


Announcement

= Mini-HW 2 released
= Due on 10/5 (Thu) 17:20
= Print out the A4 hard copy and submit before the lecture finishes

= Homework 1 released
= Due on 10/19 (Thur) 17:20 (total 4 weeks)

= Writing: print out the A4 hard copy and submit before the lecture finishes
= Programming: submit to Online Judge — http://ada-judge.csie.org

____________________________________________________ > ADA JUDGE

----------------------------------------------- | 2017

= Account and password were sent

Login to begin...


http://ada-judge.csie.org/

Mini-HW 2

Mini HW #2
Due Time: 2017/10/05 (Thu.) 14:20

Contact TAs: ada-ta@csie.ntu.edu.tw

Let T(n) = 4T (y/n) +logn. I guess that T(n) = O(log®n), can you prove it for me?



Algorithm Design Strategy

= Do not focus on “specific algorithms”

= But “some strategies” to “design” algorithms

- First Skill: Divide-and-Conquer (% {EZ2%)

(-)



Outline

Qwu'

= Recurrence ({E3E)

= Divide-and-Conquer

= D&C #1: Tower of Hanoi (i A &)
= D&C #2: Merge Sort

= D&C #3: Bitonic Champion

= D&C #4: Maximum Subarray

Divide-and-Conquer & 2

= Solving Recurrences
= Substitution Method

= Recursion-Tree Method
= Master Method

= D&C #5: Matrix Multiplication
= D&C #6: Selection Problem Divide-and-Conquer Z {8 &%
= D&C #7: Closest Pair of Points Problem @



What is Divide-and-Conquer?

= Solve a problem recursively

= Apply three steps at each level of the recursion

1. Divide the problem into a number of subproLbIems that are
smaller instances of the same problem (EEER/)\BY [G) 4 R B )

2. Conquer the subproblems by solving them recursively
If the subproblem sizes are small enough

= then solve the subproblems base case

= else recursively solve itself TeEUEiE EEEE

3. Combine the solutions to the subproblems into the solution for
the original problem



Divide-and-Conquer Benefits

(f
= Easy to solve difficult problems &

= Thinking: solve easiest case + combine smaller solutions into the
original solution

= Easy to find an efficient algorithm
= Better time complexity

= Suitable for parallel computing (multi-core systems)

= More efficient memory access

= Subprograms and their data can be put in cache in stead of accessing
main memory

©



W) Recurrence (
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Recurrence Relation

= Definition

A recurrence is an equation or inequality that descrlbes a functlon in
terms of its value on smaller inputs. = —

= Example

Fibonacci sequence (B BFZ22775))
= Base case: F(0) = F(1) =
= Recursive case: F(n) = F(n-1) + F(n-2)

F(n) 1




Recurrence Benefits

= Easy & Clear
C = Define base case and recursive case

= Define a long sequence

Base case F(0), F(1), F(2)...............
Recursive case unlimited sequence

a program for solving F(n)

Fibonacci(n) // recursive function: BINF=IEIYEHSAVKE
if n < 2 // base case: termination condition
return 1 important otherwise the program cannot stop
// recursive case: call itself for solving subproblems
return Fibonacci(n-1) + Fibonacci (n-2)

(=)



Recurrence v.s. Non-Recurrence

Fibonacci (n)
if n < 2 // base case
return 1
// recursive case
return Fibonacci (n-1)

+ Fibonacci (n-2)

Fibonacci (n)

if n < 2
return 1

al[0] <=1

all] <=1

for 1 = 2 .. n
ali] = a[i-1]

return al[n]

+ al[i-2]

Recursive function
* Clear structure ﬁ
* Poor efficiency iy

Non-recursive function

* Better efficiency &,
* Unclear structure ql

©



Recurrence Benefits

= Easy & Clear
C = Define base case and recursive case

= Define a long sequence

Base case F(0), F(1), F(2)...............
Recursive case unlimited sequence

a program for solving F(n)

If a problem can be simplified into a base case and a recursive case,
then we can find a algorithm that solves this problem.

__________________________________________________________________________________________________________

Hanoi(n) is not easy to solve.
_ v' Itis easy to solve when n is small
Recursive case v we can find the relation between Hanoi(n) & Hanoi(n-1)

_ a program for solving Hanoi(n) ©

Base case
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= Tower of Hanoi a ! |




Tower of Hanoi (J0] A1)

= Problem: move n disks from A to C

= Rules
= Move one disk at a time

= Cannot place a larger disk onto a smaller disk

Play online: https://www.mathsisfun.com/games/towerofhanoi.html



Hanoi(1)

= Move 1 from Ato C

- > 1movein total
' Base case |

©



Hanoi(2)

= Move 1 from Ato B
= Move 2 from Ato C
= Move 1 fromBto C




Hanoi(3)

= How to move 3 disks?

= How many moves in total?




Hanoi(n)

= How to move n disks?

= How many moves in total?

Disk n-2
Disk n-1
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Hanoi(n)

= To move n disks from A to C (for n > 1):

1.  Move Disk 1~n-1 from Ato B

Disk n-2
Disk n-1



Hanoi(n)

= To move n disks from A to C (for n > 1):
1.  Move Disk 1~n-1 from Ato B

Oy,

L —




Hanoi(n)

= To move n disks from A to C (for n > 1):
1.  Move Disk 1~n-1 from Ato B

2. Move Disk n from Ato C




Hanoi(n)

= To move n disks from A to C (for n > 1):

1.  Move Disk 1~n-1 from Ato B
2. Move Disk n from Ato C




Hanoi(n)

= To move n disks from A to C (for n > 1):
1.  Move Disk 1~*n-1 from Ato B

2. Move Disk n from Ato C
3.  Move Disk 1~*n-1 from B to C

Oy,




Hanoi(n)

= To move n disks from A to C (for n > 1):

1.  Move Disk 1¥n-1fromAtoB |~ L |
_ - = 2Hanoi(n-1) + 1 moves in total |
2. Move DisknfromAtoC | |

. | recursive case ;
3. Move Disk 1~*n-1 fromBtoC ‘- -

{’ -------------- \‘
| |
| |
| |
| |
| |
| |
| |
: :
: Disk n-2 ]
] Disk n-1 i
A B C



Pseudocode for Hanoi

Hanoi (n, src, dest, spare)
if n==1 // base case

Move disk from src to dest LR ORRSE :
else // recursive case - No need to combine the |

Hanoi (n-1, src, spare, dest) . results in this case
Move disk from src to dest | T

Hanoi (n-1, spare, dest, src)

= Call tree Hanoi (3, A, C, B)

T

Hanoi (2, A, B, C) Hanoi (2, B, C, A)

Hanoi (1,A,C,B) Hanoi(1l,C,B,A) Hanoi(1,B,2A,C) Hanoi(1l,2,C,B) ::e)



Algorithm Time Complexity

Hanoi (n, src, dest, spare)
if n==1 // base case
Move disk from src to dest
else // recursive case
Hanoi (n-1, src, spare, dest)
Move disk from src to dest
Hanoi (n-1, spare, dest, src)

= T(n) = #moves with n disks

= Basecase:T(1) =1 T(n) = 2" — 1 = O(2")
= Recursivecase (n > 1):T(n) =2T(n— 1) +1 |

= We will learn how to derive T'(n) later

Q1:1s 0(2™) tight for Hanoi? |
Q2: What about more than 3 pegs? @



D&C #2: ™ —

Merge Sort imm—.

Textbook Chapter 2.3.1 — The divide-and-conquer approach



Sorting Problem

Input: unsorted list of size n

Output: sorted list of size n

What are the base case
and recursive case?



Divide-and-Conquer

= Base case (n=1)
= Directly output the list

= Recursive case (n > 1)
= Divide the list into two sub-lists
= Sort each sub-list recursively
= Merge the two sorted lists How?

2 sublists of size n/2

_____________________________________________






Illustration for n = 10 N E—
H
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Pseudocode for Merge Sort

MergeSort (A, p, 1)
// base case

if p==r

return

// recursive case
// divide

q = [(p+tr-1)/2]

// conquer
MergeSort (A, p, 9)
MergeSort (A, gtl, r)
// combine

Merge (A, p, g, r)

2. Conquer

¥

3. Combine

Divide a list of size ninto 2

sublists of size n/2

Recursive case (n > 1)

= Sort 2 sublists recursively using

merge sort
Base case (n = 1)
= Return itself

Merge 2 sorted sublists into
one sorted list in linear time

€



Time Complexity for Merge Sort

MergeSort (A, p, 1)
// base case
if p==r
return
// recursive case
// divide
g = [(ptr-1)/2]
// conquer
MergeSort (A, p, 9)
MergeSort (A, gtl, r)
// combine

Merge (A, p, g, 1)

4
$

3. Combine

Divide a list of size ninto 2 ©(1)

sublists of size n/2

Recursive case (n > 1)

______________________

Merge 2 sorted sublists into O(n)

one sorted list in linear tim

= T(n) =time for running MergeSort (&, p, r) withr-p+1=n

T(n) = { o)

T([n/2]) +T([n/2]) +O(n)

ifn=1
if n>2



Time Complexity for Merge Sort

= Simplify recurrences
lgnore floors and ceilings (boundary conditions)

Assume base cases are constant (for small n)
| O(1) ifn=1
Tn) = { 2T(n)2) +O(n) ifn> 2

T(n) < 2T(g) +en
n n n .
< 2[2T(Z) + c§] +cn = 4T(Z) +2cn 1% expansion
< 4[2T(g) - cg] + 2¢en = 8T(%) +3cn 2" expansion

T(n)

VAN

nT' (1) 4+ cnlogyn
O(n) 4+ O(nlogn)

) ©
The expansion stops when 2k = n = O(nlogn)

. mn
2kT(2—k) + ken kth expansion

IA



Theorem 1

= Theorem

O(1) ifn=1
U= { T([n/2]) + T(|n/2]) + O(n) if n > 2™ T(n) =0O(nlogn)

= Proof _

a ifn=1
= There exists positive constant a, b s.t. T'(n) < { T(In/2)) + T(|n/2)) +b-n ifn>2
= Use induction to prove T'(n) < 2b-nlog,n+a-n

= n =1, trivial
= n> 1,|_%-| < %

Tn) < T([n/2])+T(|n/2])+b-n
Inductive < 2b- ([n/2]logy[n/2]) +a-[n/2] +2b- (|n/2|logy|n/2|) +a-|n/2] +b-n
hypothesis _

2 - ([n/2] log, %1)+a- /2] +2b- (|n/2] logz%)—i—a- n/2] +b-n
= 2b-n(logn —log, V2)+a-n+b-n=2b-nlogyn+a-n @



How to Solve Recurrence Relations?

1. Substitution Method (EX1{%)

= Guess a bound and then prove by induction

2. Recursion-Tree Method (& @15 %)

= Expand the recurrence into a tree and sum up the cost

3. Master Method (E' AT, KA/ AEMZE)

= Apply Master Theorem to a specific form of recurrences

Let’s see more examples first and come back to this later



= Champion Probiem




Bitonic Champion Problem

The bitonic champion problem

e Input: A bitonic sequence A[l], A[2],..., A[n] of distinct positive
integers.

e Qutput: the index 7 with 1 < ¢ < n such that

Ali] = max Alj].

1<j<n

The bitonic sequence means “increasing before the champion and
decreasing after the champion” (& Z AIIEIS - & 2B IER)

eeo/@'Q@ee




Bitonic Champion Problem Complexity

Upper bound = O(n)

---------------------------

" Why not Q(n)?

Lower bound = Q(1) ~—
©




Bitonic Champion Problem Complexity

= When there are n inputs, any solution has n different outputs

= Any comparison-based algorithm needs (2(logn) time in the worst case

> Q(logn)




Bitonic Champion Problem Complexity

Upper bound = O(n)

@D

Lower bound = (logn)
Lower bound = Q(1)




Divide-and-Conquer

v
VLN

= |dea: divide A into two subproblems and then find the final champion

based on the champions from two subproblems

Output = Champion(l, n)

Champion (i, 7J)
if i==j // base case
return 1i
else // recursive case
k = floor ((i+])/2)
1 = Champion (i, k)
r = Champion (k+1, 7)
if A[1] > Alr]
return 1
if A[1l] < Alr]
return r




10

lllustration for n



Proof of Correctness /ﬁ//
/ AN SR

= Practice by yourself!

Output = Chamption (1, n)

Champion (i, 7J)
if i==j // base case
return 1i
else // recursive case
k = floor ((i+])/2)
1 = Champion (i, k)
r = Champion (k+1, 7)
if A[1] > Alr]
return 1
if A[1l] < Alr]
return r

Hint: use induction on (j—i) to
prove Champion (i, j) can return
' the champion from A[i ... ]



Algorithm Time Complexity

= Divide a list of size ninto 2

Champion (i, 3) sublists of size n/2 ' g (1)
if i==j // base case S

return 1i | . T([n/2]) +T(|n/2])
else // recursive case = Recursive case

k = floor ((i+])/2) = Find champions from 2

1 = Champion(i, k) 2. Conquer sublists recursively

r = Champion(k+1, 3) | BN T

= Base case - O(1) §
= Returnitself

if A[1] > Alr]
return 1

if A[1l] < Alr]
return r

9
liHHHHI

= Choose the final champion

= T(n) = time for running Champion (i, j) withj-i+ 1 =n

T(n):{ O(1) if n=1
T(In/2]) +T([n/2]) +0Q1) ifn =2 ©



Theorem 2

O(1) ifn=1
i) = { T([n)2]) + T(|n/2]) + O(1) ifn>2 = T(M) =00

= Proof
= There exists positive constant a, b s.t.
a ifn=1
<
Tin) < { T([n/2]) +T([n/2]) +b ifn=>2
* Useinductionto prove T'(n) <a-n-+b-(n—1)
= n =1, trivial

= n>1,
T(n) < T([n/2])+T(|n/2])+b
Inductive < g /2] +b- (In/2] = 1) +a- [n/2] +5- (n/2] = 1) +b
hypothesis < antb-(n—1) @



Bitonic Champion Problem Complexity

Upper bound = O(n)

@D

Can we have a better
algorithm by using the bitonic
sequence property?

Lower bound = Q(logn)



Improved Algorithm

Champion (i, 7J)
if i==3 // base case
return 1
else // recursive case
k = floor ((i+7)/2)
1 = Champion (i, k)
r = Champion (k+1, 7j)
if A[1] > Alr]
return 1
if A[l] < Alr]
return r

-

v
R 2N

Champion-2 (i, 7J)
if i==3 // base case
return 1
else // recursive case
k = floor ((i+7)/2)
if A[k] > Alk+1]
return Champion (i, k)
if A[k] < Alk+1]
return Champion (k+1, 7j)




R
N

Illustration for n = 10 A

000000000
0 0000




Correctness Proof L \/'/\
oV R\

= Practice by yourself!

Output = Champion-2(1, n)
Champion-2 (i, 3J) ' Two crucial observations:
if i==3 // base case ~* IfA[1...n] s bitonic, then so is
return 1 | . A[i,j] for any indices i and j with
else // recursive case l<i<j<n
k = floor ((i+3)/2) : - T, .
if A[K] > A[k+1] '+ Foranyindices i, j,and k with 1 <
return Champion (i, k) ; i <j <mn,weknow that A[k] >
if A[k] < A[k+1] ~ A[k + 1] if and only if the maximum
return Champion (k+1, 3J) of A[i ...j] liesin A[i ... k]. I




Algorithm Time Complexity

Champion-2 (1, 7J)
if i==j // base case
return 1
else // recursive case
k = floor ((i+7j)/2)
if A[k] > A[k+1]
return Champion (i, k)
if A[k] < A[k+1]
return Champion (k+1, 7J)

= Divide a list of size ninto 2

___________

. = Recursive case T([n/2'|)

= Find champions from 1
2. Conquer sublists recursively |
= Base case - O(1)
@ = Returnitself

= T(n) = time for running Champion (i, j) withj-i+ 1=n

O(1)

T(n) = { T([n/2]) + O(1)

ifn=1
ifn>2



Algorithm Time Complexity

Champion-2 (i, 7J)
if i==7 // base case
return 1
else // recursive case
k = floor ((i+7j)/2)
if Alk] > A[k+1]
return Champion (i, k)
if A[k] < A[k+1]
return Champion (k+1, 7)

______________________________________________________________

{ The algorithm time complexity is O(logn)

each recursive call reduces the size of
(j - i) into half

there are O(logn) levels

each level takes O(1)

= T(n) = time for running Champion (i, j) withj-i+ 1=n

O(1)

T(n) = { T([n/2]) + O(1)

ifn=1
if n > 2



Theorem 3

Theorem
O(1) if n=1
1) = { T([n/2]) +O(1) ifn>2
Proof

________________________________________________________________

()



Bitonic Champion Problem Complexity

Upper bound = O(n)

Upper bound = O(logn)

Lower bound = Q(logn)



D&C #4: Maximum
— Subarray Problem

Textbook Chapter 4.1 — The maximum-subarray problem



Coding Efficiency

= How can we find the most efficient time interval for continuous coding?

Coding power

8977 (K)
4
3
2
1
0

12am lam 2am

7pm-2:59am
Coding power= 8k



Maximum Subarray Problem

e Input: A sequence A[l], A[2],..., A[n] of integers.

e Output: Two indicex ¢z and j with 1 < ¢ < 5 < n that
maximize

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllll

lllllllllllllllllllllllllll



O(n3) Brute Force Algorithm

MaxSubarray-1(i, Jj)
for i = 1,..,n
for § = 1,.,n O(n?)
] ]

L, 441, | | }(D(RS)
= A[i1] + A[i+1] + .. + A[]J]

return Champion (S) (D(nz)

()



O(n?) Brute Force Algorithm

MaxSubarray-2 (i, Jj)
for i = 1,..,n

return Champion (S) O(n?)

()



Max Subarray Problem Complexity

' Upper bound = O(n?)

Lower bound = Q(n



Divide-and-Conquer

= Base case (n=1)
= Return itself (maximum subarray)

= Recursive case (n > 1)
= Divide the array into two sub-arrays
= Find the maximum sub-array recursively
= Merge the results How?



Where is the Solution?

= The maX|mum subarray for any input must be in one of foIIowmg cases:

k k+1

Case 1: left

Case 2: right

Case 1: MaxSub (A, i, Jj) = MaxSub (A, i, k)
Case 2: MaxSub (A, i, Jj) = MaxSub (A, k+1, 73)
Case 3: MaxSub (A, 1, 7J) cannot be expressed using MaxSub!

€



Case 3: Cross the Middle

= Goal: find the maximum subarray that crosses the middle

(1) Start from the middle to find (2) Start from the middle to find
the left maximum subarray the right maximum subarray

_____________________________________________________________________________________

= Observation
= The sum of A[x ... k] must be the maximum among A[i ... k] (left: i < k)

= The sum of A[k + 1 ... y] must be the maximum among A[k + 1...j] (right: j > k)

= Solvable in linear time 2 0(n)

€



Divide-and-Conquer Algorithm

MaxCrossSubarray (A, i, k, 7J)
left sum = -0
sum=0
for p = k downto i ()(k-—-i4—1)“
sum = sum + A[p]
if sum > left sum
left sum = sum

max left = p >-::()Qj__i4_1)

right sum = -oo
sum=0
for g = k+1 to j ()(j——kﬂ —
sum = sum + A[q]
1f sum > right sum
right sum = sum
max right = g
return (max left, max right, left sum + right sum)

(=)



Divide-and-Conquer Algorithm

MaxSubarray (A, 1, 7J)
if i == j // base case
return (i, J, A[1])
else // recursive case
k = floor((1i + J) / 2)
. (L low, 1 high, 1 sum)
D“”de(r_low, r high, r sum)
(c_ low, ¢ high, c sum)

= MaxSubarray (A, 1, k)
= MaxSubarray (A, k+1,
= MaxCrossSubarray (A,

if 1 sum >= r sum and 1 sum >= ¢ sum // case 1

return (1 low, 1 high,

1 sum)

J)
i,

k,

else if r sum >= 1 sum and r sum >= c _sum // case 2

return (r low, r high,
else // case 3
return (c_low, c¢ high,

r sum)

C_sum)

Conquer

J)

Combine

©



Divide-and-Conquer Algorithm

MaxSubarray (A, 1, 7J)

if i == j // base case O(1)
return (i, J, A[1])

else // recursive case

k = floor((i + J) / 2

) :
(1 low, 1 high, 1 sum) = MaxSubarray (A, i, k) T(k—i+1)
(r:low, r:high, r:sum) = MaxSubarray (A, k+1, 7J) ITj“k)
(c_ low, ¢ high, ¢ sum) = MaxCrossSubarray (A, 1, k, 7J)
O —i+1)
if 1 sum >= r sum and 1 sum >= ¢ sum // case 1 0(1)

return (1 low, 1 high, 1 sum)

else if r sum >= 1 sum and r sum >= c sum // case 2 O(1)
return (r low, r high, r sum)

else // case 3 B B CKl)

return (c_low, c¢ high, c sum)

©



Algorithm Time Complexity

= Divide a list of size n into 2 subarrays of size n/2 O(1)
“ Recursivecase(n>1) T ( fn/ﬂ)—l—T(Ln/QJ)
= find MaxSub for each subarrays roeeenene
206 e[IIi8 - Base case (n = 1) o)

= Return itself

Find MaxCrossSub for the original list omn) 5

4

Pick the subarray with the maximum sum among 3 '@( )
subarrays et -

= T(n) = time for running MaxSubarray (A, i, j) withj-i+1=n
T(n) O(1) ifn=1
~\ T(In/2]) + T([n/2)) + O(n) it n > 2 ©




Theorem 1

= Theorem

O(1) ifn=1
U= { T([n/2]) + T(|n/2]) + O(n) if n > 2™ T(n) =0O(nlogn)

= Proof :
. . T <l a ifn=1
= There exists positive constant a, b s.t. T'(n) < T([n/2]) + T(|n/2]) +b-n ifn>?2

= Use induction to prove T(n) <2b-nlogyn+a-n

= n =1, trivial

- n>1,n_2H < \75

T(n) < T([n/2])+T([n/2])+b-n
Inductive 2. ([n/2]logy /2] + o [n/2) + 20+ (1n/2]oga[n/2] +a-[/2]) + b
ypothesis zb-((n/zuogz%wa-(n/21)+25-(m/2j1og2%+a-W2J)+b-n

2b-n(logn —log, V2) +a-n+b-n=2b-nlogy,n+a-n @



Theorem 1 (Simplified)

= Theorem

O(1)

if n =

Tn) = { 0T (n/2) + O(n) ifn>2 "™ T()=0(nlogn)

= Proof

= There exists positive constant a, b s.t.

ifn=1

a
<
Tn) < { 2T(n/2) +bn if n > 2
= Use induction to prove T(n) <b-nlogn+a-n

= n =1, trivial

- n>1, T(n)
Inductive
hypothesis

<

<

2T (n/2) + bn

n, n n
2[b-§log§+a~§]+b-n
b-nlogn—06-n+a-n+b-n

b-nlogn+a-n

©



Max Subarray Problem Complexity

Upper bound = O(n?)

Upper bound = O(nlogn)

@D

Lower bound = Q(n)



Max Subarray Problem Complexity

Upper bound = O(nlogn)
Upper bound = O(n)

___________

... Next topic!
Exercise 4.1-5

page 75 of textbook

1

\ 1
\ 7

N .
So .’
~ - - -
\~~‘ "” @ @
-

Lower bound = Q(n)



Solving Recurrences

Textbook Chapter 4.3 — The substitution method for solving recurrences
Textbook Chapter 4.4 — The recursion-tree method for solving recurrences



D&C Algorithm Time Complexity

= T(n): running time for input size n

= D(n): time of Divide for input size n

= C(n): time of Combine for input size n
= a: number of subproblems

= n/b: size of each subproblem

O(1) ifn<c
T(n)= { al(n/b) + D(n) 4+ C(n) otherwise

©



Solving Recurrences

1. Substitution Method (EX1{%)

= Guess a bound and then prove by induction

2. Recursion-Tree Method (& @15 %)

= Expand the recurrence into a tree and sum up the cost

3. Master Method (E' AT, KA/ AEMZE)

= Apply Master Theorem to a specific form of recurrences

= Useful simplification tricks
= |gnore floors, ceilings, boundary conditions (proof in Ch. 4.6)
= Assume base cases are constant (for small n)




Review

= Time Complexity for Merge Sort

= Theorem

O(1 if n =
Tn) = { 2T((7)7,/2) +0(n) ifn>2 "™ T0)=0(nlogn)

= Proof

= There exists positive constant a, b s.t. T(n) < { it n =1

a
2T'(n/2) +bn ifn>2
= Use induction to prove T(n) <b-nlogn+a-n

* n=1, trivial Substitution Method (EX{{;%)
“n>1, T(n) < 2T(n/2)+bn guess a bound and then prove by induction
<

n., n n
2[b-§log§+a-§]+b-n

b-nlogn—bb-n+a-n+b-n @

b-nlogn+a-n



Review

= Time Complexity for Merge Sort

= Theorem

O(1 ifn=1
Tn) = { 22;(7)7,/2) +0(n) ifn>2 "™ T0)=0(nlogn)

* Proof n Recursion-Tree Method (#E 2 1)X)
T(n) < ZT(E) +cn Expand the recurrence into a tree and sum up the cost
n n n
< Q[QT(Z) + 65] +cn = 4T(Z) +2cn 15t expansion
< 4[2T(g) + cz] +2en = 8T(g) +3en 2™ expansion
: T(n) < nT(1)+cnlogyn
< 2’“T(2%) + ken k™ expansion = O(n)+ O(nlogn)

The expansion stops when 2k = n = O(nlogn)



@) To Be Continued...




Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://adal7.csie.org

Email: ada-ta@csie.ntu.edu.tw



http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

