

Announcement

= Mini-HW 3 released
= Due on 10/12 (Thu) 17:20

= Print out the A4 hard copy and submit before the lecture finishes

= Homework 1 released
= Due on 10/19 (Thur) 17:20 (2 weeks left)
= Writing: print out the A4 hard copy and submit before the lecture finishes
= Programming: submit to Online Judge — http://ada-judge.csie.org

= Mid-term date changed
= Original: 11/09 (Thu)
= New: 11/16 (Thu)

http://ada-judge.csie.org/

[E—

= WL 00 =] O U L0

Mini-HW 3

Mini HW #3
Due Time: 2017/10/12 (Thu.) 17:20

Contact TAs: ada-ta@csie.ntu.edu.tw

Read the code below and prove the time complexity of f(1, N, 1, M) is O(M log, N).

void f(int 1 | int r |, int bl , int br){
if(1 >r) return;
int mid = (1 + r) / 2;
int bmid = bl;

for(int i = bl + 1 ; i <= br ; i ++)
if(rand() % (i — bl +1) =10)
bmid = i;
f(1 , mid -1 , bl , bmid);

f(mid + 1 , r , bmid , br);

Outline

Qwu'

= Recurrence ({E3E)

= Divide-and-Conquer

= D&C #1: Tower of Hanoi (i A &)
= D&C #2: Merge Sort

= D&C #3: Bitonic Champion

= D&C #4: Maximum Subarray

Divide-and-Conquer & 2

= Solving Recurrences
= Substitution Method

= Recursion-Tree Method
= Master Method

= D&C #5: Matrix Multiplication
- D&C #6: Selection Problem Divide-and-Conquer Z {8 &%
= D&C #7: Closest Pair of Points Problem @

What is Divide-and-Conquer?

= Solve a problem recursively

= Apply three steps at each level of the recursion

1. Divide the problem into a number of subproLbIems that are
smaller instances of the same problem (EEER/)\BY [G) 4 R B)

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

= then solve the subproblems base case

= else recursively solve itself TeEUEiE EEEE

3. Combine the solutions to the subproblems into the solution for
the original problem

Solving Recurrences

Textbook Chapter 4.3 — The substitution method for solving recurrences
Textbook Chapter 4.4 — The recursion-tree method for solving recurrences
Textbook Chapter 4.5 — The master method for solving recurrences

D&C Algorithm Time Complexity

= T(n): running time for input size n

= D(n): time of Divide for input size n

= C(n): time of Combine for input size n
= a: number of subproblems

= n/b: size of each subproblem

O(1)
Tn) = { aTl(n/b) + D(n) 4+ C(n)

ifn<ec
otherwise

)

Solving Recurrences

1. Substitution Method (EX1{%)

= Guess a bound and then prove by induction

2. Recursion-Tree Method (& @15 %)

= Expand the recurrence into a tree and sum up the cost

3. Master Method (E AT KA/ KBTE)

= Apply Master Theorem to a specific form of recurrences

= Useful simplification tricks
= |gnore floors, ceilings, boundary conditions (proof in Ch. 4.6)
= Assume base cases are constant (for small n)

&) Substitution Method

Textbook Chapter 4.3 — The substitution method for solving recurrences

Review

= Time Complexity for Merge Sort

= Theorem

O(1 ifn=1
Tn) = { 2T((7)7,/2) +0(n) ifn>2 " T(M)=0{legn)

= Proof

= There exists positive constant a, b s.t. T(n) < { it n =1

a
2T'(n/2) +bn ifn>2
= Use induction to prove T(n) <b-nlogn+a-n

* n=1, trivial Substitution Method (EX{{;%)
“n>1, T(n) 2T(n/2) + bn guess a bound and then prove by induction

n., n n
2[b-§10g§+a~§]+b-n

b-nlogn—bb-n+a-n+b-n @

b-nlogn+a-n

IA

IA

Substitution Method (Bt %)

= Guess the form of the solution

= Verify by mathematical induction (B2 EF48)%)
= Prove it works forn =1

2. Verif
Y = Prove that if it works forn = m, then it worksforn =m + 1

- It can work for all positive integer n

|
\ = Solve constants to show that the solution works

= Prove O and () separately

Substitution Method Example

O(1 ifn=1
Tn) = { 4:/(1(7)7,/2) +O(n) ifn>2

= Proof
* T(n) = O(n?)

There exists positive constants ng, ¢ s.t. foralln = ny, T'(n) < ens

= Use induction to find the constants n, ¢
Verify
= n =1, trivial
“n>1, T(n) < 4T(n/2)+ bn
hInducr;cive < 4c(n/2)3 4 bn
othesis
yP - cn® /2 + bn ;
= cn® — (en?/2 — bn)<: cn® /2 —bn >0
3 ech2b,n21

< cn

= T'(n) < en?holds when ¢ = 2b,ng = 1

Substitution Method Example

T(n) = O(1) ifn=1 Tighter
4T (n/2) + O(n) ifn > 2 . upper bound? -~

= Proof
* T(n) = O(n?)

There exists positive constants ng, ¢ s.t. foralln = ny, T'(n) < cn

= Use induction to find the constants n, ¢
= n =1, trivial

= n>1, T(n)
Inductive

: 4c(n/2)* + bn AL A2
hypothesis en? + bn Qrz Bis r P REMELE 7

RIBtE HEMRIE

 ERWMCEONES | ©

4T (n/2) 4+ bn

IA N

Substitution Method Example

Tln) — O(1) ifn=1 Strengthen the inductive hypothesis |
(n) = 4T (n/2)+O(n) ifn>2 | bysubtractingalow-order term '

= Proof
* T(n) = O(n?)
There exists positive constants ng, ¢1, ¢, s.t. foralln = ny,T'(n) < can@

= Use induction to find the constants ny,cq, ¢,
=n=1, T(1) < ¢; — ¢ holdsfor ¢; > ¢ca + 1

“n>1 T(n) < 4T(n/2)+bn
Inductive < 4[(31(??,/2)2 — ¢o(n/2)] + bn
hypothesis 9
= c1n° — 2con + bn o — b > 0
= ¢1n® — con — (can — bn) ¢ 2 -
< 2 €.8. CQZb,’nZO
~ Ccin —Ccan

« T(n) < eyn? — con holdswhen ¢; = b+ Les = bng =0 BNO

Useful Tricks

= Guess based on seen recurrences
= Use the recursion-tree method
= From loose bound to tight bound

= Strengthen the inductive hypothesis by subtracting a low-
order term

= Change variables
= E.g., T(n) =2T(y/n)+logn
1. Change variable: k = logn,n = 2% — T'(2F) = 2T(2%/2) + k
2. Change variable again: S(k) =T(2%) = S(k) = 2S(k/2) + k
3. Solve recurrence
S(k) = O(klogk) — T(2%) = O(klogk) — T(n) = @(1ognloglogn)@

Recursion-Tree

Textbook Chapter 4.4 — The recursion-tree method for solving recurrences

Review

= Time Complexity for Merge Sort

= Theorem

O(1 ifn=1
Tn) = { 22;(7)7,/2) +0(n) ifn>2 "™ T0)=0(nlogn)

* Proof n Recursion-Tree Method (#E 2 1)X)
T(n) < ZT(E) +cn Expand the recurrence into a tree and sum up the cost
n n n
< Q[QT(Z) + 65] +cn = 4T(Z) +2cn 15t expansion
< 4[2T(g) + cz] +2en = 8T(g) +3en 2™ expansion
: T(n) < nT(1)+cnlogyn
< 2’“T(2%) + ken k™ expansion = O(n)+ O(nlogn)

The expansion stops when 2k = n = O(nlogn)

Recursion-Tree Method (#E 7815)X)

|

3. Verify

cidit

= Expand a recurrence into a tree
= Sum up the cost of all nodes as a good guess

= Verify the guess as in the substitution method

= Advantages
= Promote intuition
= Generate good guesses for the substitution method

Recursion-Tree Example

T(n) =T(n/4) +T(n/2) + cn?
T(n)

©

Recursion-Tree Example

T(n) =T(n/4) +T(n/2) + cn?
e

T(n/4) T(n/2)

©

Recursion-Tree Example

T(n) =T(n/4) +T(n/2) + cn?

©

Recursion-Tree Example

T(n) =T(n/4) +T(n/2) + cn?

2 on2
/Cﬁ\
c(n/4)? c(n/2)? 2cn?

2)2en

c(n/16)2 c(n/8)? c(n8)® c(n/4)? (16)"cn”

T(n/64) T(n/32) T(n/32) T(n/16) oereerennes (3%)3cn?

\ +
/500 N—
5 9 19 5 |3 9 1 o 16 5 5

Textbook Chapter 4.5 — The master method for solving recurrences

divide a problem of size n into a subproblems

M a Ste r Th e O re m each of size g is solved in time T (g) recursively

The proof isin Ch. 4.6

Let T(n) be a positive function satisfying the following recurrence relation

O(1) ifn <1 Should follow
Tn) = { a-T(2)+ f(n) ifn>1, | thisformat

where a > 1 and b > 1 are constants.

o Case 1: If f(n) = O(n!°8 2=¢) for some constant € > 0, then T'(n) = O(n!°2 ¢).
o Case 2: If f(n) = O(n!°2 %), then T'(n) = O(n'°8 ¢ . logn).
e Case 3: If

— f(n) = Q(n'°% 4€) for some constant € > 0, and

—a- f(3) < c- f(n) for some constant ¢ < 1 and all sufficiently large n, ,

then T'(n) = O(f(n)).

Recursion-Tree for Master Theorem

T(n) = f(n)+af(%)+a®f(F)+a*f(F) +---+a°®"T(1)
al°8 "T'(1) = nlo8 2(1) @

Three Cases

* T(n)=aT(3)+ f(n)
= a = 1, the number of subproblems
= b > 1, the factor by which the subproblem size decreases
= f(n) = work to divide/combine subproblems

T(n) = f(n) + af (3) + 2 f() + 6% () + -+ nlo&aT(1)

= Compare f(n) with n'°8» @
1. Case 1: f(n) grows polynomially slower than n'°8» @

2. Case 2: f(n) and n'°8v ¢ grow at similar rates
3. Case 3: f(n) grows polynomially faster than n!°8b @

Case 1:
Total cost dominated by the leaves

Case 1:

Total cost dominated by the leaves

T(n)=97T(%)+n,7T(1) =1

e Case 1: If f(n) = O(n'°8 *=¢) for some constant € > 0, then T'(n) = O(n!°& %),

3
9 9 9
1 e N2 “\logs n
(454 (5)2 4+ (5)8™n
9 1—|—log3n_1
5)
3—1
3n 9lesn]
: — =N
9 3]og3n 2
3n nl8s?]
: — =N
2 n

O(n'%: %) = O(n?)

©

Case 2:

Total cost evenly distributed among levels

f n) . f(n) =1
fE) f(R) e %) af(3)=1

== =<
/ﬂw f(b%) a2f(b%) —1
F(E) F(B) v P2 R— a’f(g) =1
T(1) e 108 "T(1) =1

Case 2:

Total cost evenly distributed among levels

Tn)=T(%)+1,7T(1) =1

Tn) = 14+141+---4+1
= log%nJrl

= O(logn)

e Case 2: If f(n) = ©(n'°8) then T'(n) = O(n!°8 % . logn).

(«)

Case 3:

Total cost dominated by root cost

T(l) alogy nT(l) — glogyn _ 310g4n(

T

410g4 n

)5

Case 3:

Total cost dominated by root cost

T(n)=3T(%)+n",T(1) =1
T(n) =1+ 2 + (2)2+ -+ () oz)
T(n) > n®
T(n) < 1_1% n’
T(n) = O(n%)
o Case 3: If

— f(n) = Q(n'°&» 2+€) for some constant € > 0, and

—[a - f(3) <c- f(n)]for some constant ¢ < 1 and all sufficiently large n,

then T(n) = O(f(n). ©

divide a problem of size n into a subproblems

M a Ste r Th e O re m each of size % is solved in time T (g) recursively

The proof isin Ch. 4.6

Let T(n) be a positive function satisfying the following recurrence relation

O(1) ifn<1
i) = { o T(2)+ f(n) ifn>1,

where a > 1 and b > 1 are constants.
o Case 1: If f(n) = O(n!°8 2=¢) for some constant € > 0, then T'(n) = O(n!°2 ¢).
o Case 2: If f(n) = O(n!°2 %), then T'(n) = O(n'°8 ¢ . logn).
e Case 3: If

— f(n) = Q(n'°% 4€) for some constant € > 0, and

—a- f(%) < ¢ f(n) for some constant ¢ < 1 and all sufficiently large n, 4

then T'(n) = O(f(n)).

EXB m p i es . compare f(n) with nlogn a

o Case 1: If T'(n) =9-T(n/3) +n, then T'(n) = ©(n?).

Observe that n = O(n?) = O(n!°8s9).

o Case 2: If T'(n) =T(2n/3) + 1, then T'(n) = O(logn).

Observe that 1 = ©(n?) = ©(n!%8s/21).

e Case 3: If T'(n) =3-T(n/4) +n°, then T'(n) = ©(n>).

— n® = Q(n'°8431¢) with € = 0.00001.
— 3(2)5 < en® with ¢ = 0.99999.

()

Floors and Ceilings

= Master theorem can be extended to recurrences with floors
and ceilings

= The proof is in the Ch. 4.6

e Case 1: If f(n) = O(n'°8» 2~<) for some constant € > 0, then T'(n) = ©(n'*%).
e Case 2: If f(n) = ©(n'°8» %), then T'(n) = O(n'°%* . log n).
o Case 3: If

T h e O re m 1 — f(n) = Q(n'°8» 41€) for some constant e > 0, and

—a- f(3) < c- f(n) for some constant ¢ < 1 and all sufficiently large n,

then T'(n) = ©(f(n)).

O(1 ifn=1
T(n) = { 2%(23,/2) +0m) ifn>2 ™ T()=0(nlgn)

= Case 2
f(n) = O(n) = O(n') = O(n'*%2) = O(n'°% ")

T(n) =06(f(n)logn) = O(nlogn)

e Case 1: If f(n) = O(n'°8» 2~<) for some constant € > 0, then T'(n) = ©(n'*%).
e Case 2: If f(n) = ©(n'°8» %), then T'(n) = O(n'°%* . log n).

e Case 3: If

T h e O re m 2 — f(n) = Q(n'°8» 41€) for some constant e > 0, and

—a- f(3) < c- f(n) for some constant ¢ < 1 and all sufficiently large n,

then T'(n) = ©(f(n)).

O(1) ifn=1

1) ={ Grh)+ 001) sy ™ T =00

= Case 1

e Case 1: If f(n) = O(n'°8» 2~<) for some constant € > 0, then T'(n) = ©(n'*%).
e Case 2: If f(n) = ©(n'°8» %), then T'(n) = O(n'°%* . log n).
o Case 3: If

T h e O re m 3 — f(n) = Q(n'°8» 41€) for some constant e > 0, and

—a- f(3) < c- f(n) for some constant ¢ < 1 and all sufficiently large n,

then T'(n) = ©(f(n)).

O(1) ifn=1
i) = { T(n/2)+0(1) ifn>2 = T =0(ogn)

= Case 2
f(n) =0(1) = 0(n’) = 6(n'*>1) = O(n'*")
T(n)=06(f(n)logn) = O(logn)

D&C #5: Matrix
Multiplication

Textbook Chapter 4.2 — Strassen’s algorithm for matrix multiplication

Matrix Multiplication Problem

Input: two n X n matrices A and B.

Output: the product matrix C = Ax B

Naive Algorithm

{Z,)

C(i,) = 2og=1 Ai, k) - Bk, j)

= Each entry takes n multiplications

= There are total n? entries

Matrix Multi. Problem Complexity

Upper bound = O(n3)

DD

Lower bound = Q(rn?) """""""" Why?

. e Ci1
Divide-and-Conquer
Ca1

= We can assume that n = 2% for simplicity C22

= Otherwise, we can increasens.t.n = 2l1ogz 1]

= A1 Bi1 + A12By
= A11Bi2 + A12B2
= A1 B11 + Az Bo
= A1 Bi12 + A2 B

= . may not be twice large as the original in this modification

@)
N
=

@)
N
N

Algorithm Time Complexity

MatrixMultiply(n, A, B)
//base case
if n ==
return AB @(1)
//recursive case
Divide A and B into n/2 by n/2 submatrices Divide ©(1)
C,; = MatrixMultiply(n/2,A,;,B;;) + MatrixMultiply(n/2,2,,,B,;
C,; = MatrixMultiply(n/2,2,;,B;,) + MatrixMultiply(n/2,2,,B,,
C,;, = MatrixMultiply(n/2,A,,,B;;) + MatrixMultiply(n/2,A,,,B,;
C,, = MatrixMultiply(n/2,A,;,B;,) + MatrixMultiply(n/2,A,,,B,,

return C Combine 4@((71/2)2) — (_)(nQ)

)
)
)
)

~ o~ o~~~
~— ~— ~— ~—

Conquer

8T (n/2)

= T(n) =time for running MatrixMultiply (n, A, B) &

O(1) ifn=1 oz, 8 _ 3
Tin) = { ST(n/2) + O(n?) ifn>2 ™ Q%) =0(n")

Strassen’s Technigque

= Important theoretical breakthrough by Volker Strassen in 1969

= Reduces the running time from @(n3) to @(nlogﬂ) ~ @(n2-807)

= The key idea is to reduce the number of recursive calls
= From 8 recursive calls to 7 recursive calls T(n/Q)

= At the cost of extra addition and subtraction operations ©((n/2)?)

:.;.F] Intuition:
ﬁ%&ep % ac+ ad + bc+ bd = (a + b)(c+ d)
» > v I> o T
IO sz =t
VH B
Ly 2)

Strassen’s Algorithm

«C=AXB 011
C’12

A — - A A] (91
Agr Ago Clo

B_ [B11 Bio] M
| B2a1 Bao M,

O — [C11 Cho] M3
| Co1 Cao My

Ms

Me

My

180((n/2)%) + 7T (n/2)

My + My — Ms + M, 2+1-
Ms + Ms 1+
Mo + My 1+
My — My + Ms+ Mg 2+1-

(A11 + A22)(B11 + B22) 2+1x

(A1 + Ag2)B11 1+1x
Ay1(B12 — Bao) 1-1x
Ago(B21 — Br1) 1-1x
(A11 4+ A12)Bao 1+1X

(A21 — A11)(B11 + Bi2) 1+1-1x
(A12 — A22)(B21 + Ba2) 1+1-1x

12+6-7X%

Verification of Strassen’s Algorithm

= Practice
Ci1 =
Coo =

Mz + M
A11(Bia — Bag) + (A1 + A12)Boo
A11B1o + A12Bos

Mo + My
(A2 + Ag9)B11 + A2 (B21 — B11)
Ao1B11 + A2 Boy

My + My — Mg + M-
My — My + M3 + Mg

A:

B =

C:

©

Strassen’s Algorithm Time Complexity

Strassen(n, A, B)
// base case
if n ==
return AB ()(1)
// recursive case

Divide A and B into n/2 by n/2 submatrices Divide @(1)

M, = Strassen(n/2, A;;+A,,, B;;+B,,)
M, = Strassen(n/2, A,;tA,,, Bj;)

M, = Strassen(n/2, A;;, B;,-B,,)

M, = Strassen(n/2, A,,, B,;-B;;)

M = Strassen(n/2, A;;tA;,, B,,)

M, = Strassen(n/2, A;;-A,;, B;;+Bj,)
M, = Strassen(n/2, A;,-A,,, B,;+B,,)
C,, =M + M, - M. + M,

C, = My + M. Combine
C,, = M, + M, @(n2)
C,, =M - M, + My + M,

return C

Conquer

7T (n/2) +0((n/2)?%)

= T(n) =time for running Strassen (n, A, B)
1 ifn=1
T(n) :{ O(1) if n

TT(n/2) +O©(n?) ifn>2
mp O(nlog27) ~ O(n287) *:ﬁ---ss:..j

Practicability of Strassen’s Algorithm

= Disadvantages

1. Larger constant factor than it in the naive approach

7,627’2/3 — C1 > C3

Cln10g2
2. Less numerical stable than the naive approach
= Larger errors accumulate in non-integer computation due to limited precision
3. The submatrices at the levels of recursion consume space

4. Faster algorithms exist for sparse matrices

= Advantages: find the crossover point and combine two
subproblems

o

Matrix Multiplication Upper Bounds

= Each algorithm gives an upper bound

3.0¢%
o
2.8 L
2.7
"
2.5 L

24

1950

naive

O(nlog2 7)

Strassen Pan

Bini et al.

Schénhage Romani

Coppersmith, Winograd Strassen

Coppersmith, Winograd

Current lowest upper bound

Stothers

1960 1970 1980 1990

Williams

. O(n2‘3728639)

Year

©

Matrix Multi. Problem Complexity

Upper bound = O(n?-3728639)

A)eD

Lower bound = Q(n?)

D&C #6: Selection
Problem

Textbook Chapter 9.3 — Selection in worst-case linear time

Selection Problem

e Input:

— An array A of n distinct integers.

— An index k with 1 < k < n.
e Qutput:

The k-th largest number in A.

()

n=10 k=5

0000000000

Selection Problem = Sorting Problem

= |f the sorting problem can be solved in O(f(n)), so can the selection
problem based on the algorithm design

= Step 1: sort A into increasing order
= Step 2: output A[n — k + 1]

()

Selection Problem Complexity

Upper bound = O(nlogn)

——————

~~~~

Can we make the

_____
____________

~ --

Lower bound = Q(n)

upper bound better if __



Hardness of Selection Problem

= Upper bounds in terms of #comparisons
= 3n + o(n) by Schonhage, Paterson, and Pippenger (JCSS 1975).

= 2.95n by Dor and Zwick (SODA 1995, SIAM Journal on Computing 1999).

= Lower bounds in terms of #comparisons
= 2n+o(n) by Bent and John (STOC 1985)

= (2+28%n by Dor and Zwick (FOCS 1996, SIAM Journal on Discrete Math 2001).

o



Divide-and-Conquer

= |dea
= Select a pivot and divide the inputs into two subproblems
= If k < |X5|, we find the k-th largest
= If k > | X5 |, we find the (k — [ X5 |)-th largest

pivot

X< l X

We want these subproblems to have similar size
- The better pivot is the medium in the input array




(1) Five Guys per Group






(3) Median of Medians (MoM)

s <
&;/ 'T\

=t

small number = large number




(4) Partition via MoM




(5) Recursion

= Three cases
1. If k < |Xs|, then output the k-th largest number in X,

2. Ifk =|Xs|+ 1, then output MoM
3. Ifk > |Xs|+ 1, then output the (k — |Xs | — 1)-th largest number in X_

= Practice to prove by induction




Two Recursive Steps

= Step (2): Determining MoM
= Step (5): Selection in X_or X,

(=)



Divide-and-Conquer for Selection

Selection (X, k)
// base case
if |X| <= 4
sort X and return X[k](D(l)
// recursive case
Divide X into |X|/5 groups with size 5 ()(1)
M[i] = median from group i Q(1)-©(n/5) = O(n)
MoM = Selection (M, [M|/2) fr(n/5)
for 1 =1 ... |X] =
if X[1i] > MoM
insert X[i] into X2 >—()Cn)
else
insert X[i] into X1 -
if |[X2] == k -1
return x @(1)
if |X2] > k - 1
return Selection (X2, k) T(1 X2
return Selection(X1l, k - [X2] - 1) T(1X1




Candidates for Consideration

delete :

’ /‘

s ds £t
= “%%%%

* If k < |Xs|, then output the k-th largest number in X5
e Ifk> |X>| + 1, then output the (k |Xs| — 1)-th largest number in X_



D&C Algorithm Complexity

= T(n) = time for running Selection (X, k) with |X]|=n

[ e itn=1
T(n) = { T (%) + max(T(| X ]), T(|X<|)) +O(n) ifn>1.
o(1) ifn =1
m T(n)= { T(%) —I—T(%) +0OMn) ifn>1 = O(n)
= Intuition
o(1 ifn =1
T(n):{ T(9)+0(n) ifn>1

— f(n) = Q(n'°8» 2*¢) for some constant e > 0, and

—a- f(3) < c- f(n) for some constant ¢ < 1 and all sufficiently large n,

then T'(n) = O(f(n)).

©



Theorem

= Theorem

O(1) ifn =1
T0) = 20 12 + 0 a1 = T =00

= Proof _
. - Tin) < d @ ifn=1
= There exists positive constant a, b s.t. 7'(n) < T(n/5) + T(Tn/10) +b-n ifn>2
* Use induction to prove T'(n) < c¢-n

= n=1,a > ¢

= n>1,
Tn) < Tn/5)+T(Tn/10)+b-n
Inductive 1 7 9 1
hypothesis < gcn + 1—Ocn +bn = Ecn +bn=cn— (Ecn —bn) selectc > 10b
< cn

©



Selection Problem Complexity

Upper bound = O(n)

Lower bound = Q(n)

U



= D&C #7: Closest Pair
= of Points Problem

Textbook Chapter 33.4 — Finding the closest pair of points



Closest Pair of Points Problem

= Input: n = 2 points, where p; = (x;,y;) for0 <i<n

= Output: two points p; and p; that are closest
= “Closest”: smallest Euclidean distance

= Euclidean distance between p; and Dj: d(pz-,pj) = \/(J/‘z — 333‘)2 + (yz — yj)2

= Brute-force algorithm

= Check all pairs of points:
0(C3) = 0(n?)

€



Closest Pair of Points Problem

= 1D:
= Sort all points ©O(nlogn)
= Scan the sorted points to find the closest pair in one pass O(n)

= We only need to examine the adjacent points

mp 7(n) = 0O(nlogn)
o0 o0 o0 o o

= 2D: -
#3838~

©



Divide-and-Conquer Algorithm

= Divide: divide points evenly along x-coordinate
= Conquer: find closest pair in each region recursively

= Combine: find closet pair with one point in each region, and return the
best of three solutions

o °
e © © ; o
left-min = 10 ,_i___
7 _E RN .
O cross;min =7 5 , .
@ | . @ I @ right-min =13
\ @ / ~
\\\ X ,/ .
®
®
®




Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Other pairs of points must have distance larger than § — =
[,\m/J ==$B@l] é

5§ 6 T
U

o ®
o o ¢ i o
left-min = 10 ®
O cross-min = 7
o ./E/. . right-min = 13
i o
o ®

i o
i ° ©



Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Algo 3: only consider pairs within & X 24 blocks
= Obs 1: every pair with smaller than é distance must appearina é X 26 block

56
g © RS @ “
O r

0 /.
T i< Z2REB - AN

- BhEI B A (S X

2618 B2 P /S it




Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Algo 3: only consider pairs within & X 24 blocks
= Obs 1: every pair with smaller than é distance must appearina é X 26 block
= Obs 2: there are at most 8 pointsina d X 26 block

= Each §/2 X §/2 block contains at most 1 point, otherwise the distance returned from
left/right region should be smaller than §

o o Y [ PP .
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
1
1



Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Algo 3: only consider pairs within & X 24 blocks
= Obs 1: every pair with smaller than é distance must appearina é X 26 block

= Obs 2: there are at most 8 pointsina d X 26 block

0 0
Find-closet-pair—-across—-regions
1. Sort the points by y-values within § of the
cut (yellow region)
For the sorted point p;, compute the

distance with p; 11, Di12, -y Dit7
3. Return the smallest one

LE

B

___________________________________________________________________

At most 7 distance calculations needed

.
e @



Algorithm Complexity

Closest—-Pair (P)

// termination condition (base case) ()(1)
if |P| <= 3 brute-force finding closest pair and return it
// Divide @(n log n)

find a vertical line L s.t. both planes contain half of the points
// Conquer (by recursion)
left-pair, left-min = Closest-Pair(points in the left)
right-pair, right-min = Closest-Pair (points in the right) QQF(T%/Q)
// Combine
delta = min{left-min, right-min}
remove points that are delta or more away from L // Obs 1
sort remaining points by y-coordinate into p,, .., Py ()(Tlh3g71)
for point p;: ()(WJ
compute distances with pi.,;, Piiss s Pisq // Obs 2
update delta if a closer pair is found
return the closest pair and its distance

= T(n) =time for running Closest-Pair (P) with |P| =n
@(1) ifn <3 2
= B T = |
Tn) 2T (%) + ©(nlogn) ifn >3 = 7(n) = O(nlog"n) (@)

Exercise 4.6-2



Preprocessing

= |dea: do not sort inside the recursive case

Closest—-Pair (P)

sort P by x- and y-coordinate and store in Px and Py ()(Tzh)g71)
// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it ()(1)

// Divide

find a vertical line L s.t. both planes contain half of the points()(n)
// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left) QQF(TQ/Q)
right-pair, right-min = Closest-Pair (points in the right)
// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

for point p; in sorted candidates ()(HJ
compute distances with pi,;, Piiss s Pisq // Obs 2
update delta if a closer pair is found

return the closest pair and its distance

oy ) 1) ifn<3 , T'(n) =0(nlogn) !
T'n) = 2T’(%)+@(n) 1fn>3» T(n) = O(nlogn) @




Closest Pair of Points Problem

= 0(n) algorithm
= Taking advantage of randomization
= Chapter 13.7 of Algorithm Design by Kleinberg & Tardos

= Samir Khuller and Yossi Matias. 1995. A simple randomized sieve
algorithm for the closest-pair problem. Inf. Comput. 118, 1 (April 1995),
34-37.

©



Concluding Remarks

= When to use D&C

= Whether the problem with small inputs can be solved directly

= Whether subproblem solutions can be combined into the original solution
= Whether the overall complexity is better than naive

" Note
= Try different ways of dividing

= D&C may be suboptimal due to repetitive computations

= Example.
= D&C algo for Fibonacci: Q((l_z—‘/g)n)
= Bottom-up algo for Fibonacci: @(n)

—————————————————————————————————————————————————————————————————————

Our next topic: Dynamic Programming
“a technique for solving problems with
overlapping subproblems”

Fibonacci (n)
if n < 2
return 1

2. Conquer

=
9
©




Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://adal7.csie.org

Email: ada-ta@csie.ntu.edu.tw



http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

