

Divide & Conquer (1) Sep 28th, 2017

Algorithm Design and Analysis

YUN-NUNG (VIVIAN) CHEN HTTP://ADA17.CSIE.ORG

Announcement

- Mini-HW 2 released
 - Due on 10/5 (Thu) 17:20
 - Print out the A4 hard copy and submit before the lecture finishes
- Homework 1 released
 - Due on 10/19 (Thur) 17:20 (total 4 weeks)
 - Writing: print out the A4 hard copy and submit before the lecture finishes
 - Programming: submit to Online Judge http://ada-judge.csie.org
 - Account and password were sent

程式的參考資料請加在註解中

>_ ADA JUDGE 2017

Login to begin...

Mini-HW 2

Mini HW #2

Due Time: 2017/10/05 (Thu.) 14:20

Contact TAs: ada-ta@csie.ntu.edu.tw

Let $T(n) = 4T(\sqrt{n}) + \log n$. I guess that $T(n) = O(\log^2 n)$, can you prove it for me?

Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破)

Outline

- Recurrence (遞迴)
- Divide-and-Conquer
- D&C #1: Tower of Hanoi (河內塔)
- D&C #2: Merge Sort
- D&C #3: Bitonic Champion
- D&C #4: Maximum Subarray
- Solving Recurrences
 - Substitution Method
 - Recursion-Tree Method
 - Master Method
- D&C #5: Matrix Multiplication
- D&C #6: Selection Problem
- D&C #7: Closest Pair of Points Problem

Divide-and-Conquer 首部曲

Divide-and-Conquer 之神乎奇技

What is Divide-and-Conquer?

- Solve a problem recursively
- Apply three steps at each level of the recursion
 - 1. Divide the problem into a number of subproblems that are smaller instances of the same problem (比較小的同樣問題)
 - 2. Conquer the subproblems by solving them recursively If the subproblem sizes are *small enough*
 - then solve the subproblems

base case

else recursively solve itself

recursive case

Combine the solutions to the subproblems into the solution for the original problem

Divide-and-Conquer Benefits

- Easy to solve difficult problems
 - Thinking: solve easiest case + combine smaller solutions into the original solution
- Easy to find an efficient algorithm
 - Better time complexity
- Suitable for parallel computing (multi-core systems)
- More efficient memory access
 - Subprograms and their data can be put in cache in stead of accessing main memory

® Recurrence (遞迴)

Recurrence Relation

Definition

A *recurrence* is an equation or inequality that describes a function in

terms of its value on smaller inputs.

Example

Fibonacci sequence (費波那契數列)

- Base case: F(0) = F(1) = 1
- Recursive case: F(n) = F(n-1) + F(n-2)

n	0	1	2	3	4	5	6	7	8	•••
F(n)	1	1	2	3	5	8	13	21	34	

Recurrence Benefits

- Easy & Clear
- Define base case and recursive case
 - Define a long sequence

Base case Recursive case

F(0), F(1), F(2).....unlimited sequence

a program for solving F(n)

```
Fibonacci(n) // recursive function:程式中會呼叫自己的函數
if n < 2 // base case: termination condition
return 1 important otherwise the program cannot stop

// recursive case: call itself for solving subproblems
return Fibonacci(n-1) + Fibonacci(n-2)
```

Recurrence v.s. Non-Recurrence

```
Fibonacci(n)
   if n < 2 // base case
       return 1
   // recursive case
   return Fibonacci (n-1) + Fibonacci (n-2)
```

Recursive function

- Clear structure
- Poor efficiency 🦪

```
Fibonacci(n)
   if n < 2
       return 1
   a[0] < -1
   a[1] < -1
   for i = 2 \dots n
        a[i] = a[i-1] + a[i-2]
   return a[n]
```

Non-recursive function

- Better efficiency 亡
- Unclear structure 🗇

Recurrence Benefits

- Easy & Clear
- Define base case and recursive case
 - Define a long sequence

Base case Recursive case

F(0), F(1), F(2).....unlimited sequence

a program for solving F(n)

a program for solving Hanoi(n)

If a problem can be simplified into a **base case** and a **recursive case**, then we can find a algorithm that solves this problem.

D&C#1:
Tower of Hanoi

Tower of Hanoi (河內塔)

- Problem: move n disks from A to C
- Rules
 - Move one disk at a time
 - Cannot place a larger disk onto a smaller disk

Hanoi(1)

Move 1 from A to C

→ 1 move in total

Base case

Hanoi(2)

Move 1 from A to B

→ 3 moves in total

- Move 2 from A to C
- Move 1 from B to C

Hanoi(3)

- How to move 3 disks?
- How many moves in total?

- How to move n disks?
- How many moves in total?

- To move n disks from A to C (for n > 1):
 - Move Disk 1~n-1 from A to B

- To move n disks from A to C (for n > 1):
 - Move Disk 1~n-1 from A to B

- To move n disks from A to C (for n > 1):
 - Move Disk 1~n-1 from A to B
 - 2. Move Disk n from A to C

- To move n disks from A to C (for n > 1):
 - Move Disk 1~n-1 from A to B
 - Move Disk n from A to C

- To move n disks from A to C (for n > 1):
 - Move Disk 1~n-1 from A to B
 - 2. Move Disk n from A to C
 - 3. Move Disk 1~n-1 from B to C

- To move n disks from A to C (for n > 1):
 - Move Disk 1~n-1 from A to B
 - 2. Move Disk n from A to C
 - 3. Move Disk 1~n-1 from B to C

→ 2Hanoi(n-1) + 1 moves in total recursive case

Pseudocode for Hanoi

```
Hanoi(n, src, dest, spare)
  if n==1 // base case
    Move disk from src to dest
  else // recursive case
    Hanoi(n-1, src, spare, dest)
    Move disk from src to dest
    Hanoi(n-1, spare, dest, src)
```

No need to combine the results in this case

Algorithm Time Complexity

```
Hanoi(n, src, dest, spare)
  if n==1 // base case
    Move disk from src to dest
  else // recursive case
    Hanoi(n-1, src, spare, dest)
    Move disk from src to dest
    Hanoi(n-1, spare, dest, src)
```

- T(n) = #moves with n disks
 - Base case: T(1) = 1
 - Recursive case (n > 1): T(n) = 2T(n 1) + 1

• We will learn how to derive T(n) later

Q1: Is $O(2^n)$ tight for Hanoi? Q2: What about more than 3 pegs?

$$T(n) = 2^n - 1 = O(2^n)$$

Textbook Chapter 2.3.1 – The divide-and-conquer approach

Sorting Problem

Input: unsorted list of size *n*

What are the **base case** and **recursive case**?

Output: sorted list of size *n*

Divide-and-Conquer

- Base case (n = 1)
 - Directly output the list
- Recursive case (n > 1)
 - Divide the list into two sub-lists
 - Sort each sub-list recursively
 - Merge the two sorted lists How?

2 sublists of size n/2

of comparisons = $\Theta(n)$

Illustration for n = 10

Illustration for n = 10

- 1 2 3 4 5 6 7 8 9 10
- 1 3 5 6 8 2 4 7 9 10
- 3 5 6 1 8 2 7 9 4 10
- 6 3 9 7

Pseudocode for Merge Sort

```
MergeSort(A, p, r)
  // base case
  if p == r
    return
  // recursive case
  // divide
  q = [(p+r-1)/2]
  // conquer
  MergeSort(A, p, q)
  MergeSort(A, q+1, r)
  // combine
  Merge(A, p, q, r)
```

1. Divide

2. Conquer

3. Combine

 Divide a list of size n into 2 sublists of size n/2

- Recursive case (n > 1)
 - Sort 2 sublists recursively using merge sort
- Base case (n = 1)
 - Return itself
- Merge 2 sorted sublists into one sorted list in linear time

Time Complexity for Merge Sort

```
MergeSort(A, p, r)
  // base case
  if p == r
   return
  // recursive case
  // divide
  q = [(p+r-1)/2]
  // conquer
  MergeSort(A, p, q)
  MergeSort(A, q+1, r)
  // combine
  Merge (A, p, q, r)
```

1. Divide

2. Conquer

3. Combine

• Divide a list of size n into 2 $\Theta(1)$ sublists of size n/2

- Recursive case (n > 1)
 - Sort 2 sublists *recursively* using *merge sort* $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$
- Base case (n=1)
 - Return itself $\Theta(1)$
- Merge 2 sorted sublists into $\Theta(n)$ one sorted list in **linear** time
- T(n) = time for running MergeSort (A, p, r) with r-p+1=n

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \ge 2 \end{cases}$$

Time Complexity for Merge Sort

- Simplify recurrences
- Ignore floors and ceilings (boundary conditions)
- Assume base cases are constant (for small n)

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases}$$

$$T(n) \leq 2T(\frac{n}{2}) + cn$$

$$\leq 2[2T(\frac{n}{4}) + c\frac{n}{2}] + cn = 4T(\frac{n}{4}) + 2cn \qquad \mathbf{1^{st}} \text{ expansion}$$

$$\leq 4[2T(\frac{n}{8}) + c\frac{n}{4}] + 2cn = 8T(\frac{n}{8}) + 3cn \qquad \mathbf{2^{nd}} \text{ expansion}$$

$$\vdots \qquad \qquad T(n) \leq nT(1) + cn\log_2 n$$

$$\leq 2^k T(\frac{n}{2^k}) + kcn \qquad \mathbf{k^{th}} \text{ expansion}$$

$$= O(n) + O(n\log n)$$

The expansion stops when $2^k = n$

 $= O(n \log n)$

Theorem 1

Theorem

$$T(n) = \left\{ \begin{array}{ll} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \geq 2 \end{array} \right. \Rightarrow T(n) = O(n \log n)$$

- Proof
 - There exists positive constant a, b s.t. $T(n) \leq \begin{cases} a & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + b \cdot n & \text{if } n \geq 2 \end{cases}$
 - Use induction to prove $T(n) \leq 2b \cdot n \log_2 n + a \cdot n$
 - n = 1, trivial
 - n > 1, $\lceil \frac{n}{2} \rceil \leq \frac{n}{\sqrt{2}}$

$$T(n) \le T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + b \cdot n$$

Inductive
$$\leq 2b \cdot (\lceil n/2 \rceil \log_2 \lceil n/2 \rceil) + a \cdot \lceil n/2 \rceil + 2b \cdot (\lfloor n/2 \rfloor \log_2 \lfloor n/2 \rfloor) + a \cdot \lfloor n/2 \rfloor + b \cdot n$$

$$\leq 2b \cdot (\lceil n/2 \rceil \log_2 \frac{n}{\sqrt{2}} \rceil) + a \cdot \lceil n/2 \rceil + 2b \cdot (\lfloor n/2 \rfloor \log_2 \frac{n}{\sqrt{2}}) + a \cdot \lfloor n/2 \rfloor + b \cdot n$$

$$= 2b \cdot n(\log n - \log_2 \sqrt{2}) + a \cdot n + b \cdot n = 2b \cdot n \log_2 n + a \cdot n$$

How to Solve Recurrence Relations?

- 1. Substitution Method (取代法)
 - Guess a bound and then prove by induction
- 2. Recursion-Tree Method (遞廻樹法)
 - Expand the recurrence into a tree and sum up the cost
- 3. Master Method (套公式大法/大師法)
 - Apply Master Theorem to a specific form of recurrences

Let's see more examples first and come back to this later

D&C#3: Bitonic Champion Problem

Bitonic Champion Problem

The bitonic champion problem

- Input: A bitonic sequence $A[1], A[2], \ldots, A[n]$ of distinct positive integers.
- Output: the index i with $1 \le i \le n$ such that

$$A[i] = \max_{1 \le j \le n} A[j].$$

The bitonic sequence means "increasing before the champion and decreasing after the champion" (冠軍之前遞增、冠軍之後遞減)

Why?

Lower bound = $\Omega(1)$

Why not $\Omega(n)$?

- When there are n inputs, any solution has n different outputs
- Any comparison-based algorithm needs $\Omega(\log n)$ time in the worst case

Upper bound = O(n)

Lower bound = $\Omega(\log n)$

Lower bound = $\Omega(1)$

 Idea: divide A into two subproblems and then find the final champion based on the champions from two subproblems

```
Output = Champion(1, n)
```

```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
        return l
    if A[l] < A[r]
        return r</pre>
```

Illustration for n = 10

Practice by yourself!

```
Output = Chamption(1, n)
```

```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
      return l
    if A[l] < A[r]
    return r</pre>
```

Hint: use induction on (j-i) to prove Champion (i, j) can return the champion from A[i ... j]

Algorithm Time Complexity

```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
      return l
    if A[l] < A[r]
    return r</pre>
```

1. Divide

2. Conquer

3. Combine

• Divide a list of size n into 2 sublists of size n/2 $\Theta(1)$

$$T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$$

- Recursive case
 - Find champions from 2 sublists recursively
- Base case
 - Return itself

• Choose the final champion by a single comparison $\Theta(1)$

• T(n) = time for running Champion (i, j) with j - i + 1 = n

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(1) & \text{if } n \ge 2 \end{cases}$$

Theorem 2

Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(1) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n)$$

- Proof
 - There exists positive constant a, b s.t.

$$T(n) \le \begin{cases} a & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + b & \text{if } n \ge 2 \end{cases}$$

- Use induction to prove $T(n) \leq a \cdot n + b \cdot (n-1)$
 - n = 1, trivial
 - n > 1,

$$T(n) \leq T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + b$$

$$\begin{array}{ll} \text{Inductive} & \leq & a \cdot \lceil n/2 \rceil + b \cdot (\lceil n/2 \rceil - 1) + a \cdot \lfloor n/2 \rfloor + b \cdot (\lfloor n/2 \rfloor - 1) + b \\ & \leq & a \cdot n + b \cdot (n-1) \end{array}$$

$$\leq a \cdot n + b \cdot (n-1)$$

Upper bound = O(n)

Can we have a better algorithm by using the bitonic sequence property?

sequence property?

Lower bound = $\Omega(\log n)$


```
Champion(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    l = Champion(i, k)
    r = Champion(k+1, j)
    if A[l] > A[r]
      return l
    if A[l] < A[r]
    return r</pre>
```



```
Champion-2(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
       return Champion(i, k)
    if A[k] < A[k+1]
    return Champion(k+1, j)</pre>
```

Illustration for n = 10

Practice by yourself!

```
Output = Champion-2(1, n)
```

```
Champion-2(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
      return Champion(i, k)
    if A[k] < A[k+1]
    return Champion(k+1, j)</pre>
```

Two crucial observations:

- If A[1 ... n] is bitonic, then so is A[i,j] for any indices i and j with $1 \le i \le j \le n$.
- For any indices i, j, and k with $1 \le i \le j \le n$, we know that A[k] > A[k+1] if and only if the maximum of A[i ... j] lies in A[i ... k].

Algorithm Time Complexity

```
Champion-2(i, j)
  if i==i // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
      return Champion(i, k)
    if A[k] < A[k+1]
      return Champion(k+1, j)
```

1. Divide

Divide a list of size n into 2 sublists of size n/2 $\Theta(1)$

Find champions from 1

sublists *recursively*

• Recursive case $T(\lceil n/2 \rceil)$

2. Conquer

Base case

Return itself

3. Combine

• Return the champion $\Theta(1)$

• T(n) = time for running Champion (i, j) with j - i + 1 = n

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + O(1) & \text{if } n \ge 2 \end{cases}$$

Algorithm Time Complexity

```
Champion-2(i, j)
  if i==j // base case
    return i
  else // recursive case
    k = floor((i+j)/2)
    if A[k] > A[k+1]
       return Champion(i, k)
    if A[k] < A[k+1]
       return Champion(k+1, j)</pre>
```

The algorithm time complexity is $O(\log n)$

- each recursive call reduces the size of (j - i) into half
- there are $O(\log n)$ levels
- each level takes O(1)

•
$$T(n)$$
 = time for running Champion (i, j) with $j-i+1=n$
$$T(n) = \left\{ \begin{array}{ll} O(1) & \text{if } n=1 \\ T(\lceil n/2 \rceil) + O(1) & \text{if } n \geq 2 \end{array} \right.$$

Theorem 3

Theorem

$$T(n) \le \begin{cases} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + O(1) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(\log n)$$

Proof

Practice to prove by induction

Upper bound = O(n)

Upper bound = $O(\log n)$

Lower bound = $\Omega(\log n)$

D&C #4: Maximum Subarray Problem

Textbook Chapter 4.1 – The maximum-subarray problem

• How can we find the most efficient time interval for continuous coding?

Coding power

戰鬥力(K)

7pm-2:59am Coding power= 8k

Maximum Subarray Problem

- Input: A sequence $A[1], A[2], \ldots, A[n]$ of integers.
- Output: Two indicex i and j with $1 \le i \le j \le n$ that maximize

$$A[i] + A[i+1] + \cdots + A[j].$$

$O(n^3)$ Brute Force Algorithm

$O(n^2)$ Brute Force Algorithm

```
MaxSubarray-2(i, j)
  for i = 1, ..., n
                                                   O(n^2)
    for j = 1, ..., n
       S[i][j] = -\infty
                       R[n] is the sum over A[1...n]
  R[0] = 0
  for i = 1, ..., n
    R[i] = R[i-1] + A[i]
  for i = 1, ..., n
    for j = i+1, i+2, ..., n
       S[i][i] = R[i] - R[i-1]
                                                    O(n^2)
  return Champion(S)
```

Max Subarray Problem Complexity

Divide-and-Conquer

- Base case (n = 1)
 - Return itself (maximum subarray)
- Recursive case (n > 1)
 - Divide the array into two sub-arrays
 - Find the maximum sub-array recursively
 - Merge the results How?

Where is the Solution?

• The maximum subarray for any input must be in one of following cases:

Case 3: Cross the Middle

Goal: find the maximum subarray that crosses the middle

- (1) Start from the middle to find the left maximum subarray
- (2) Start from the middle to find the right maximum subarray

The solution of Case 3 is the combination of (1) and (2)

- Observation
 - The sum of A[x ... k] must be the maximum among A[i ... k] (left: $i \le k$)
 - The sum of A[k+1...y] must be the maximum among A[k+1...j] (right: j>k)
 - Solvable in linear time $\rightarrow \Theta(n)$

Divide-and-Conquer Algorithm

```
MaxCrossSubarray(A, i, k, j)
  left sum = -\infty
  sum=0
                         O(k-i+1)
  for p = k downto i
    sum = sum + A[p]
    if sum > left sum
      left sum = sum
     max left = p
 right_sum = -\infty
  sum=0
                          O(j-k)
  for q = k+1 to j
    sum = sum + A[q]
    if sum > right sum
      right sum = sum
     max right = q
  return (max left, max right, left sum + right sum)
```

Divide-and-Conquer Algorithm

```
MaxSubarray(A, i, j)
   if i == j // base case
     return (i, j, A[i])
   else // recursive case
     k = floor((i + j) / 2)
     (l low, l high, l sum) = MaxSubarray(A, i, k)
Divide (r low, r high, r sum) = MaxSubarray(A, k+1, j)
                                                            Conquer
     (c low, c high, c sum) = MaxCrossSubarray(A, i, k, j)
   if 1 sum >= r sum and 1 sum >= c sum // case 1
     return (1 low, 1 high, 1 sum)
   else if r sum >= 1 sum and r sum >= c sum // case 2 Combine
     return (r low, r high, r sum)
   else // case 3
     return (c low, c high, c sum)
```

Divide-and-Conquer Algorithm

```
MaxSubarray(A, i, j)
                                                      O(1)
  if i == j // base case
    return (i, j, A[i])
  else // recursive case
   k = floor((i + j) / 2)
                                                      T(k-i+1)
    (1 low, 1 high, 1 sum) = MaxSubarray(A, i, k)
    (r_low, r_high, r_sum) = MaxSubarray(A, k+1, j) T(j-k)
    (c low, c high, c sum) = MaxCrossSubarray(A, i, k, j)
                                                      O(j-i+1)
  if l sum >= r sum and l sum >= c sum // case 1
                                                      O(1)
    return (1 low, 1 high, 1 sum)
  else if r_sum >= l_sum and r_sum >= c_sum // case 2 O(1)
    return (r low, r high, r sum)
                                                      O(1)
  else // case 3
    return (c low, c high, c sum)
```

Algorithm Time Complexity

1. Divide

Divide a list of size n into 2 subarrays of size n/2

 $\Theta(1)$

•

2. Conquer

- Recursive case (n > 1)
 - find MaxSub for each subarrays
 - Base case (n = 1)
 - Return itself

 $\Theta(1)$

 $\Theta(n)$

- Find MaxCrossSub for the original list
- 3. Combine
- Pick the subarray with the maximum sum among 3 subarrays

 $\Theta(1)$

• T(n) = time for running MaxSubarray(A, i, j) with j - i + 1 = n

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \ge 2 \end{cases}$$

Theorem 1

Theorem

$$T(n) = \left\{ \begin{array}{ll} O(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + O(n) & \text{if } n \geq 2 \end{array} \right. \Rightarrow T(n) = O(n \log n)$$

- Proof
 - There exists positive constant a, b s.t. $T(n) \leq \begin{cases} a & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + b \cdot n & \text{if } n \geq 2 \end{cases}$
 - Use induction to prove $T(n) \leq 2b \cdot n \log_2 n + a \cdot n$
 - n = 1, trivial
 - n > 1, $\frac{n+1}{2} \le \frac{n}{\sqrt{2}}$

$$T(n) \leq T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + b \cdot n$$

Inductive
$$\geq 2b \cdot (\lceil n/2 \rceil \log_2 \lceil n/2 \rceil + a \cdot \lceil n/2 \rceil) + 2b \cdot (\lfloor n/2 \rfloor \log_2 \lfloor n/2 \rfloor + a \cdot \lfloor n/2 \rfloor) + b \cdot n$$

$$\leq 2b \cdot (\lceil n/2 \rceil \log_2 \frac{n}{\sqrt{2}} \rceil + a \cdot \lceil n/2 \rceil) + 2b \cdot (\lfloor n/2 \rfloor \log_2 \frac{n}{\sqrt{2}} + a \cdot \lfloor n/2 \rfloor) + b \cdot n$$

$$= 2b \cdot n(\log n - \log_2 \sqrt{2}) + a \cdot n + b \cdot n = 2b \cdot n \log_2 n + a \cdot n$$

Theorem 1 (Simplified)

Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n \log n)$$

- Proof
 - There exists positive constant a, b s.t.

$$T(n) \le \begin{cases} a & \text{if } n = 1\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

- Use induction to prove $T(n) \leq b \cdot n \log n + a \cdot n$
 - n = 1, trivial

Max Subarray Problem Complexity

Upper bound = $O(n^2)$

Upper bound = $O(n \log n)$

Lower bound = $\Omega(n)$

Max Subarray Problem Complexity

Solving Recurrences

Textbook Chapter 4.3 – The substitution method for solving recurrences

Textbook Chapter 4.4 – The recursion-tree method for solving recurrences

D&C Algorithm Time Complexity

- T(n): running time for input size n
- D(n): time of **Divide** for input size n
- C(n): time of **Combine** for input size n
- a: number of subproblems
- n/b: size of each subproblem

$$T(n) = \begin{cases} O(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

Solving Recurrences

- 1. Substitution Method (取代法)
 - Guess a bound and then prove by induction
- 2. Recursion-Tree Method (遞廻樹法)
 - Expand the recurrence into a tree and sum up the cost
- 3. Master Method (套公式大法/大師法)
 - Apply Master Theorem to a specific form of recurrences
- Useful simplification tricks
 - Ignore floors, ceilings, boundary conditions (proof in Ch. 4.6)
 - Assume base cases are constant (for small n)

Review

- Time Complexity for Merge Sort
- Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n \log n)$$

- Proof
 - There exists positive constant a,b s.t. $T(n) \leq \left\{ \begin{array}{ll} a & \text{if } n=1 \\ 2T(n/2) + bn & \text{if } n \geq 2 \end{array} \right.$
 - Use induction to prove $T(n) \leq b \cdot n \log n + a \cdot n$
 - n = 1, trivial • n = 1, trivial • n > 1, $T(n) \le 2T(n/2) + bn$ Substitution ivietnod (AXTO/A) guess a bound and then prove by induction $\leq 2\left[b \cdot \frac{n}{2}\log\frac{n}{2} + a \cdot \frac{n}{2}\right] + b \cdot n$ $= b \cdot n \log n - b \cdot n + a \cdot n + b \cdot n$ $= b \cdot n \log n + a \cdot n$

Review

- Time Complexity for Merge Sort
- Theorem

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \ge 2 \end{cases} \implies T(n) = O(n \log n)$$

Proof

$$T(n) \leq 2T(\frac{n}{2}) + cn$$

Recursion-Tree Method (遞廻樹法)

Expand the recurrence into a tree and sum up the cost

$$\leq 2[2T(\frac{n}{4})+c\frac{n}{2}]+cn=4T(\frac{n}{4})+2cn$$
 1st expansion

$$\leq 4[2T(\frac{n}{8})+c\frac{n}{4}]+2cn=8T(\frac{n}{8})+3cn$$
 2nd expansion

To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw