
Slides credited from Hsueh-I Lu, Hsu-Chun Hsiao, & Michael Tsai

 Mini-HW 3 released
 Due on 10/12 (Thu) 17:20

 Print out the A4 hard copy and submit before the lecture finishes

 Homework 1 released
 Due on 10/19 (Thur) 17:20 (2 weeks left)

 Writing: print out the A4 hard copy and submit before the lecture finishes

 Programming: submit to Online Judge – http://ada-judge.csie.org

 Mid-term date changed
 Original: 11/09 (Thu)

 New: 11/16 (Thu)

2

http://ada-judge.csie.org/

3

 Recurrence (遞迴)

 Divide-and-Conquer

 D&C #1: Tower of Hanoi (河內塔)

 D&C #2: Merge Sort

 D&C #3: Bitonic Champion

 D&C #4: Maximum Subarray

 Solving Recurrences
 Substitution Method

 Recursion-Tree Method

 Master Method

 D&C #5: Matrix Multiplication

 D&C #6: Selection Problem

 D&C #7: Closest Pair of Points Problem
4

Divide-and-Conquer 之神乎奇技

Divide-and-Conquer 首部曲

 Solve a problem recursively

 Apply three steps at each level of the recursion
1. Divide the problem into a number of subproblems that are

smaller instances of the same problem (比較小的同樣問題)

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

 then solve the subproblems

 else recursively solve itself

3. Combine the solutions to the subproblems into the solution for
the original problem

5

base case

recursive case

Textbook Chapter 4.3 – The substitution method for solving recurrences

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

Textbook Chapter 4.5 – The master method for solving recurrences

6

 𝑇 𝑛 : running time for input size 𝑛

 𝐷 𝑛 : time of Divide for input size 𝑛

 𝐶 𝑛 : time of Combine for input size 𝑛

 𝑎: number of subproblems

 𝑛/𝑏: size of each subproblem

7

1. Substitution Method (取代法)
 Guess a bound and then prove by induction

2. Recursion-Tree Method (遞迴樹法)
 Expand the recurrence into a tree and sum up the cost

3. Master Method (套公式大法/大師法)
 Apply Master Theorem to a specific form of recurrences

 Useful simplification tricks
 Ignore floors, ceilings, boundary conditions (proof in Ch. 4.6)

 Assume base cases are constant (for small n)

8

Textbook Chapter 4.3 – The substitution method for solving recurrences

9

 Time Complexity for Merge Sort

 Theorem

 Proof
 There exists positive constant 𝑎, 𝑏 s.t.

 Use induction to prove

 n = 1, trivial

 n > 1,

10

Substitution Method (取代法)
guess a bound and then prove by induction

 Guess the form of the solution

 Verify by mathematical induction (數學歸納法)
 Prove it works for 𝑛 = 1

 Prove that if it works for 𝑛 = 𝑚, then it works for 𝑛 = 𝑚 + 1

 It can work for all positive integer 𝑛

 Solve constants to show that the solution works

 Prove 𝑂 and Ω separately

11

1. Guess

2. Verify

3. Solve

 Proof


There exists positive constants 𝑛0, 𝑐 s.t. for all 𝑛 ≥ 𝑛0,

 Use induction to find the constants 𝑛0, 𝑐

 n = 1, trivial

 n > 1,

 holds when 12

e.g.

Inductive
hypothesis

Guess

Verify

Solve

 Proof


There exists positive constants 𝑛0, 𝑐 s.t. for all 𝑛 ≥ 𝑛0,

 Use induction to find the constants 𝑛0, 𝑐

 n = 1, trivial

 n > 1,

13

Inductive
hypothesis

Tighter
upper bound?

証不出來…
猜錯了？還是推導錯了？

沒猜錯推導也沒錯
這是取代法的小盲點

 Proof


There exists positive constants 𝑛0, 𝑐1, 𝑐2 s.t. for all 𝑛 ≥ 𝑛0,

 Use induction to find the constants 𝑛0,𝑐1, 𝑐2
 n = 1, holds for

 n > 1,

 holds when 14

e.g.

Inductive
hypothesis

Guess

Verify

Solve

Strengthen the inductive hypothesis
by subtracting a low-order term

 Guess based on seen recurrences

 Use the recursion-tree method

 From loose bound to tight bound

 Strengthen the inductive hypothesis by subtracting a low-
order term

 Change variables
 E.g.,

1. Change variable:

2. Change variable again:

3. Solve recurrence

15

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

16

 Time Complexity for Merge Sort

 Theorem

 Proof

17

2nd expansion

1st expansion

kth expansion

The expansion stops when 2𝑘 = 𝑛

Recursion-Tree Method (遞迴樹法)
Expand the recurrence into a tree and sum up the cost

 Expand a recurrence into a tree

 Sum up the cost of all nodes as a good guess

 Verify the guess as in the substitution method

 Advantages
 Promote intuition

 Generate good guesses for the substitution method

18

1. Expand

2. Sumup

3. Verify

19

20

21

22

+

Textbook Chapter 4.5 – The master method for solving recurrences

23

24compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

divide a problem of size 𝑛 into 𝑎 subproblems

each of size
𝑛

𝑏
is solved in time 𝑇

𝑛

𝑏
recursively

The proof is in Ch. 4.6

Should follow
this format

25

+

𝑎

𝑎



 𝑎 ≥ 1, the number of subproblems

 𝑏 > 1, the factor by which the subproblem size decreases

 𝑓(𝑛) = work to divide/combine subproblems

 Compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

1. Case 1: 𝑓 𝑛 grows polynomially slower than 𝑛log𝑏 𝑎

2. Case 2: 𝑓 𝑛 and 𝑛log𝑏 𝑎 grow at similar rates

3. Case 3: 𝑓 𝑛 grows polynomially faster than 𝑛log𝑏 𝑎

26

27

𝑎

𝑎

𝑓 𝑛 grows polynomially slower than 𝑛log𝑏 𝑎

28

29

𝑎

𝑎

𝑓 𝑛 and 𝑛log𝑏 𝑎 grow at similar rates

30

31

𝑎

𝑎

𝑓 𝑛 grows polynomially faster than 𝑛log𝑏 𝑎

32

33compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

divide a problem of size 𝑛 into 𝑎 subproblems

each of size
𝑛

𝑏
is solved in time 𝑇

𝑛

𝑏
recursively

The proof is in Ch. 4.6

34

compare 𝑓 𝑛 with 𝑛log𝑏 𝑎

 Master theorem can be extended to recurrences with floors
and ceilings

 The proof is in the Ch. 4.6

35

 Case 2

36

 Case 1

37

 Case 2

38

Textbook Chapter 4.2 – Strassen’s algorithm for matrix multiplication

39

40

41

 Each entry takes 𝑛 multiplications

 There are total 𝑛2 entries

A B C

42

Why?

 We can assume that 𝑛 = 2𝑘 for simplicity

 Otherwise, we can increase 𝑛 s.t. 𝑛 = 2 log2 𝑛

 𝑛 may not be twice large as the original in this modification

43

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22

Combine

Conquer

Divide

44

MatrixMultiply(n, A, B)

//base case

if n == 1

__ _return AB

//recursive case

Divide A and B into n/2 by n/2 submatrices

C11 = MatrixMultiply(n/2,A11,B11) + MatrixMultiply(n/2,A12,B21)

C21 = MatrixMultiply(n/2,A11,B12) + MatrixMultiply(n/2,A12,B22)

C21 = MatrixMultiply(n/2,A21,B11) + MatrixMultiply(n/2,A22,B21)

C22 = MatrixMultiply(n/2,A21,B12) + MatrixMultiply(n/2,A22,B22)

return C

 𝑇 𝑛 = time for running MatrixMultiply(n, A, B)

 Important theoretical breakthrough by Volker Strassen in 1969

 Reduces the running time from Θ(𝑛3) to Θ(𝑛𝑙𝑜𝑔
27

) ≈ Θ(𝑛2.807)

 The key idea is to reduce the number of recursive calls
 From 8 recursive calls to 7 recursive calls

 At the cost of extra addition and subtraction operations

45

4 multiplications
3 additions

1 multiplication
2 additions

Intuition:

 𝐶 = 𝐴 × 𝐵

46

2 + 1×

1 + 1×

1 − 1×

1 + 1 − 1×

1 + 1 − 1×

1 − 1×

1 + 1×

12 + 6 − 7×

2 + 1 −

1 +

1 +

2 + 1 −

 Practice

47

Combine

Conquer

Divide

48

Strassen(n, A, B)

// base case

if n == 1

___ return AB

// recursive case

Divide A and B into n/2 by n/2 submatrices

M1 = Strassen(n/2, A11+A22, B11+B22)

M2 = Strassen(n/2, A21+A22, B11)

M3 = Strassen(n/2, A11, B12-B22)

M4 = Strassen(n/2, A22, B21-B11)

M5 = Strassen(n/2, A11+A12, B22)

M6 = Strassen(n/2, A11-A21, B11+B12)

M7 = Strassen(n/2, A12-A22, B21+B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 – M2 + M3 + M6
return C

 𝑇 𝑛 = time for running Strassen(n,A,B)

 Disadvantages
1. Larger constant factor than it in the naïve approach

2. Less numerical stable than the naïve approach

 Larger errors accumulate in non-integer computation due to limited precision

3. The submatrices at the levels of recursion consume space

4. Faster algorithms exist for sparse matrices

 Advantages: find the crossover point and combine two
subproblems

49

 Each algorithm gives an upper bound

50

Current lowest upper bound

51

Textbook Chapter 9.3 – Selection in worst-case linear time

52

53

54

3 7 9 17 5 2 21 18 33 4

 If the sorting problem can be solved in 𝑂 𝑓 𝑛 , so can the selection
problem based on the algorithm design
 Step 1: sort A into increasing order

 Step 2: output 𝐴[𝑛 − 𝑘 + 1]

55

56

Can we make the
upper bound better if
we do not sort them?

57

 Upper bounds in terms of #comparisons
 3n + o(n) by Schonhage, Paterson, and Pippenger (JCSS 1975).

 2.95n by Dor and Zwick (SODA 1995, SIAM Journal on Computing 1999).

 Lower bounds in terms of #comparisons
 2n+o(n) by Bent and John (STOC 1985)

 (2+2-80)n by Dor and Zwick (FOCS 1996, SIAM Journal on Discrete Math 2001).

 Idea
 Select a pivot and divide the inputs into two subproblems

 If 𝑘 ≤ 𝑋> , we find the 𝑘-th largest

 If 𝑘 > 𝑋> , we find the 𝑘 − 𝑋> -th largest

58

pivot

We want these subproblems to have similar size
 The better pivot is the medium in the input array

a

59

60

small number  large number

61

small number  large number

62

Larger than MoMSmaller than MoM

MoM

 Three cases
1. If 𝑘 ≤ 𝑋> , then output the 𝑘-th largest number in 𝑋>
2. If 𝑘 = 𝑋> + 1, then output MoM

3. If 𝑘 > 𝑋> + 1, then output the 𝑘 − 𝑋> − 1 -th largest number in 𝑋<

 Practice to prove by induction

63

Smaller than MoM Larger than MoM

MoM

64

 Step (2): Determining MoM

 Step (5): Selection in X< or X>

65

Selection(X, k)

// base case

if |X| <= 4

__ sort X and return X[k]

// recursive case

Divide X into |X|/5 groups with size 5

M[i] = median from group i

MoM = Selection(M, |M|/2)

for i = 1 … |X|

if X[i] > MoM

insert X[i] into X2

else

insert X[i] into X1

if |X2| == k – 1

return x

if |X2| > k – 1

return Selection(X2, k)

return Selection(X1, k - |X2| - 1)

66

• If 𝑘 ≤ 𝑋> , then output the 𝑘-th largest number in 𝑋>
• If 𝑘 > 𝑋> + 1, then output the 𝑘 − 𝑋> − 1 -th largest number in 𝑋<

delete

delete

Deleting at least
𝑛

5
÷ 2 × 3 =

3

10
𝑛 guys

 𝑇 𝑛 = time for running Selection(X, k) with |X| = n

 Intuition

67

 Theorem

 Proof
 There exists positive constant 𝑎, 𝑏 s.t.

 Use induction to prove

 n = 1, 𝑎 > 𝑐

 n > 1,

68

Inductive
hypothesis select 𝑐 > 10𝑏

69

Textbook Chapter 33.4 – Finding the closest pair of points

70

 Input: 𝑛 ≥ 2 points, where 𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 for 0 ≤ 𝑖 < 𝑛

 Output: two points 𝑝𝑖 and 𝑝𝑗 that are closest
 “Closest”: smallest Euclidean distance

 Euclidean distance between 𝑝𝑖 and 𝑝𝑗:

71

 Brute-force algorithm
 Check all pairs of points:
Θ 𝐶2

𝑛 = Θ 𝑛2

 1D:
 Sort all points

 Scan the sorted points to find the closest pair in one pass

 We only need to examine the adjacent points

 2D:

72

 Divide: divide points evenly along x-coordinate

 Conquer: find closest pair in each region recursively

 Combine: find closet pair with one point in each region, and return the
best of three solutions

73

left-min = 10

right-min = 13
cross-min = 7

 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}
 Other pairs of points must have distance larger than 𝛿

74

left-min = 10

right-min = 13
cross-min = 7

𝛿 𝛿

縮小搜尋範圍!

 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

75

要是很倒霉，所有的
點都聚集在某個𝛿 ×
2𝛿區塊內怎麼辦

縮小搜尋範圍!

 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

 Each 𝛿/2 × 𝛿/2 block contains at most 1 point, otherwise the distance returned from
left/right region should be smaller than 𝛿

76

 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

77pi

pi+4

pi+2

pi+5

pi+3

Find-closet-pair-across-regions

1. Sort the points by y-values within 𝛿 of the
cut (yellow region)

2. For the sorted point 𝑝𝑖, compute the
distance with 𝑝𝑖+1, 𝑝𝑖+2, …, 𝑝𝑖+7

3. Return the smallest one

At most 7 distance calculations needed

78

Closest-Pair(P)

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

sort remaining points by y-coordinate into p0, …, pk
for point pi:

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

 𝑇 𝑛 = time for running Closest-Pair(P) with |P| = n

Exercise 4.6-2

 Idea: do not sort inside the recursive case

79

Closest-Pair(P)

sort P by x- and y-coordinate and store in Px and Py

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

for point pi in sorted candidates

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

 𝑂(𝑛) algorithm
 Taking advantage of randomization

 Chapter 13.7 of Algorithm Design by Kleinberg & Tardos

 Samir Khuller and Yossi Matias. 1995. A simple randomized sieve
algorithm for the closest-pair problem. Inf. Comput. 118, 1 (April 1995),
34-37.

80

 When to use D&C
 Whether the problem with small inputs can be solved directly

 Whether subproblem solutions can be combined into the original solution

 Whether the overall complexity is better than naïve

 Note
 Try different ways of dividing

 D&C may be suboptimal due to repetitive computations

 Example.

 D&C algo for Fibonacci:

 Bottom-up algo for Fibonacci:

81

1. Divide

2. Conquer

3. Combine

Fibonacci(n)

if n < 2

____return 1

a[0]=1

a[1]=1

for i = 2 … n

____a[i]=a[i-1]+a[i-2]

return a[n]

Our next topic: Dynamic Programming
“a technique for solving problems with

overlapping subproblems”

Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw

82

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

