

Deep Learning Issues From "Going Deeper" to "Compressing more lightly" CNN v.s. RNN Deep Learning in Robotics Generative Models

Deep Learning Issues

From "Going Deeper" to "Compressing more lightly" CNN v.s. RNN

Deep Learning in Robotics

DNN are easily fooled

Nguyen et al., "Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images," arXiv:1412.1897.

Bias Issue

Deep Learning Issues

From "Going Deeper" to "Compressing more lightly"

CNN v.s. RNN

Deep Learning in Robotics

Model Compression

Deeper models achieve better accuracy: GoogLeNet, ResNet

SqueezeNet aims at AlexNet-level accuracy with smaller model, motivated by

- i. Smaller CNNs require less communication across servers during distributed training
- ii. less bandwidth to export a new model from the cloud to an autonomous car
- iii. more feasible to deploy on FPGAs and other hardware with limited memory

Deep Learning Issues

From "Going Deeper" to "Compressing more lightly"

CNN v.s. RNN

Deep Learning in Robotics

CNN v.s. RNN

CNN is also able to capture knowledge from windowed data for sequential input

RNN mainly benefits from learning the sequential information \rightarrow order matters

Efficiency? Effectiveness? Combination?

Deep Learning Issues

From "Going Deeper" to "Compressing more lightly"

CNN v.s. RNN

Deep Learning in Robotics

Deep Learning in Robotics

Traditional: humanoids or manipulators

Trend: policy search framework / reinforcement learning

- Failure cost is expensive
 - Cloud robotics
 - Learning from demonstration
- Decisions should be made in real time
 - Model size reduction
 - Transferring learned knowledge for a new task

Deep Learning Issues

From "Going Deeper" to "Compressing more lightly"

CNN v.s. RNN

Deep Learning in Robotics

Generative Adversarial Networks (GAN)

Two players reach a Nash equilibrium to produce an optimal generator

Concluding Remarks

Deep Learning Issues

- DNNs are easily fooled
- Bias issue

From "Going Deeper" to "Compressing more lightly"

- less communication
- less bandwidth to export
- feasible to deploy

CNN v.s. RNN

Deep Learning in Robotics: policy search/reinforcement learning • Expensive cost: cloud robot, learning from demonstration

• Real-time decision: model compression, knowledge transfer

Generative Models: GAN

Adversarial framework: generator & discriminator