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 Mini-HW 3 released
 Due on 10/12 (Thu) 17:20

 Print out the A4 hard copy and submit before the lecture finishes

 Homework 1 released
 Due on 10/19 (Thur) 17:20 (2 weeks left)

 Writing: print out the A4 hard copy and submit before the lecture finishes

 Programming: submit to Online Judge – http://ada-judge.csie.org

 Mid-term date changed
 Original: 11/09 (Thu)

 New: 11/16 (Thu)
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http://ada-judge.csie.org/
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 Recurrence (遞迴)

 Divide-and-Conquer

 D&C #1: Tower of Hanoi (河內塔)

 D&C #2: Merge Sort

 D&C #3: Bitonic Champion

 D&C #4: Maximum Subarray

 Solving Recurrences
 Substitution Method

 Recursion-Tree Method

 Master Method

 D&C #5: Matrix Multiplication

 D&C #6: Selection Problem

 D&C #7: Closest Pair of Points Problem
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Divide-and-Conquer 之神乎奇技

Divide-and-Conquer 首部曲



 Solve a problem recursively

 Apply three steps at each level of the recursion
1. Divide the problem into a number of subproblems that are 

smaller instances of the same problem (比較小的同樣問題)

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

 then solve the subproblems

 else recursively solve itself

3. Combine the solutions to the subproblems into the solution for 
the original problem
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base case

recursive case



Textbook Chapter 4.3 – The substitution method for solving recurrences

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Textbook Chapter 4.5 – The master method for solving recurrences
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 𝑇 𝑛 : running time for input size 𝑛

 𝐷 𝑛 : time of Divide for input size 𝑛

 𝐶 𝑛 : time of Combine for input size 𝑛

 𝑎: number of subproblems

 𝑛/𝑏: size of each subproblem
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1. Substitution Method (取代法)
 Guess a bound and then prove by induction

2. Recursion-Tree Method (遞迴樹法)
 Expand the recurrence into a tree and sum up the cost

3. Master Method (套公式大法/大師法)
 Apply Master Theorem to a specific form of recurrences

 Useful simplification tricks
 Ignore floors, ceilings, boundary conditions (proof in Ch. 4.6)

 Assume base cases are constant (for small n) 
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Textbook Chapter 4.3 – The substitution method for solving recurrences
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 Time Complexity for Merge Sort

 Theorem

 Proof
 There exists positive constant 𝑎, 𝑏 s.t.

 Use induction to prove

 n = 1, trivial

 n > 1,
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Substitution Method (取代法)
guess a bound and then prove by induction



 Guess the form of the solution

 Verify by mathematical induction (數學歸納法)
 Prove it works for 𝑛 = 1

 Prove that if it works for 𝑛 = 𝑚, then it works for 𝑛 = 𝑚 + 1

 It can work for all positive integer 𝑛

 Solve constants to show that the solution works

 Prove 𝑂 and Ω separately
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1. Guess

2. Verify

3. Solve



 Proof


There exists positive constants 𝑛0, 𝑐 s.t. for all 𝑛 ≥ 𝑛0,

 Use induction to find the constants 𝑛0, 𝑐

 n = 1, trivial

 n > 1,

 holds when 12

e.g. 

Inductive 
hypothesis

Guess

Verify

Solve



 Proof


There exists positive constants 𝑛0, 𝑐 s.t. for all 𝑛 ≥ 𝑛0,

 Use induction to find the constants 𝑛0, 𝑐

 n = 1, trivial

 n > 1,
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Inductive 
hypothesis

Tighter 
upper bound?

証不出來…
猜錯了？還是推導錯了？

沒猜錯推導也沒錯
這是取代法的小盲點



 Proof


There exists positive constants 𝑛0, 𝑐1, 𝑐2 s.t. for all 𝑛 ≥ 𝑛0,

 Use induction to find the constants 𝑛0,𝑐1, 𝑐2
 n = 1, holds for 

 n > 1,

 holds when 14

e.g. 

Inductive 
hypothesis

Guess

Verify

Solve

Strengthen the inductive hypothesis 
by subtracting a low-order term



 Guess based on seen recurrences

 Use the recursion-tree method

 From loose bound to tight bound

 Strengthen the inductive hypothesis by subtracting a low-
order term

 Change variables
 E.g.,

1. Change variable:

2. Change variable again:

3. Solve recurrence
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Textbook Chapter 4.4 – The recursion-tree method for solving recurrences
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 Time Complexity for Merge Sort

 Theorem

 Proof
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2nd expansion

1st expansion

kth expansion

The expansion stops when 2𝑘 = 𝑛

Recursion-Tree Method (遞迴樹法)
Expand the recurrence into a tree and sum up the cost



 Expand a recurrence into a tree

 Sum up the cost of all nodes as a good guess

 Verify the guess as in the substitution method

 Advantages
 Promote intuition

 Generate good guesses for the substitution method
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1. Expand

2. Sumup

3. Verify



19



20



21



22

+



Textbook Chapter 4.5 – The master method for solving recurrences
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24compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

divide a problem of size 𝑛 into 𝑎 subproblems

each of size 
𝑛

𝑏
is solved in time 𝑇

𝑛

𝑏
recursively

The proof is in Ch. 4.6

Should follow 
this format
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+

𝑎

𝑎





 𝑎 ≥ 1, the number of subproblems

 𝑏 > 1, the factor by which the subproblem size decreases

 𝑓(𝑛) = work to divide/combine subproblems

 Compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

1. Case 1: 𝑓 𝑛 grows polynomially slower than 𝑛log𝑏 𝑎

2. Case 2: 𝑓 𝑛 and 𝑛log𝑏 𝑎 grow at similar rates

3. Case 3: 𝑓 𝑛 grows polynomially faster than 𝑛log𝑏 𝑎
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𝑎

𝑎

𝑓 𝑛 grows polynomially slower than 𝑛log𝑏 𝑎
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29

𝑎

𝑎

𝑓 𝑛 and 𝑛log𝑏 𝑎 grow at similar rates
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31

𝑎

𝑎

𝑓 𝑛 grows polynomially faster than 𝑛log𝑏 𝑎
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33compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

divide a problem of size 𝑛 into 𝑎 subproblems

each of size 
𝑛

𝑏
is solved in time 𝑇

𝑛

𝑏
recursively

The proof is in Ch. 4.6
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compare 𝑓 𝑛 with 𝑛log𝑏 𝑎



 Master theorem can be extended to recurrences with floors 
and ceilings

 The proof is in the Ch. 4.6
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 Case 2
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 Case 1
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 Case 2
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Textbook Chapter 4.2 – Strassen’s algorithm for matrix multiplication
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 Each entry takes 𝑛 multiplications

 There are total 𝑛2 entries

A B C



42

Why?



 We can assume that 𝑛 = 2𝑘 for simplicity

 Otherwise, we can increase 𝑛 s.t. 𝑛 = 2 log2 𝑛

 𝑛 may not be twice large as the original in this modification
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A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22



Combine

Conquer

Divide
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MatrixMultiply(n, A, B)

//base case

if n == 1

__ _return AB

//recursive case

Divide A and B into n/2 by n/2 submatrices

C11 = MatrixMultiply(n/2,A11,B11) + MatrixMultiply(n/2,A12,B21)

C21 = MatrixMultiply(n/2,A11,B12) + MatrixMultiply(n/2,A12,B22)

C21 = MatrixMultiply(n/2,A21,B11) + MatrixMultiply(n/2,A22,B21)

C22 = MatrixMultiply(n/2,A21,B12) + MatrixMultiply(n/2,A22,B22)

return C

 𝑇 𝑛 = time for running MatrixMultiply(n, A, B)



 Important theoretical breakthrough by Volker Strassen in 1969

 Reduces the running time from Θ(𝑛3) to Θ(𝑛𝑙𝑜𝑔
27

) ≈ Θ(𝑛2.807)

 The key idea is to reduce the number of recursive calls
 From 8 recursive calls to 7 recursive calls

 At the cost of extra addition and subtraction operations
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4 multiplications
3 additions

1 multiplication
2 additions

Intuition:



 𝐶 = 𝐴 × 𝐵
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2 + 1×

1 + 1×

1 − 1×

1 + 1 − 1×

1 + 1 − 1×

1 − 1×

1 + 1×

12 + 6 − 7×

2 + 1 −

1 +

1 +

2 + 1 −



 Practice
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Combine

Conquer

Divide

48

Strassen(n, A, B)

// base case

if n == 1

___ return AB

// recursive case

Divide A and B into n/2 by n/2 submatrices

M1 = Strassen(n/2, A11+A22, B11+B22)

M2 = Strassen(n/2, A21+A22, B11)

M3 = Strassen(n/2, A11, B12-B22)

M4 = Strassen(n/2, A22, B21-B11)

M5 = Strassen(n/2, A11+A12, B22)

M6 = Strassen(n/2, A11-A21, B11+B12)

M7 = Strassen(n/2, A12-A22, B21+B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 – M2 + M3 + M6
return C

 𝑇 𝑛 = time for running Strassen(n,A,B)



 Disadvantages
1. Larger constant factor than it in the naïve approach

2. Less numerical stable than the naïve approach

 Larger errors accumulate in non-integer computation due to limited precision 

3. The submatrices at the levels of recursion consume space

4. Faster algorithms exist for sparse matrices

 Advantages: find the crossover point and combine two 
subproblems
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 Each algorithm gives an upper bound
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Current lowest upper bound
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Textbook Chapter 9.3 – Selection in worst-case linear time
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3 7 9 17 5 2 21 18 33 4



 If the sorting problem can be solved in 𝑂 𝑓 𝑛 , so can the selection 
problem based on the algorithm design
 Step 1: sort A into increasing order

 Step 2: output 𝐴[𝑛 − 𝑘 + 1]
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Can we make the 
upper bound better if 
we do not sort them?
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 Upper bounds in terms of #comparisons
 3n + o(n) by Schonhage, Paterson, and Pippenger (JCSS 1975).

 2.95n by Dor and Zwick (SODA 1995, SIAM Journal on Computing 1999).

 Lower bounds in terms of #comparisons
 2n+o(n) by Bent and John (STOC 1985)

 (2+2-80)n by Dor and Zwick (FOCS 1996, SIAM Journal on Discrete Math 2001).



 Idea
 Select a pivot and divide the inputs into two subproblems

 If 𝑘 ≤ 𝑋> , we find the 𝑘-th largest

 If 𝑘 > 𝑋> , we find the 𝑘 − 𝑋> -th largest
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pivot

We want these subproblems to have similar size
 The better pivot is the medium in the input array

a
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60

small number  large number
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small number  large number
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Larger than MoMSmaller than MoM

MoM



 Three cases
1. If 𝑘 ≤ 𝑋> , then output the 𝑘-th largest number in 𝑋>
2. If 𝑘 = 𝑋> + 1, then output MoM

3. If 𝑘 > 𝑋> + 1, then output the 𝑘 − 𝑋> − 1 -th largest number in 𝑋<

 Practice to prove by induction
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Smaller than MoM Larger than MoM

MoM
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 Step (2): Determining MoM

 Step (5): Selection in X< or X>
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Selection(X, k)

// base case

if |X| <= 4

__ sort X and return X[k]

// recursive case

Divide X into |X|/5 groups with size 5

M[i] = median from group i

MoM = Selection(M, |M|/2)

for i = 1 … |X|

if X[i] > MoM

insert X[i] into X2

else

insert X[i] into X1

if |X2| == k – 1

return x

if |X2| > k – 1

return Selection(X2, k)

return Selection(X1, k - |X2| - 1)
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• If 𝑘 ≤ 𝑋> , then output the 𝑘-th largest number in 𝑋>
• If 𝑘 > 𝑋> + 1, then output the 𝑘 − 𝑋> − 1 -th largest number in 𝑋<

delete

delete

Deleting at least 
𝑛

5
÷ 2 × 3 =

3

10
𝑛 guys



 𝑇 𝑛 = time for running Selection(X, k) with |X| = n

 Intuition
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 Theorem

 Proof
 There exists positive constant 𝑎, 𝑏 s.t.

 Use induction to prove

 n = 1, 𝑎 > 𝑐

 n > 1,

68

Inductive 
hypothesis select 𝑐 > 10𝑏
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Textbook Chapter 33.4 – Finding the closest pair of points
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 Input: 𝑛 ≥ 2 points, where 𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 for 0 ≤ 𝑖 < 𝑛

 Output: two points 𝑝𝑖 and 𝑝𝑗 that are closest
 “Closest”: smallest Euclidean distance

 Euclidean distance between 𝑝𝑖 and 𝑝𝑗:
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 Brute-force algorithm
 Check all pairs of points: 
Θ 𝐶2

𝑛 = Θ 𝑛2



 1D:
 Sort all points

 Scan the sorted points to find the closest pair in one pass

 We only need to examine the adjacent points

 2D: 
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 Divide: divide points evenly along x-coordinate

 Conquer: find closest pair in each region recursively

 Combine: find closet pair with one point in each region, and return the 
best of three solutions
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left-min = 10

right-min = 13
cross-min = 7



 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}
 Other pairs of points must have distance larger than 𝛿
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left-min = 10

right-min = 13
cross-min = 7

𝛿 𝛿

縮小搜尋範圍!



 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block
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要是很倒霉，所有的
點都聚集在某個𝛿 ×
2𝛿區塊內怎麼辦

縮小搜尋範圍!



 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

 Each 𝛿/2 × 𝛿/2 block contains at most 1 point, otherwise the distance returned from 
left/right region should be smaller than 𝛿
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 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

77pi

pi+4

pi+2

pi+5

pi+3

Find-closet-pair-across-regions

1. Sort the points by y-values within 𝛿 of the 
cut (yellow region)

2. For the sorted point 𝑝𝑖, compute the 
distance with 𝑝𝑖+1, 𝑝𝑖+2, …, 𝑝𝑖+7

3. Return the smallest one

At most 7 distance calculations needed
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Closest-Pair(P)

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

sort remaining points by y-coordinate into p0, …, pk
for point pi:

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

 𝑇 𝑛 = time for running Closest-Pair(P) with |P| = n

Exercise 4.6-2



 Idea: do not sort inside the recursive case
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Closest-Pair(P)

sort P by x- and y-coordinate and store in Px and Py

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

for point pi in sorted candidates

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance



 𝑂(𝑛) algorithm
 Taking advantage of randomization

 Chapter 13.7 of Algorithm Design by Kleinberg & Tardos

 Samir Khuller and Yossi Matias. 1995. A simple randomized sieve 
algorithm for the closest-pair problem. Inf. Comput. 118, 1 (April 1995), 
34-37.
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 When to use D&C
 Whether the problem with small inputs can be solved directly

 Whether subproblem solutions can be combined into the original solution

 Whether the overall complexity is better than naïve

 Note
 Try different ways of dividing

 D&C may be suboptimal due to repetitive computations

 Example.

 D&C algo for Fibonacci: 

 Bottom-up algo for Fibonacci:
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1. Divide

2. Conquer

3. Combine

Fibonacci(n)

if n < 2

____return 1

a[0]=1

a[1]=1

for i = 2 … n

____a[i]=a[i-1]+a[i-2]

return a[n]

Our next topic: Dynamic Programming
“a technique for solving problems with 

overlapping subproblems”



Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw
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Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

