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Generative Models
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DNN are easily fooled

1 State-of-the-art DNNs can recognize ‘ 2 But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects
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Nguyen et al., “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images,” arXiv:1412.1897.




Bias Issue
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Bolukbasi et al., “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings,” arXiv:1607.06520.
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Model Compression

Deeper models achieve better accuracy: GoogleNet, ResNet

SqueezeNet aims at AlexNet-level accuracy with smaller model,
motivated by

I.  Smaller CNNs require less communication across servers during
distributed training

ii. less bandwidth to export a new model from the cloud to an
autonomous car

iii. more feasible to deploy on FPGAs and other hardware with
limited memory

landola et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” arXiv:1602.07360.
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CNN v.s. RNN

CNN is also able to capture knowledge from windowed data
for sequential input

RNN mainly benefits from learning the sequential
information = order matters

Efficiency? Effectiveness? Combination?
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Deep Learning in Robotics

Traditional: humanoids or manipulators

Trend: policy search framework / reinforcement learning

o Failure cost is expensive
* Cloud robotics
* Learning from demonstration
> Decisions should be made
in real time
* Model size reduction

* Transferring learned
knowledge for a new task

Levine et al., “End-to-End Training of Deep Visuomotor Policies,” arXiv:1504.00702.
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Generative Adversarial Networks (GAN)
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Two players reach a Nash equilibrium to produce an optimal generator

Goodfellow, et al., “Generative adversarial networks,” in NIPS, 2014.



Concluding Remarks

Deep Learning Issues
°DNNs are easily fooled
°Bias issue

From “Going Deeper” to “Compressing more lightly”
°|less communication

°|less bandwidth to export

ofeasible to deploy

CNN v.s. RNN

Deep Learning in Robotics: policy search/reinforcement learning
° Expensive cost: cloud robot, learning from demonstration
° Real-time decision: model compression, knowledge transfer

Generative Models: GAN
° Adversarial framework: generator & discriminator




