

Slide credit from Hung-Yi Lee

BUY

Dec 22nd, 2016

Introduction

Big data ≠ Big annotated data

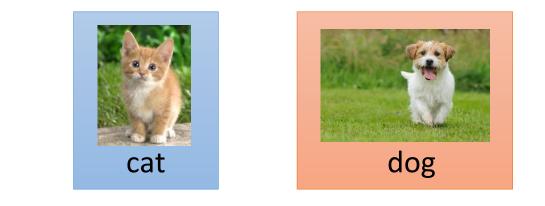
Machine learning techniques include:

Supervised learning (if we have labelled data)

- Reinforcement learning (if we have an environment for reward)
- Unsupervised learning (if we do not have labelled data)

What can we do if there is no sufficient training data?

Semi-Supervised Learning



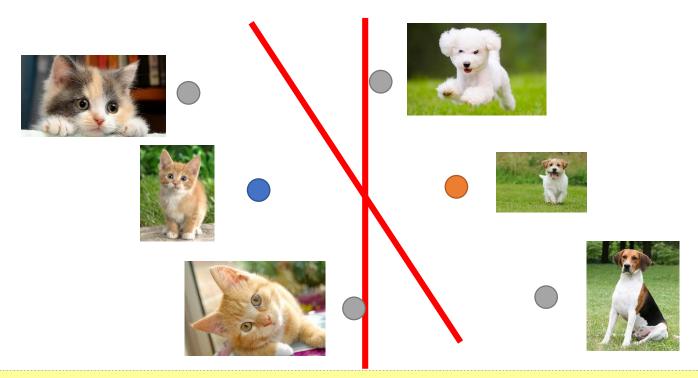
Labelled data

Unlabeled data

(Image of cats and dogs without labeling)

Semi-Supervised Learning

Why semi-supervised learning helps?



The distribution of the unlabeled data provides some cues

Transfer Learning

Labelled data

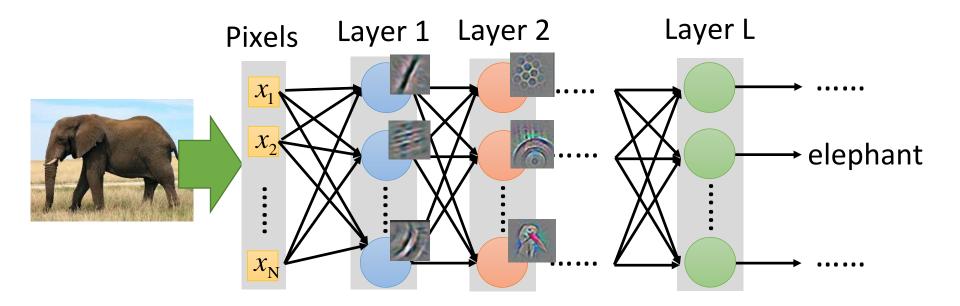
Labeled
dataImage: Description of the second secon

Not related to the task considered

Transfer Learning

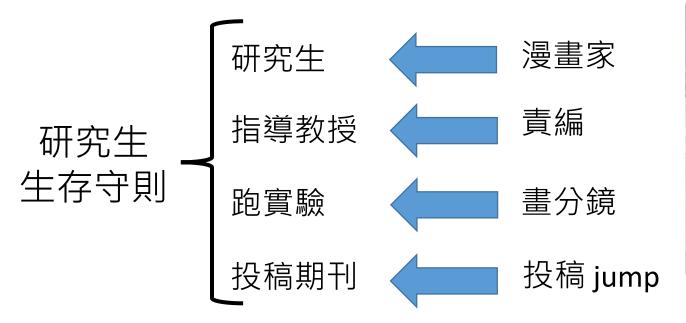
Widely used on image processing

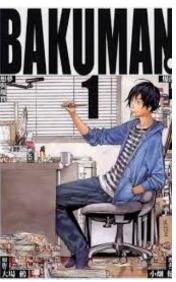
- Using sufficient labeled data to learn a CNN
- Using this CNN as feature extractor



Transfer Learning Example

研究生online



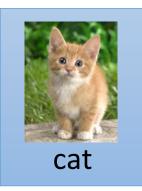


爆漫王

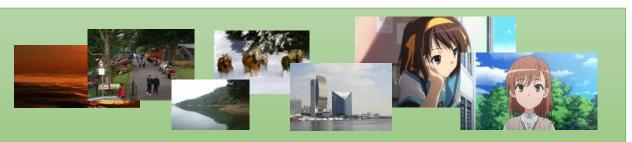
Self-Taught Learning

The unlabeled data sometimes is not related to the task

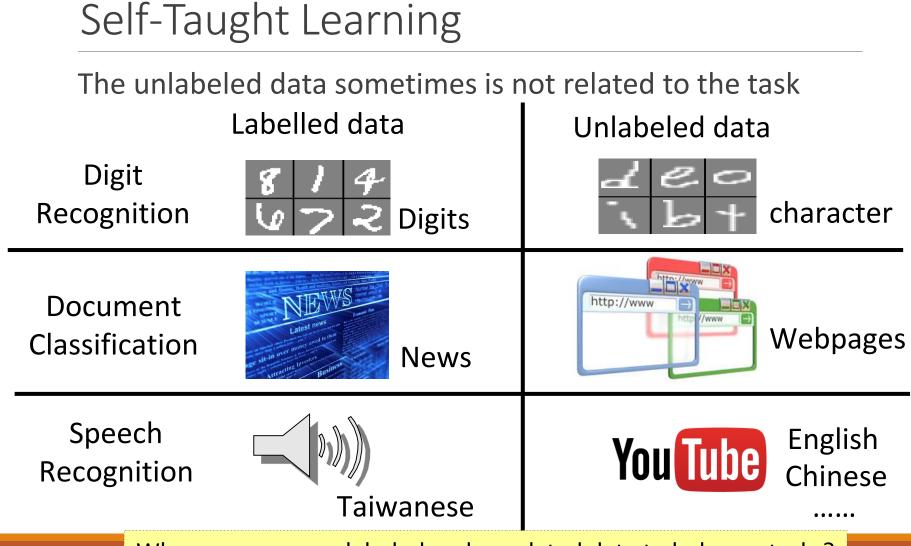
Labelled data



Unlabeled data



(Just crawl millions of images from the Internet)



Why can we use unlabeled and unrelated data to help our tasks?

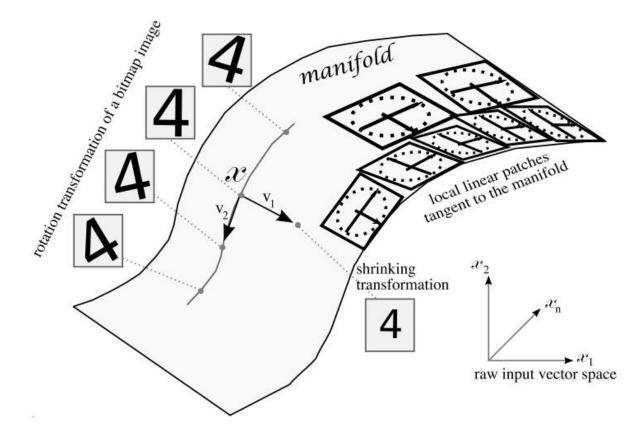
Self-Taught Learning

How does self-taught learning work?

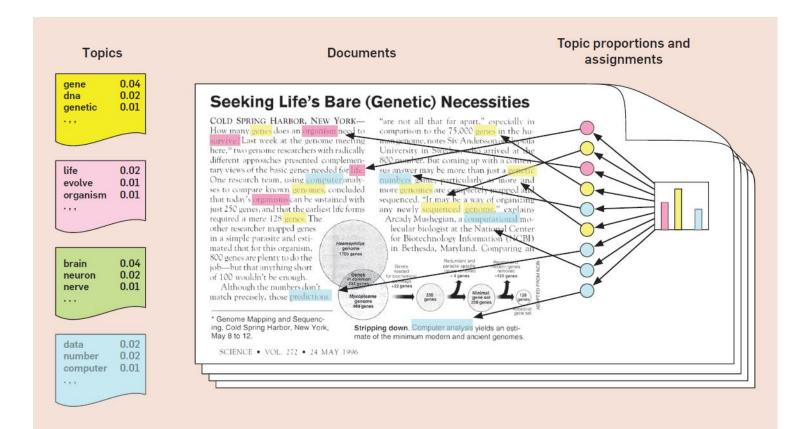
Why does unlabeled and unrelated data help the tasks?

Finding latent factors that control the observations

Latent Factors for Handwritten Digits



Latent Factors for Documents



http://deliveryimages.acm.org/10.1145/2140000/2133826/figs/f1.jpg

Latent Factors for Recommendation System

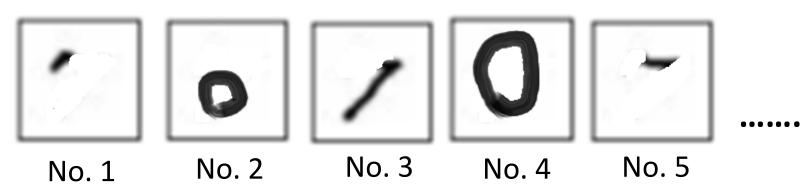
單純呆	Α		
傲嬌	В		
	С		

Latent Factor Exploitation

Handwritten digits

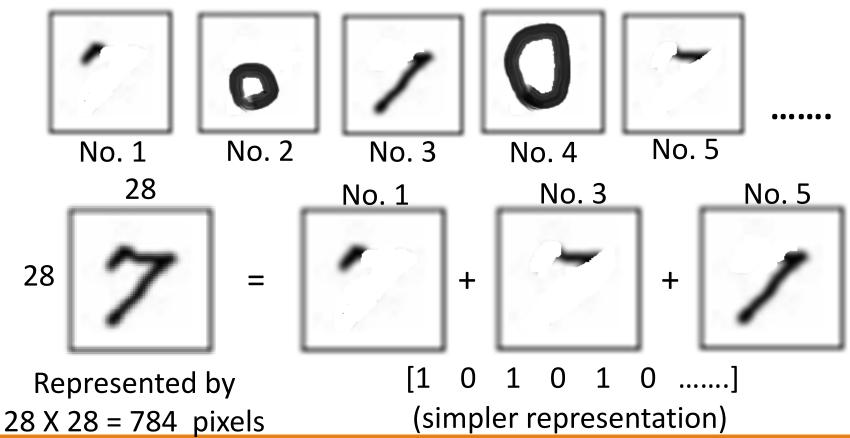
The handwritten images are composed of **strokes**

Strokes (Latent Factors)



Latent Factor Exploitation

Strokes (Latent Factors)

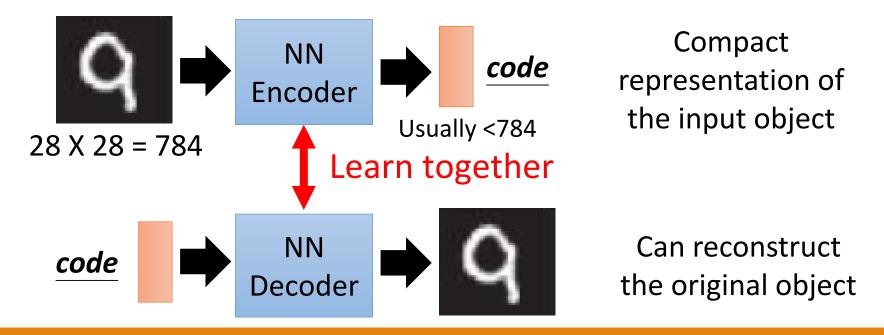


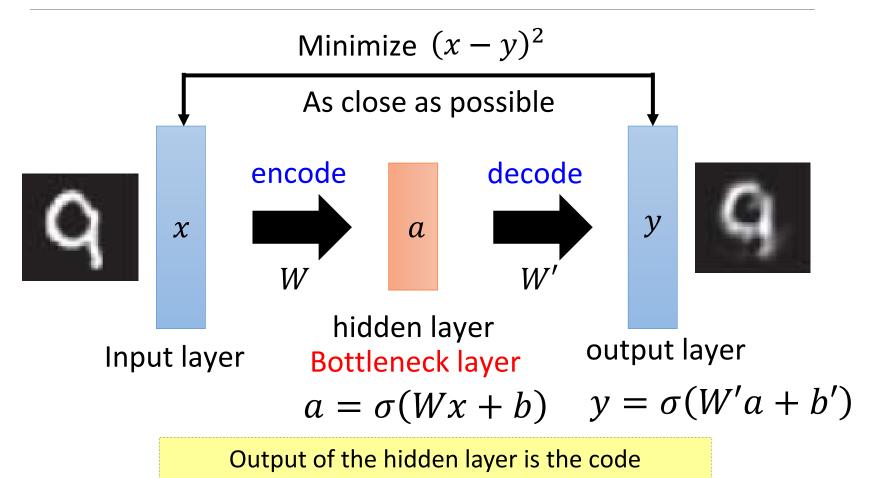
Representation Learning

Represent a digit using 28 X 28 dimensions

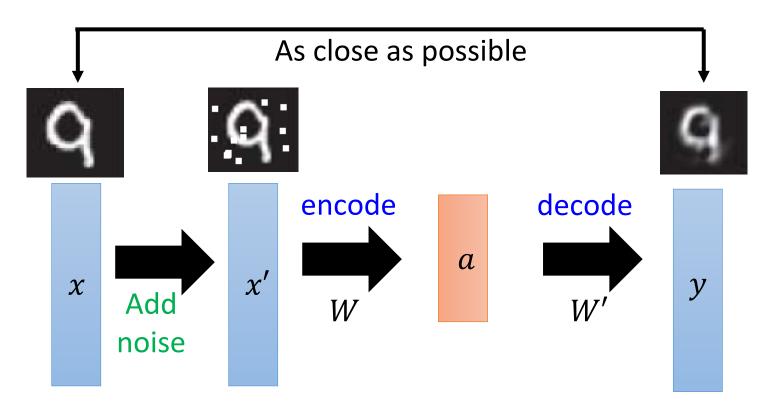
Not all 28 X 28 images are digits

Idea: represent the images of digits in a more compact way

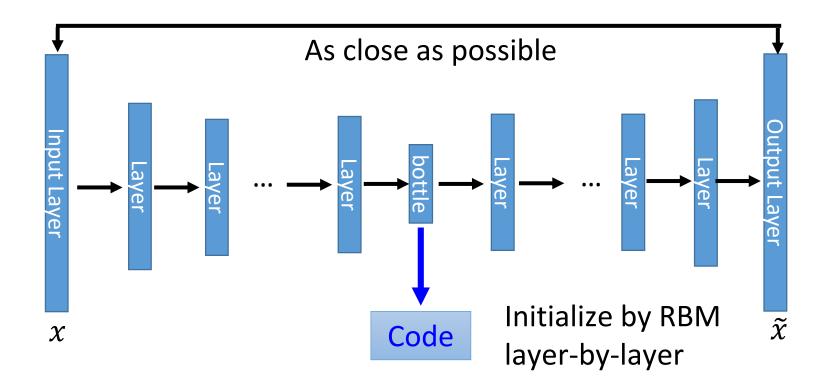




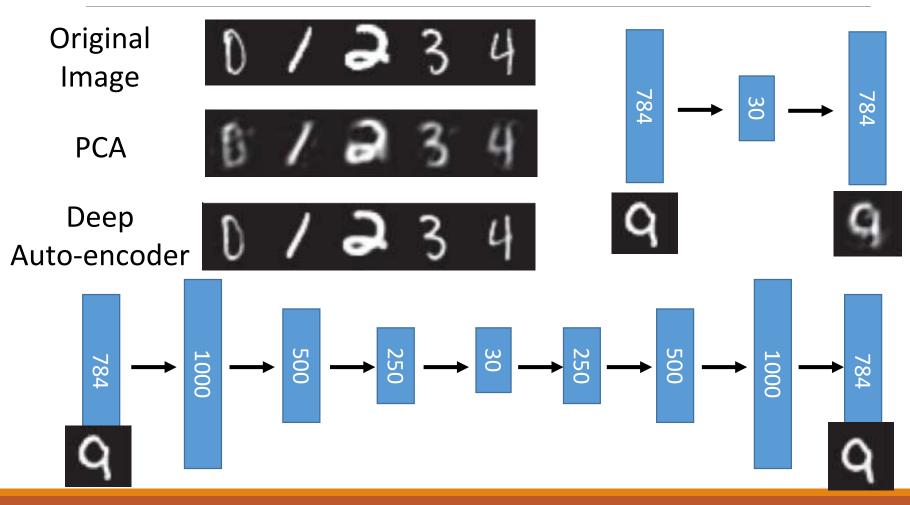
De-noising auto-encoder



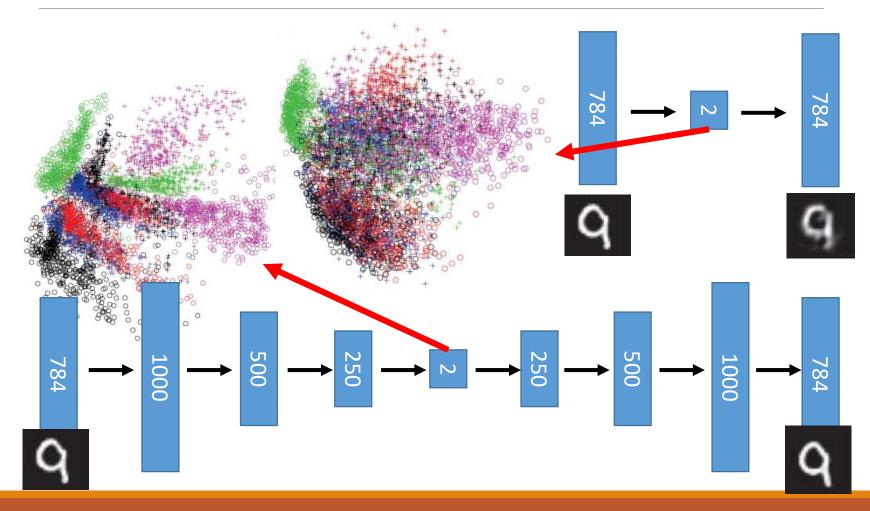
Deep Autoencoder



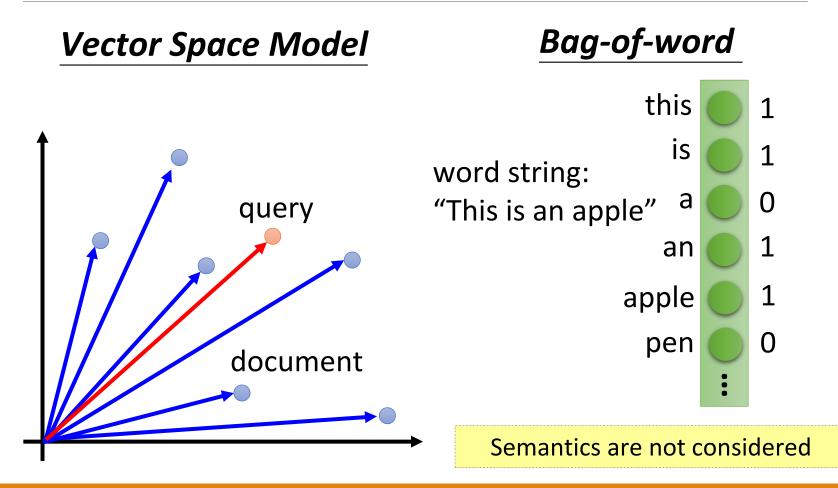
Deep Autoencoder

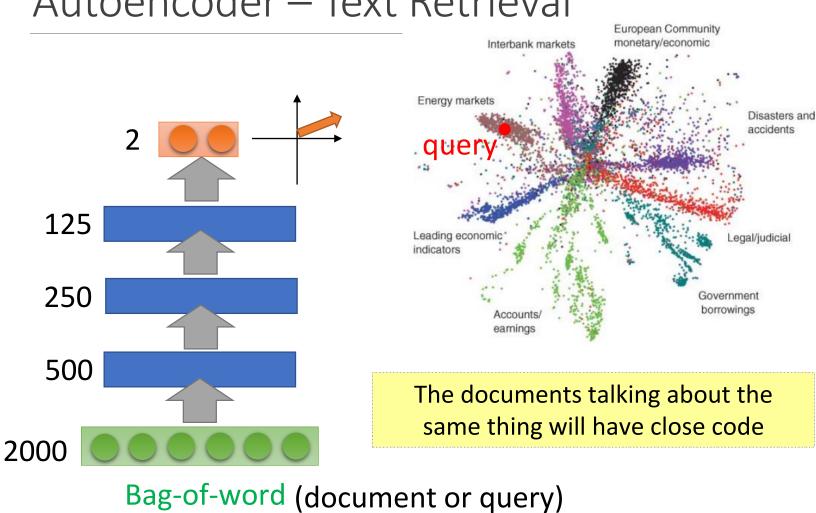


Feature Representation



Auto-encoder – Text Retrieval



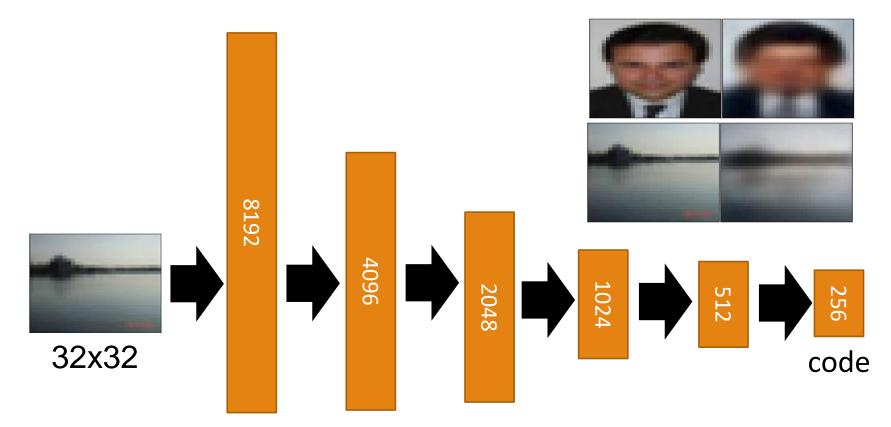


Autoencoder – Text Retrieval

Autoencoder – Similar Image Retrieval

Retrieved using Euclidean distance in pixel intensity space

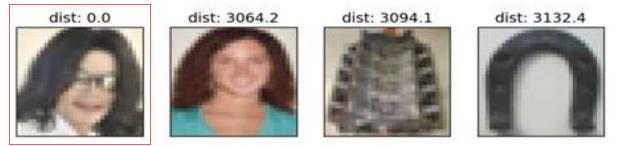
Autoencoder – Similar Image Retrieval



(crawl millions of images from the Internet)

Autoencoder – Similar Image Retrieval

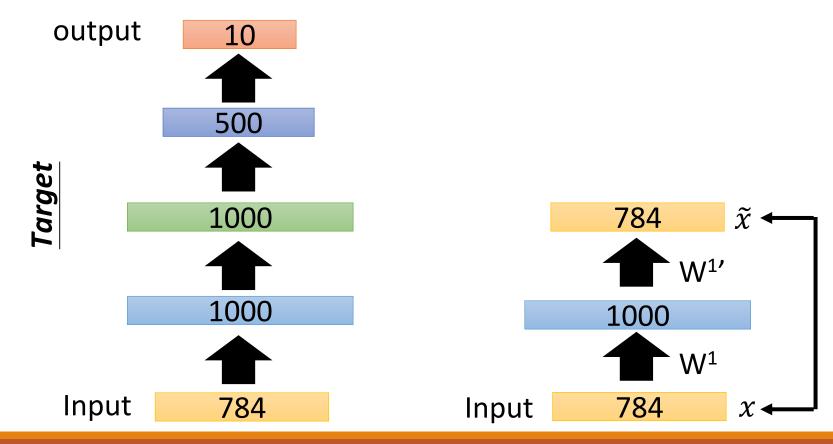
Images retrieved using Euclidean distance in pixel intensity space



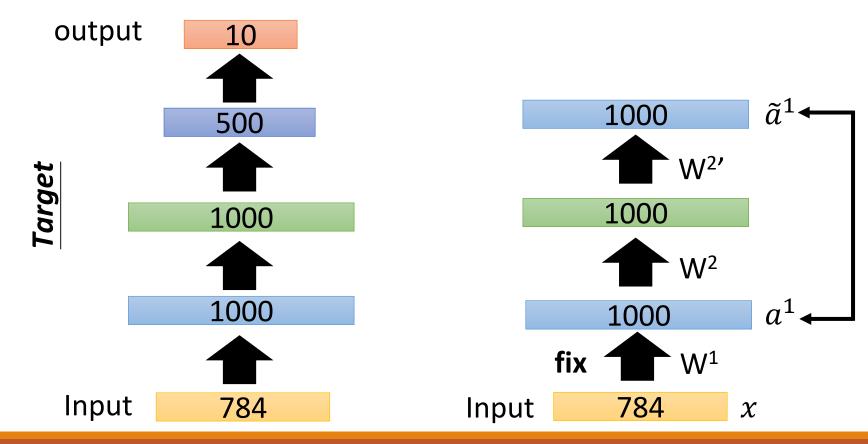
Images retrieved using 256 codes

Learning the useful latent factors

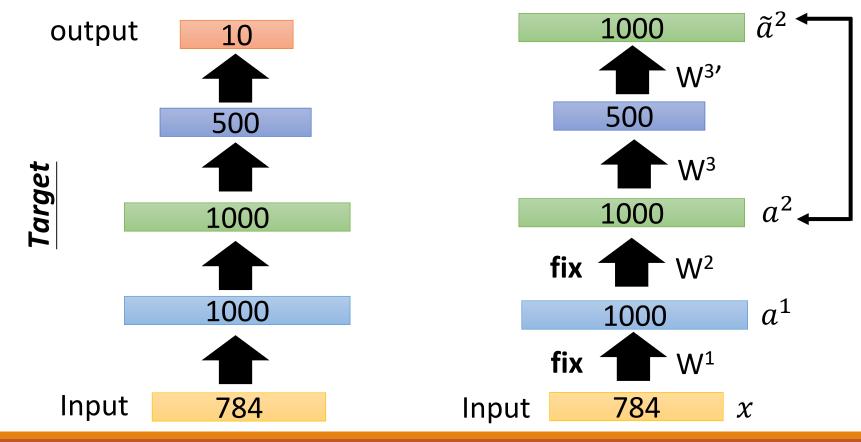
Greedy layer-wise pre-training again

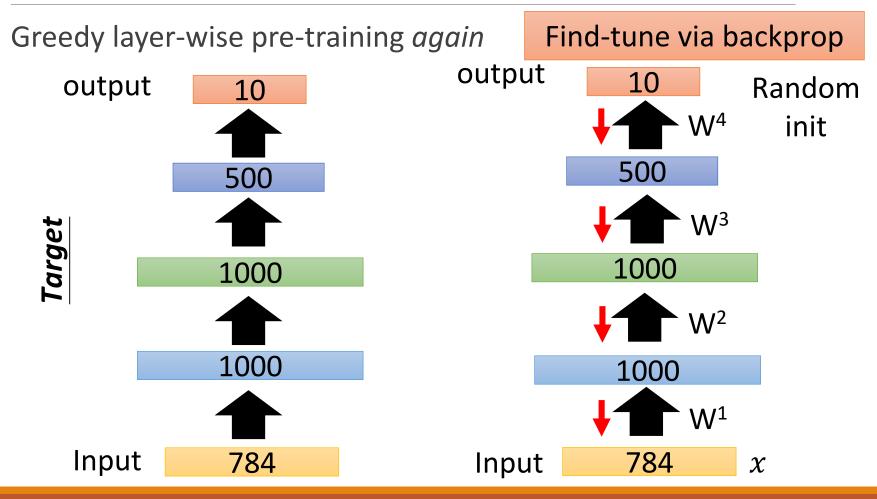


Greedy layer-wise pre-training again



Greedy layer-wise pre-training again

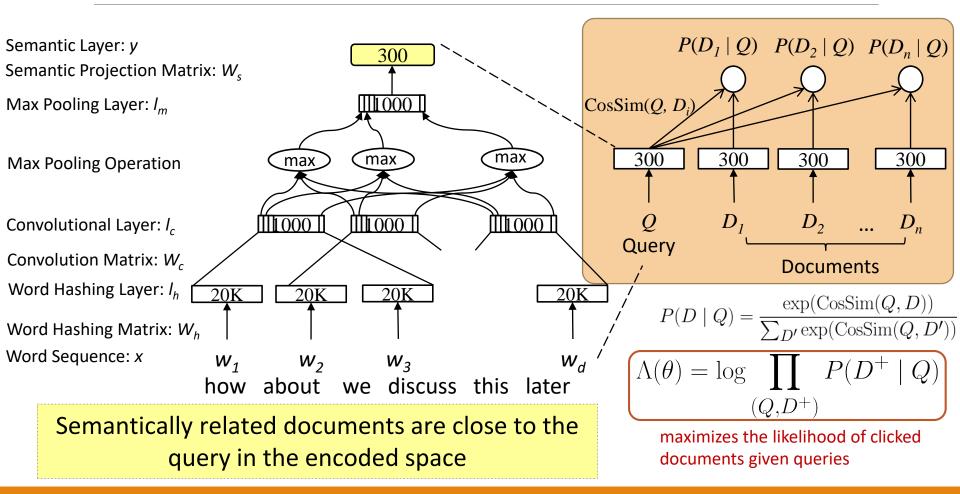




Distant Supervision

Representation Learning by Weak Labels

Convolutional Deep Structured Semantic Models (CDSSM/DSSM)

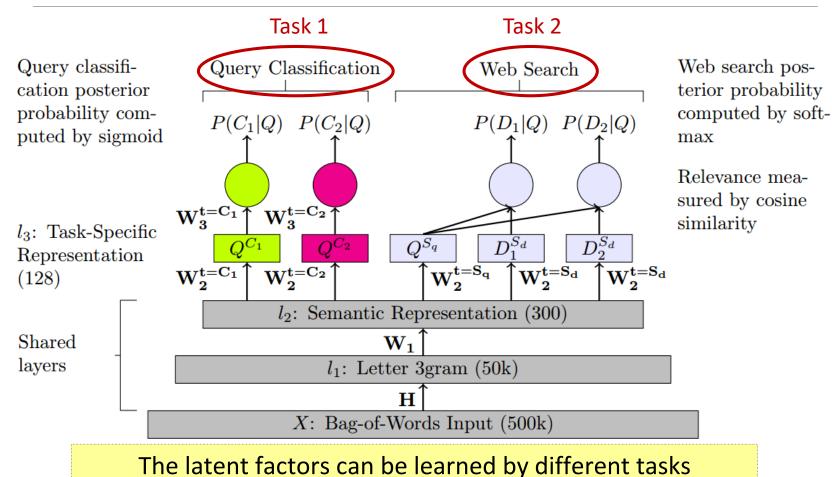


Huang et al., "Learning deep structured semantic models for web search using clickthrough data," in *Proc. of CIKM*, 2013. Shen et al., "Learning semantic representations using ' convolutional neural networks for web search," in *Proc. of WWW*, 2014.

Multi-Tasking

Representation Learning by Different Tasks

Task-Shared Representation



Generative Adversarial Network (GAN)

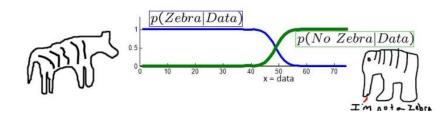
Representation Learning

"There are many interesting recent development in deep learning...The most important one, in my opinion, is adversarial training (also called GAN for Generative Adversarial Networks). This, and the variations that are now being proposed is the most interesting idea in the last 10 years in ML, in my opinion." – Yann LeCun

Discriminative v.s. Generative Models

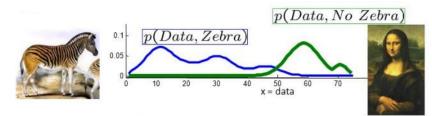
Discriminative

- learns a function that maps the input data (x) to some desired output class label (y)
 - directly learn the conditional distribution P(y|x)



Generative

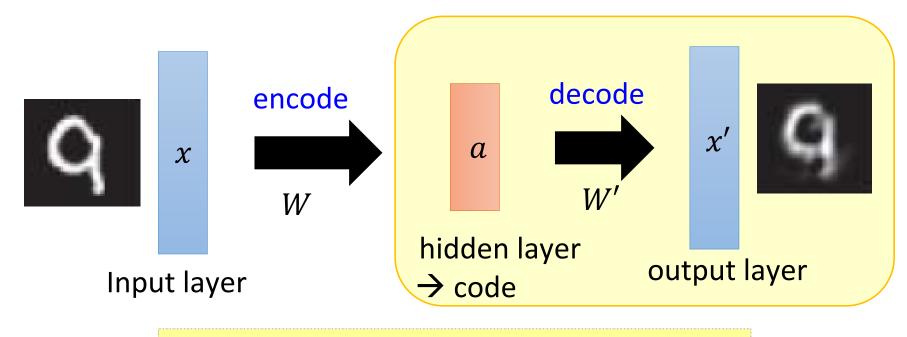
- tries to learn the joint probability of the input data and labels simultaneously, i.e. P(x,y)
 - can be converted to P(y|x) for classification via Bayes rule



Advantage: generative models have the potential to <u>understand and explain</u> <u>the underlying structure</u> of the input data even when there are no labels

Generator

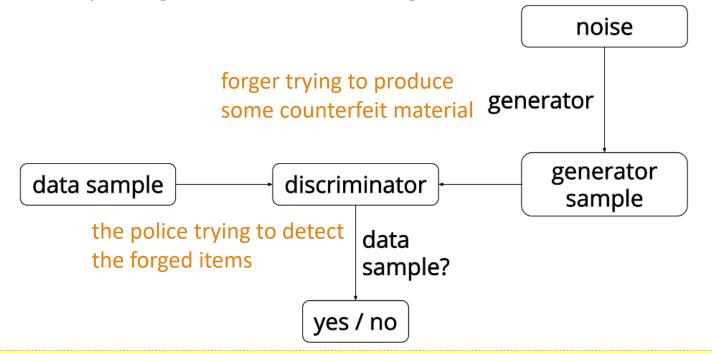
Decoder from autoencoder as generator



The generator is to generate the data from the code

Generative Adversarial Networks (GAN)

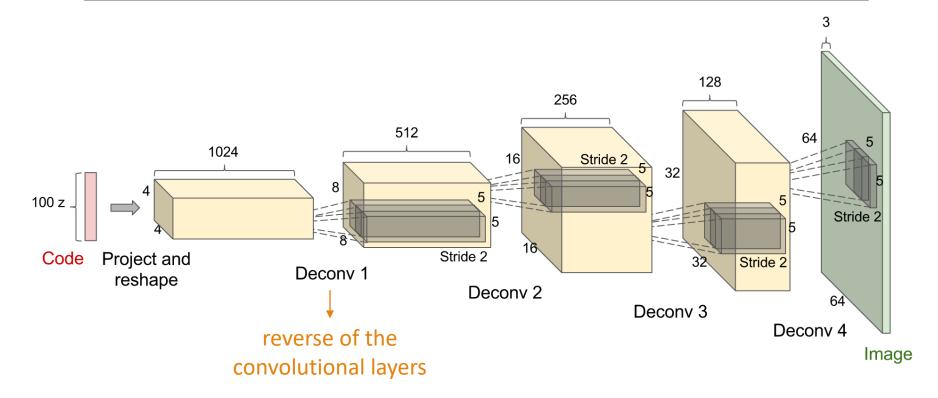
Two competing neural networks: generator & discriminator



Training two networks jointly \rightarrow the generator knows how to adapt its parameters in order to produce output data that can fool the discriminator

Goodfellow, et al., "Generative adversarial networks," in *NIPS*, 2014. http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

Deep Convolutional GAN (DCGAN)



Generated Bedrooms

Concluding Remarks

Labeling data is expensive, but we have large unlabeled data

Autoencoder

- exploits the unlabeled data to learn latent factors as representations
- learned representations can be transfer to other tasks

Generative models

- have the potential to <u>understand and explain the underlying</u> <u>structure</u> of the input data even when there are no labels
- Generative Adversarial Networks (GAN): jointly train two competing networks, generator and discriminator

