
= Overlapping subproblems
= Optimal substructure — an optimal solution can be constructed from optimal
solutions to subproblems

v Reduce search space (ignore non-optimal solutions)

| If the optimal substructure (principle of optimality) |
| does not hold, then it is incorrect to use DP '

Optimal Substructure Example

= Shortest Path Problem
= Input: a graph where the edges have positive costs _
= Output: a path from S to T with the smallest cost éa T

: The path costing C.5,+ Cy,>1is the shortest path from Sto T |
. —> The path with the cost C s,, must be a shortest path fromSto M

Cum>
.
/M
Cosm < CW

" Proof by “Cut-and-Paste” argument (proof by contradiction):
il ... Suppose that it exists a path with smaller cost C’s,,, then we can
Tainan (S) “cut” Css) and “paste” C’¢ 5, to make the original cost smaller {@)

Taipei (T)

) DP#1: Rod Cutting

Textbook Chapter 15.1 — Rod Cutting

Rod Cutting Problem

= Input: a rod of length n and a table of pricesp; fori =1, ...,n

IO B N A

prlce Di

= Qutput: the maximum revenue 1;, obtainable by cutting up the rod and
selling the pieces

Brute-Force Algorithm
nnnnn

price p;

= A rod with the length =4

T - o
T T > c+1-9
| T TR 55 {10
] i J 3m EESREE

) om] im] 1m AR
/I T T > 1c+1-7
/I T T > 1+5-7

| TV TN T > 11414 ©

Brute-Force Algorithm
lengthi(m) | 1 | 2 | 3 | 4 | 5
5 8 9 10

price p; 1

= A rod with the length=n
0-‘)-)
= For each integer position, we can choose “cut” or “not cut”
= There are n - 1 positions for consideration

= The total number of cutting results is 2"~ 1 = @(2" 1)

7,,: the maximum revenue obtainable

Recursive Thinking fraredoflengthn

= We use a recursive function to solve the subproblems

= |f we know the answer to the subproblem, can we get the answer to
the original problem?

)

I'm = max(pn, 1+ I'm—1,712 + 'm—2,""" yTn-1 + Tl)
nocut\ Y /

cut at the i-th position (from left to right)

= Optimal substructure — an optimal solution can be constructed from
optimal solutions to subproblems @

Recursive Algorithms

= Version 1

rn = max(pPn, ™1 + Tm_1,72 + pn—9, " ,"p_1+71)

)

\
no cut |
cut at the i-th position (from left to right)

= Version 2
= try to reduce the number of subproblems = focus on the left-most cut

) pi

'n = IMaAX1<3<n (pz + Tn—’i)
left-most value maximum value obtainable
from the remaining part

Recursive Procedure

= Focus on the left-most cut
= assume that we always cut from left to right = the first cut

I'n = MaX1<;<n (pqz + Tn—qz)
optimal solution optimal solution to subproblems

| i
.

Naive Recursion Algorithm

rp = Maxi<i<n (i + rn—i)

Cut-Rod (p, n)
// base case
if n ==
return 0
// recursive case
qZ—OO
for 1 = 1 ton
qg = max (g, pl[i] + Cut-Rod(p, n - 1))
return g

= T(n) = time for running Cut-Rod (p, n)

@(1) if n=1 _ n
T = { () + 2o T(n—1i) ifn=>2 = = ©

Naive Recursion Algorithm

= Rod cutting problem

Cut-Rod (p, n)
// base case
if n==20
return 0
// recursive case
q = -
for 1 =1 ton
g = max(q, p[i] + Cut-Rod(p, n - 1))
return g

Dynamic Programming

= |dea: use space for better time efficiency

= Rod cutting problem has overlapping subproblems and optimal substructures
—> can be solved by DP

= When the number of subproblems is polynomial, the time complexity is
polynomial using DP

= DP algorithm
= Top-down: solve overlapping subproblems recursively with memoization

= Bottom-up: build up solutions to larger and larger subproblems

Dynamic Programming

= Top-Down with Memoization

= Solve recursively and memo the
subsolutions (PkE1EFR)

= Suitable that not all
subproblems should be solved

0w | || i
T 1

= Bottom-Up with Tabulation
= Fill the table from small to large

= Suitable that each small
problem should be solved

“io) |) |) | .. | fin)
I

Algorithm for Rod Cutting Problem

Top-Down with Memoization

Memoized-Cut-Rod (p, n)

// initialize memo (an array r[] to keep max revenue)

r[(0] = 0

for 1 = 1 to n ()(ﬂ)
r[i] = == // r[i] = max revenue for rod with length=i

return Memorized-Cut-Rod-Aux (p, n, r)

Memoized-Cut-Rod-Aux (p, n, r)

if r[n] >= 0 ()(1)
return r[n] // return the saved solution

q = -

for 1 =1 to n 9
qg = max(g, pl[i] + Memoized-Cut-Rod-Aux(p, n-i, 1)) ()(ﬂ,)

r(n] = q // update memo

return g

= T(n) = time for running Memoized-Cut-Rod (n) mp T(n) = O(n?)

Algorithm for Rod Cutting Problem

Bottom-Up with Tabulation

Bottom-Up-Cut-Rod (p, n)

r[(0] = 0
for j =1 ton // compute r[l1l], r[2], ..
q = -
for i = 1 to J
q = max(q, pli] + r[]J - 11)
r(j] = a

return riin]

. 1n order

O(n?)

= T(n) = time for running Bot tom-Up-Cut-Rod (p, n) mp T(n) = O(n?)

Rod Cutting Problem

= Input: a rod of length n and a table of pricesp; fori =1, ...,n

-nnnn

prlce Di

= Qutput: the maximum revenue 1, obtainable and

the list of cut pieces

Algorithm for Rod Cutting Problem

Bottom-Up with Tabulation

= Add an array to keep the cutting positions cut

Extended-Bottom-Up-Cut-Rod (p, n)
r{0] =0
for j =1 to n //compute r[l], r[2], ... in order
q = -
for 1 =1 to J
if g < pli] + r[7J - 1]
g =pli] + [- 1]
cut[j] = i // the best first cut for len j rod
r(i] = g
return r[n], cut

Print-Cut-Rod-Solution (p, n)
(r, cut) = Extended-Bottom-up-Cut-Rod(p, n)
while n > 0
print cut[n]
n =n - cut[n] // remove the first piece

Dynamic Programming

= Top-Down with Memoization = Bottom-Up with Tabulation

£(0) | f(2) | f(2) | .. | fn) | £(0) | f(1) | F2) | .. | f(n)
4+ 4+ @ >

= Better when all subproblems
must be solved at least once

= Better when some subproblems
not be solved at all

v

®
®
®

= Typically outperform top-down
method by a constant factor

= No overhead for recursive calls

= Solve only the required parts of
subproblems

= Less overhead for maintaining

the table o
\GFH

Informal Running Time Analysis

= Approach 1: approximate via (#subproblems) * (#choices
for each subproblem)
= For rod cutting
= #subproblems =n

= #choices for each subproblem = O(n)
= = T(n) is about O(n?)

= Approach 2: approximate via subproblem graphs

Subproblem Graphs

= The size of the subproblem graph allows us to estimate the time
complexity of the DP algorithm

= A graph illustrates the set of subproblems involved and how
subproblems depend on another G = (V, E) (E: edge, V: vertex)

= |V|: #subproblems

= A subproblem is run only once
= |E|: sum of #subsubproblems are needed for each subproblem
= Time complexity: linear to O(|E| + |V |)

' Bottom-up: Reverse Topological Sort | . Graph Algorithm
""""""""""""""""""""""""""""""""""""" 0)‘6’@) (taught later)

Dynamic Programming Procedure

1. Characterize the structure of an optimal solution
v Qverlapping subproblems: revisit same subproblems

v" Optimal substructure: an optimal solution to the problem contains
within it optimal solutions to subproblems

2. Recursively define the value of an optimal solution

v Express the solution of the original problem in terms of optimal
solutions for subproblems

3. Compute the value of an optimal solution
v typically in a bottom-up fashion

4. Construct an optimal solution from computed information
v Step 3 and 4 may be combined

Revisit DP for Rod Cutting Problem

ol S

Characterize the structure of an optimal solution
Recursively define the value of an optimal solution
Compute the value of an optimal solution

Construct an optimal solution from computed information

Step 1: Characterize an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Step 1-Q1: What can be the subproblems?

= Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can
be represented by the optimal solutions to subproblems)

= Yes. = continue
= No. = go to Step 1-Q1 or there is no DP solution for this problem

Step 1: Characterize an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Step 1-Q1: What can be the subproblems?

= Subproblems: Cut-Rod (0), Cut-Rod (1), .., Cut-Rod (n-1)
= Cut-Rod (1) : rod cutting problem with length-i rod
= Goal: Cut-Rod (n)

= Suppose we know the optimal solution to Cut-Rod (1), there are i cases:

= Case 1: the first segment in the solution has length 1
itsolutionF ZIR—ERRERIIE IR, F FHE D ECut-Rod (i-1) HEEHA

= Case 2: the first segment in the solution has length 2
fitsolution P EiE—ERRE RS20 R, F N2 ZCut-Rod (i-2) HEIEHE

il
EiY

il

= Case i: the first segment in the solution has length i
solutiont P EiE —ERRERIREIR, T FAIEL D ZCcut-Rod (0) F&ER

Step 1: Characterize an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can
be represented by the optimal solutions to subproblems)

= Yes. Prove by contradiction.

Step 2: Recursively Define the Value
of an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Suppose we know the optimal solution to Cut-Rod (i), there are i cases:

= Case 1: the first segment in the solution has length 1

) o \ \ , _ Ty =P1+ Ti—1
fitsolutionP ER—ERE/IE I, F FaUBEDECcut-Rod (i-1) HRERE

= Case 2: the first segment in the solution has length 2
solutionF Eig —EREH209EE, I FHED RBCut-Rod (i-2) WRER 1} = P2 + Ti—2

= Case i: the first segment in the solution has length i
fiEsolution P 28— R RERBIRVENR, R FAUEI D ZECut-Rod (0) WERER 1, = p; + 1o

= Recursively define the value { 0 if 7 =
r; =

maXlngZ' (pj + Ti—j) if ¢ 2 1 @

Step 3: Compute Value of an OPT
Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Bottom-up method: solve smaller subproblems first

L _Jo if i =0
v maxlgjgi (pj + Ti—j) if ¢ 2 1

i | o | 1] 2[3]4a]5
r[i] I

Bottom-Up-Cut-Rod (p, n)
r{0] =0
for 3 =1 ton // compute r[1l], r[2], ... in order

- — 2
gq o
for 1 =1 to jJ jp(Tl) ()(Tl)
g = max(q, pli] + r[j - 1])
r[j] =g

return r[n]

Step 4: Construct an OPT Solution by
Backtracking TS

price p; 1

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n

Output: the maximum revenue 1, obtainable

= Bottom-up method: solve smaller subproblems first

[if i = 0
Y| maxicj<i(py+rimy) ifi>1

_n-ﬂnﬂﬂ-“
r[i] 0 8

cut([i] 0 1 2 3 2

max(p1 + 7’0)
max(p1 + 71, p2 + 7o)

max(py + 72,p2 + r1,p3 + 7o)
max(py + 73, p2 + r2, p3 + r1,ps + 7o)

Step 4: Construct an OPT Solution by

Backtracking

Cut-Rod (p, n)

r[(0] = 0
for 3 =1 ton // compute r[1l], r[2], ... in order
q = -
for 1 = 1 to 73
if g < pli] + r[J - 1]

qg =pli] + r[] - 1]
cut[j] = i // the best first cut for len J rod
r[i] = g
return r[n], cut

Print-Cut-Rod-Solution (p, n)
(r, cut) = Cut-Rod(p, n)
while n > 0
print cut[n]
n =n - cut[n] // remove the first piece

DP#2: Stamp Problem

Stamp Problem

= Input: the postage n and the stamps with values v4, v,, ..., Uy

) BtmEssnsR :
nRLT

« - «
“« | O q
« 2] —— L}
“« = L
“ s L]
« ey e e
« & ! «
». | (']

e

C

! ook
1.
« 5 PIER BB RepUBLIC OF CHINA [TAWAN
»

1 »

P b 'lz PR B
[REPUBLIC OF CHINA -
Co» [TAIWAN | ‘

N RERRHSRERLS

= Qutput: the minimum number of stamps to cover the postage

V| Bimcasme 3
nRLT
» «
» «
» .
» | | .
» .
» e «
H -

» «
» «
» 5 PERBEBFI rerusLIC OF CHINA [TAWAN «
» «

A Recursive Algorithm

= The optimal solution S, can be recursively defined as 1 + min;(S,,_,)
1+ min(Sn—?)) S’n—57 an,—'?a S’n—lQ)

Stamp (v, n)

r min = o

if n == 0 // base case
return 0

for 1 = 1 to k // recursive case g;"
r(i] = Stamp(v, n - v[i]) T(n) — @(kn) _
if r[i] < r min

r min = r[i]
return r min + 1

Step 1: Characterize an OPT Solution

Stamp Problem
Input: the postage n and the stamps with values v, v,, ..., v
Output: the minimum number of stamps to cover the postage

= Subproblems
= S (i) :the min #stamps with postage i
= Goal: S (n)

= Optimal substructure: suppose we know the optimal solutionto S (i),

there are k cases:

i Case 1: there is a stamp with v, in OPT
{EsolutiondP 18 —RIE By, T, R FTHEIDZs (i-v[1]) B

= Case 2: there is a stamp with v, in OPT

i
m
i\
+d

Esolution P E18 —RELE Hv,AVERE, R TR D Zs (1-v[2]) WERER
n Case k' there is a stamp with v, in OPT
#EsolutiondP Ei8 —REE Ky NEE, F B D ES (1-v k]) WRIERE

Step 2: Recursively Define the Value
of an OPT Solution

Stamp Problem
Input: the postage n and the stamps with values v, v,, ..., v
Output: the minimum number of stamps to cover the postage

= Suppose we know the optimal solution to S (i), there are k cases:
= Case 1: there is a stamp with v, in OPT S, =14 5;_,,

fiEsolution P EI8 —REE By, AUELR, 7 FRIHMDZES (1-v[1]) HRIER
= Case 2: there is a stamp with v, in OPT

#solution P EI —RIME Rv,MIBME, HTFHBHRs (i-vi2)) WEER S5 = 1+ Si—y,
= Case k: there is a stamp with v, in OPT

#solutionh e —REE RV NI, W THEMIZs (i-vik)) WEER S; =1+ 5y,

= Recursively define the value
o

0 ifi=0
minlgjgk (1 + Si—vj) if ¢ 2 1 @

Step 3: Compute Value of an OPT

Solution

Stamp Problem

Input: the postage n and the stamps with values v, v,, ..., v
Output: the minimum number of stamps to cover the postage

= Bottom-up method: solve smaller subproblems first

5=1"
v minlgjgk (1 + S@'_vj)

i 01234 5

Sli] I

Stamp (v, n)
S[0] =0
for i =1 ton // compute r[1], r[2],
r min = e
for j = 1 to k
if S[1 - v[J]] < r min
rmin =1 + S[i - v[]]]
return S[n]

. in order

ift=0
if 1 > 1

Step 4: Construct an OPT Solution by

Backtracking

S[0] =0
for 1 = 1 to n
r min = o
for j =1 to k
1f S[1 - v[J]] < r min
r min = 1 + S[1 - v[]J]]
B[i] = // b

J
return S[n], B

Print-Stamp-Selection (v, n)

(S, B) = Stamp (v, n)
while n > 0

print B[n]
n=n- v[B[n]]

= DP#3: Matrix-Chain
= Multiplication

Textbook Chapter 15.2 — Matrix-chain multiplication

Matrix-Chain Multiplication

= Input: a sequence of n matrices (44, ..., A;;)

= Qutput: the product of 414, ... 4,

— P
A A A. | | e

Aqand A,are compatible.

Observation

C(i,j) = > gy Ali,q) - B(k,)

= Each entry takes g multiplications

= There are total pr entries

__

Matrix multiplication is associative: A(BC) = (AB)C. The time required by
obtaining A X B X C could be affected by which two matrices multiply first .

__

Example

n XxXn

n Xn

= Qverall time is

O(n?) + 6(n’) = 6(n’)

Example

= Qverall time is

O(n?) + 6(n?) = 6(n?)

Matrix-Chain Multiplication Problem

= Input: a sequence of integers [y, l4, ..., [,

= [;_4 is the number of rows of matrix 4;

= [; is the number of columns of matrix 4;

= Qutput: a order of performing n — 1 matrix multiplications in the
minimum number of operations to obtain the product of A{4, ... 4,

Ay

» e A1.COIS=A,.rows

T -

Ajand A,are compatible.

Do not need to compute the result but find the fast way to get the result!
(computing “how to fast compute” takes less time than “computing via a bad way”)

Brute-Force Naive Algorithm

= P,: how many ways for n matrices to be multiplied

{ 1 ifn=1
Pn — n—1 .
pq PePr—p ifn>2

™~
(A1As -+ Ag) (Agr1Akto--- Ay)

, : 4" : :
= The solution of B, is Catalan numbers, () (—3), oris also Q(2") Exercise 15.2-3

n2

Step 1: Characterize an OPT Solution

Matrix-Chain Multiplication Problem
Input: a sequence of integers [y, [4, ..., ,, indicating the dimensionality of A;
Output: a order of matrix multiplications with the minimum number of operations

= Subproblems
= M (i, 7):the min#operations for obtaining the product of 4; ... 4;
= Goal: M(1, n)

= Optimal substructure: suppose we know the OPTtoM (i, 7j), there
are k cases: i<k<j

= Case k: there is a cut right after A, in OPT
EAMENESESEZEV (i, k) KM(k+1, j)HWRER

Step 2: Recursively Define the Value
of an OPT Solution

Matrix-Chain Multiplication Problem

Input: a sequence of integers [y, [1, ...,
Output: a order of matrix multiplications with the minimum number of operations

L, indicating the dimensionality of A;

= Suppose we know the optimal solutiontoM (i, 7j),

= Case k: there is a cut right after A, in OPT
k) KM ((k+1, 7) E’JE—T:tﬁ

ERFIEREEERM (1

= Recursively define the value

M; ;=

= A;.rows
il

0
{ min;<k<; (Mix + Miy1,; + Lic1lkly)

there are k cases:
1,j —

Ap.cols=l;,

Ajy1-rows=l;,

Aj.cols=l;
P>]
i < j

A;..

ik + Mgy, + li1lgl;

!

-kAk'-l-l---j

€

Step 3: Compute Value of an OPT
Solution

Matrix-Chain Multiplication Problem
Input: a sequence of integers [y, [4, ..., ,, indicating the dimensionality of A;
Output: a order of matrix multiplications with the minimum number of operations

= Bottom-up method: solve smaller subproblems first

] ming<p<j (Mik + Myt +licalkly) 0 <j

= How many subproblems to solve
= #combination of thevaluesiandjst.1<i<j<n T(n) — CS’ +n = @(nZ)

A
LFE] i=]

©

Step 3: Compute Value of an OPT
Solution

Matrix-Chain (n,
initialize tw

for i = 1 to
M[i][i] = O
for p = 2 to
for 1 =1 t
J=1+p
MIi][J] =

for k = 1

q = M[1

i

return M

1)
o tables M[1l..n][l..n] and B[l..n-1][2..n]
n

// boundary case
n // p is the chain length

on-p+1// all i, j combinations
-1
(o)
to j - 1 // find the best k
I[k] + M[k + 1][3] + 1[1 - 1] * 1[k] * 1[J]
MI1i][J]
Jl = «a

Dynamic Programming lllustration

How to decide the \

order of the matrix
multiplication?

J
Mi,jl |2 4 | 5|6 n
1 Ok
2 0
3
4 0
5 0
6 0
n O|

Step 4: Construct an OPT Solution by

Backtra

cking

Matrix-Chain (n,

initialize two tables MJ[1.

for 1 1 to
M[1i
for p

for
J

—_
IIv—-II

i]
2
t

H =

ol_|
FoQ B e
N~ — -l

-
2 Il — +
Il O

Hh
Q
|_4/\,_|

return M and

1)

n
-1

]+
1] [J]
= g
jl = k
B

.n][1l.

0 // boundary case
on // p is the chain length
on-p+1// all i,

j — 1 // find the best k

Mk + 11030 + 1[4 - 1]

// backtracking

.n] and BJ[1.

*

.n-1][2.

7 combinations

1[k]

.nJ

Print-Optimal-P

if 1 == 7
print A;
else

print “(”
Print-Optim
Print-Optim
print %“)”

arens (B, i,

al-Parens (B,
al-Parens (B,

J)

Exercise
 Matrix | A | A, | A | Ay | A5 | A |

Dimension 30x 35 35x15 15x5 5x10 10 x 20 20x 25

J J
Ml 1 2| 3|4 |5]| 6 Bijl| 1 2| 3| 4|5]| 6
1 | O 5,750 7,&E75 9,37511,87515,125 1 1 @ 3 3 @
2 0 2,(:!,25-4,375 7,125[10,500 2 2 | 313 |3
3 0 | 750 2,5;00 53,75| ¢ 3 3 3|3 |¢
4 0 1,oloo»3,500 4 4 @
5 0 |5,000 5 5
6 0 6

((A1(A243))((A1A45)As)) @

= DP#4: Sequence
= Alignment

Textbook Chapter 15.4 — Longest common subsequence
Textbook Problem 15.5 — Edit distance

Monkey Speech Recognition

- EF R EREE SEEETWEHERAE WB—ErELEEas
Yﬁ”banana”El’Jnn =p= 1&)1*%

= How to evaluate the similarity between two sequences?

,;6‘\ \Fizgzéadikjaz1

svkbrlvpnzanczyqza}

banana

[

Longest Common Subsequence (LCS)

= Input: two sequences X = (1, o, -

Y = <y1?y27 ’

.. 733m>
o Jyn>

= OQutput: longest common subsequence of two sequences

= The maximum-length sequence of characters that appear left-to-right (but
not necessarily a continuous string) in both sequences

X = banana X =
Y = aenigadikjaz Y =

X - ba-n-—-an---a- X -
[D D
Y - —aenigadikjaz Y -

banana
svkbrlvpnzanczygza

---pa---p-ap-----a g
svkbrlvpnzanczygza

' The infinite monkey theorem: a monkey hitting keys at random for an |
\L. infinite amount of time will almost surely type a given text (@)

Edit Distance

* Input: two sequences X = (xq,xo, - ,Xp)
Y = <ylay27"' ;yn>

= Qutput: the minimum cost of transformation from Xto Y
= Quantifier of the dissimilarity of two strings

X = banana X = banana
Y Y

= aenligadikjaz = svkbrlvpnzanczygza

X - ba-n--an---a- X - -—--ba---n-an----- a
Y - —aenigadikjaz Y - svkbrlvpnzanczygza

1 deletion, 7 insertions, 1 substitution 12 insertions, 1 substitution

Sequence Alignment Problem

* Input: two sequences X = (xq,xo, - ,Xp)
Y = <ylay27"' ;yn>

= Output: the minimal cost M,,, ,, for aligning two sequences
= Cost = #insertions X (jygs + #deletions X Cpgy, + #substitutions X €, ,

Step 1: Characterize an OPT Solution

Sequence Alignment Problem
Input: two sequences X = (x1,z9, + ,Twm) Y = (Y1,Y2, s Yn)
Output: the minimal cost My, ,, for aligning two sequences

= Subproblems
= SA (i, 7):sequencealighment between prefix strings x, ..., x; and Vi Vi
= Goal: SA (m, n)

= Optimal substructure: suppose OPT is an optimal solutionto SA (i, 7J),
there are 3 cases:

= Case 1: x; and y; are aligned in OPT (match or substitution)
. OPT/{xi,,yJ-} is an optimal solution of SA (i-1, j-1)

= Case 2: x; is aligned with a gap in OPT (deletion)
= OPT is an optimal solution of SA (1i-1, 7J)

= Case 3: y; is aligned with a gap in OPT (insertion)
= OPT is an optimal solution of SA (1, j-1)

Step 2: Recursively Define the Value
of an OPT Solution

Sequence Alignment Problem
Input: two sequences X = (x1,z9, + ,Twm) Y = (Y1,Y2, s Yn)
Output: the minimal cost My, ,, for aligning two sequences

= Suppose OPT is an optimal solutionto SA (i, 7), there are 3 cases:
= Case 1: x; and y; are aligned in OPT (match or substitution)
= OPT/{x;,,y,} is an optimal solution of SA (i-1, 3j-1) Mi,j = Mi—l,j—l + Ox@,yj
= Case 2: x; is aligned with a gap in OPT (deletion)
= OPT is an optimal solution of SA (i-1, 7) Mi’j - 1—1,9 + ODEL
= Case 3: y; is aligned with a gap in OPT (insertion) M. . —
T,]

_ , , o i.j—1 + CINs
= OPT is an optimal solution of SA (i, j-1)

= Recursively define the value
{ jC1ns ifi=0

M@'j = iCDEL lf] =0 a
min(M;_1 ;-1 + Cp,y;» M;—1,; + CpgL, M; j_1 + Cins) otherwise O

3

Step 3: Compute Value of an OPT
Solution

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost M, ,, for aligning two sequences

= Bottom-up method: solve smaller subproblems first

JCINS ifi=0
Mi,j = 1ChEL if 7=20

min(M@-_ljj_l + C(I:i,yj , Mi—l,j + CbEL, M@',j_l + CINS) otherwise

W, o123/ 4/5 | . | n_

Step 3: Compute Value of an OPT
Solution

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost My, ,, for aligning two sequences

= Bottom-up method: solve smaller subproblems first
JCINs ifi =0
Mi,j = iCDEL ifj =0
min(M; 1 j—1 + Cm“y:,, i—1 3 + C'DEL, M,; U,, 1 + C’INS) otherwise

Coer. — 4. Cins — 4 n-nnnnn-nnmm
Cpg=Tyifp#q MO

b 4 7 11 15 19 23 27 31 35 39 43 47 51
a 8 4 8 12 16 20 23 27 31 35 39 43 47
n 12 8 12 8 12 16 20 24 28 32 36 40 44
a 16 12 15 12 15 19 16 20 24 28 32 36 40
n 20 16 19 15 19 22 20 23 27 31 35 39 43
a 24 20 23 19 22 26 22 26 30 34 38 35 39

Step 3: Compute Value of an OPT
Solution

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost My, ,, for aligning two sequences

= Bottom-up method: solve smaller subproblems first

JCINS if i =0
M;; ={ iCpeL if j =0
min(M;_1;-1+ Cy,y,» Mi—1; + CpeL, M; j—1 + Cins) otherwise
Seq-Align (X, Y, Cpgr, Crygr Cp)
for J = 0 ton
M[O][J] = J * Ciy // 1XI1=0, cost=]|Y|*penalty
for i =1 tom T(?’L) — @(mn)
M[1][0] = i * Cyg // 1Y|=0, cost=|X|*penalty
for i =1 tom
for j =1 ton
M[i][J]
[m]

= min(M[i-1][J-11+4C; i, M[i-11[31+4Cpey, M[i][J-11+Cpys) @

Step 4: Construct an OPT Solution by
Backtracking

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost My, ,, for aligning two sequences

= Bottom-up method: solve smaller subproblems first

M; ;= { '

CpeL = 4,Cing =4
Cprq="Tifp#q

JCINS
iCDEL
min(Mz 1,j—1 + Ca: y:,a

¥ 5 O B3 Y O

ﬂ-ﬂﬂﬂ

0
4
4
8

N P
o O

N
D

2

4
x 7 11
4 <8
8 12
12 15
16 19
20 23

M,;_ 13 ‘|‘CDEL3M23 1 +CINS)

nn-nnmm
24

12 16

15 19 23 27 31 35
12 16 20 23 27 31
8¢ 12¢16¢20¢244+28
12 15 19 16 20 24
15 19 22 20 23 27
19 22 26 22 26 30

ifi=0
if =0
otherw1se

39 43
35 39
32 36
28 _ 32
31435
34 38

47
43
40
36
39

51
47
44
40
43

w
35439

Step 4: Construct an OPT Solution by
Backtracking

Sequence Alignment Problem
Input: two sequences

Output: the minimal cost My, ,, for aligning two sequences

= Bottom-up method: solve smaller subproblems first
JCINs if i =0
M; ;=< iCpgr if j =0
Hlin(M@'fl’jfl + CCU?:,yj) Mifljj + CDEL; M@"jfl + CINS) otherwise

Find-Solution (M)

ifm=0orn=20
return {}
v = min(M[m-1] [n-1] + Com, yn s M[m-1] [n] + Cper, M[m] [n-1] + Ciyg)
if v = M[m-1][n] + Cp // T deletion
return Find-Solution (m-1, n) T(?’L) — @(m + ’I’L)

if v = M[m] [n-1] + Cpy // €:insertion
return Find-Solution(m, n-1)

return {(m, n)} U Find-Solution(m-1, n-1) // N: match/substitution

Step 4: Construct an OPT Solution by
Backtracking

Seg-Align (Y, Cpersr Ciysr C

prq)

n (X,
for J = 0 to n
M[O][J] = 3 * Ciy // IX|=0, cost=|Y|*penalty
for 1 =1 tom
MI1100] = 1 * Co. // 1¥1=0, cost—|X|*penalty 1(n)=O(mn)
for 1 =1 tom
for j =1 ton
M[1]1[3] = min(M[i-1]1[3-11+Cp s, MIi-11131+Cpgy, M[1][3-11+Cpyg)
[m]

[n]

]
return M

Find-Solution (M)
ifm=0orn=20
return {}
v = min(M[m-1] [n-1] + Com, yn s M[m-1] [n] + Cper, M[m] [n-1] + Ciyg)
if v = M[m-1][n] + Cp // T deletion
return Find-Solution (m-1, n) T(?’L) — @(m + ’I’L)
if v = M[m] [n-1] + Cpy // €:insertion
return Find-Solution(m, n-1)
return {(m, n)} U Find-Solution(m-1, n-1) // N: match/substitution @

%) To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://adal7.csie.org

Email: ada-ta@csie.ntu.edu.tw

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

