

Review

Reinforcement Learning

- 0000000000000 0000000000000

Reinforcement Learning

RL is a general purpose framework for decision making
oRL is for an agent with the capacity to act

o Each action influences the agent’s future state

o Success is measured by a scalar reward signal

Big three: action, state, reward

Agent and Environment

Agent Hidden
P v e
Ve IO ; T Output .
. A ﬁ',‘ { | PR ~\ e '_‘
observationo, /. /. [/ % 0 SNATT oy actiona,

><
MoveRight
Moveleft

Environment

Major Components in an RL Agent

An RL agent may include one or more of these components
° Policy: agent’s behavior function
> Value function: how good is each state and/or action
o Model: agent’s representation of the environment

Reinforcement Learning Approach

Policy-based RL
oSearch directly for optimal policy 7T

7" is the policy achieving maximum future reward

Value-based RL
o Estimate the optimal value function Q* (S, OL)

Q*(S, a) is maximum value achievable under any policy

Model-based RL
cBuild a model of the environment
oPlan (e.g. by lookahead) using model

RL Agent Taxonomy

Value Function

Value-Based

Deep Reinforcement Learning

|dea: deep learning for reinforcement learning

o Use deep neural networks to represent
* Value function
* Policy
* Model

o Optimize loss function by SGD

Value-Based Deep RL

Estimate How Good Each State and/or Action is

Value Function Approximation

Value functions are represented by a lookup table

Q(s,a) Vs, a
°to0 many states and/or actions to store
>too slow to learn the value of each entry individually

Values can be estimated with function approximation

Q(s,%,w) T T T w
/\W/\ A~
P

Q-Networks

Q-networks represent value functions with weights w

Q(s,a,w) = Q(s,a)

ogeneralize from seen states to unseen states
o update parameter W for function approximation

Q(s,%,w) T T T w
/\W/\ A~
P

Q-Learning

Goal: estimate optimal Q-values
o Optimal Q-values obey a Bellman equation

Q" (s,a) = ES/[T + 7 max Q" (s, a')] | s, al

a

learning target

o Value iteration algorithms solve the Bellman equation

Qri(s, a) = Eg[r + ymax Qgfs’, a') | s, q

Deep Q-Networks (DQN)

Represent value function by deep Q-network with weights w
Q(s,a,w) = Q7(s,a)

Objective is to minimize MSE loss by SGD

2
(?“ + meE}XQ(S!: a’!: ’UJ) o Q(S’ a, w)) :|

a

Lw)=E

Leading to the following Q-learning gradient

OL(w) _ o K,r. +ymax Q(s', a',w) — Q(s, a,’w))

ow

8’(1) a

0Q) (s, a,fw)]

Issue: naive Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets
1. Datais sequential

o Successive samples are correlated, non-iid (independent and
identically distributed)

2. Policy changes rapidly with slight changes to Q-values
o Policy may oscillate
o Distribution of data can swing from one extreme to another
3. Scale of rewards and Q-values is unknown
> Naive Q-learning gradients can be unstable when backpropagated

Stable Solutions for DQN

DQN provides a stable solutions to deep value-based RL
1. Use experience replay

o Break correlations in data, bring us back to iid setting
o Learn from all past policies
2. Freeze target Q-network
> Avoid oscillation
o Break correlations between Q-network and target
3. Clip rewards or normalize network adaptively to sensible range
o Robust gradients

Stable Solution 1: Experience Replay

To remove correlations, build a dataset from agent’s experience
o Take action at according to e-greedy policy small prob for exploration
o Store transition (St, Aty Te41, 8t+1) in replay memory D
>Sample random mini-batch of transitions (s, a, r, s') from D

51,41, 2, 52
!/
52,42, 13,53 — s,a,rs

53,43, 14, 54

Sty Aty Me+155t+1 —7 | Sty @ty Mt+15 St+1

° Optimize MSE between Q-network and Q-learning targets

2
L(w) =E;4rsp (fr' + 7 max Q(s',d',w) — Q(s,a, w))

a

Stable Solution 2: Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target
cCompute Q-learning targets w.r.t. old, fixed parameters w

r+~ymaxQ(s’,a’, w”)
a/

cOptimize MSE between Q-network and Q-learning targets

L(w) — Esja}'rjs’wD

a

2
(fr‘ + 7y max Qs d',w™) — Q(s, a,'w)) }

o Periodically update fixed parameters w™ <+ w

Stable Solution 3: Reward / Value Range

To avoid oscillations, control the reward / value range
°cDQN clips the rewards to [-1, +1]
"Prevents too large Q-values
" Ensures gradients are well-conditioned

~
Deep RL in Atari Games

Y I
P . i
s e, W R
P s - NN \ o
v Y RN

[\ action

N

\

p ~ C
state AR W AN EPT Y
8 L e e g
St o \ > = 2
ﬁ__hi/__ - ,»;;'/[

o

o~
DQN in Atari

Goal: end-to-end learning of values Q(S, a) from pixels

2
L(w) =E; 4, ¢D (fr‘ + 7y max Q(s',ad',w™) — Qs a, w))

a

o [nput: state is stack of raw pixels from last 4 frames
o Qutput: Q(s, a) for all joystick/button positions a
o Reward is the score change for that step

32 4x4 filters 256 hidden units Fully-connected linear
output layer
16 Bx8 filters
4xB4xB84
i i
Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units
DQN Nature Paper|[]|] 20

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

DQN in Atarli

%000€ %0004 %009 %00S %00¥% %00€ %002 %001 %0
| —ﬁ_ __ 1 | 1 1 l 1]
%0 | B abuanay s.ewnzajuopy
%z | lmam_ aleaud
%S | B IBJARID
S wa o[avasoss
%) spiosaisy
%EL | B uewoed ‘s
%vi [Buymog
%ib M| sung sianog
%sz [l B jsenbeag
%ze [[~ ainuap
%wzv [B ualy
wer [|EEE<
%S | prey oy
%25 N B I1SIaH yueg
%29 [spadnusp
wvo I | puewwon saddoun
%29 | som so prezipy
%9 [auoz spieg
|aAd|-UBLINY Mojaq +60 ["~ xusisy
2A0QE JO [3AS-UBWINY JE %9. BT " oWIH
wes | ves.o
%6 | [~ fov00H a0
%ze B umoq pue dn
%es L ™ Aquaq Buiysi4
%26 [B oanpug
wool R | 1o1d swnt
%wzoL I ™ Kemasiy
wzor IS " Jeisepy n4-Buny
wzii H Weyjuen L
%6t D | sepry wesg
sorzi Y | sispenu soeds
wzes D | 6uog
%svi [~ puog sawer
wovs T suuat
wvzz I 1| oosebuey
wzez [T | souuny peoy
ssove I | nessy
%2z [fIruy
so. [T | ouweo s sweN
wovez I | oeny uouwaq
sso0y [[Joudos
seor» | soquio Aze1d
wisv I [snueny
%sos [[suejoqoy
%865 B Jauuns) JElg
" noyeaig
%011 " Buxog
[llequid 02piA

H
i
-

111
-1
358
3k
H

d
~

DQN Nature Paper [

http://www.nature.com/articles/nature14236
https://sites.google.com/a/deepmind.com/dqn/

Other Improvements: Double DQON
Nature DQN

L(’LU) — Es}a,r,s’wD

2
(fr‘ + 7 max Q(s',a,w™) — Q(s, a,,’w))]

a

Double DQN: remove upward bias caused by max Q)(s, a, w)
a

o Current Q-network W is used to select actions

o Older Q-network 10 is used to evaluate actions

L(w) — Es,a,r,s’wD

2
('r' +7Q(s', arg max Q(s',ad",w),w”) — Q(s,a, w)) }

Other Improvements: Prioritized Replay

Prioritized Replay: weight experience based on surprise
o Store experience in priority queue according to DQN error

r+ymax Qs a',w) — Q(s, a,w)

a

Other Improvements: Dueling Network

Dueling Network: split Q-network into two channels
Q(s,a) =V(s,v) + A(s, a,w)

o Action-independent value function V(s, ,U)
=Value function estimates how good the state is

> Action-dependent advantage function A(s, a, w)
= Advantage function estimates the additional benefit

Policy-Based Deep RL

Estimate How Good An Agent’s Behavior is

- 0000000000000 0000000000000

Deep Policy Networks

Represent policy by deep network with weights U
a=m(a|s,u) a=mn(s,u)
stochastic policy deterministic policy

Objective is to maximize total discounted reward by SGD

Lu) =E[r +yra+y 15+ | (-, u)]

Policy Gradient

The gradient of a stochastic policy 71'(0, ‘ S, u) is given by

OL(u)
ou

Ologm(a | s,u)
ou

= [,

Q" (s, a)

The gradient of a deterministic policy 7T(8, u) is given by
OL(u) 0Q™(s,a)0a
ou da Ou

— T,

a=m(s,u)

How to deal with continuous actions

Actor-Critic (Value-Based + Policy-Based)

Estimate value function Q(S, a, w) o QW(S, a)

Update policy parameters 1 by SGD
o Stochastic policy

OL(u) . [Ologm(a| s, u)
au - 48 _ au Q(Sv CL, w)_
o Deterministic policy
OL(u) _, [0Q(s,a,w)da

— K

ou Oa ou

Deterministic Deep Actor-Critic

Deep deterministic policy gradient (DDPG) is the continuous
analogue of DQN

o Experience replay: build dataset from agent’s experience
o Critic estimates value of current policy by DQN

L(w) =E[(r +1Q(s 7(s"), w™) = Q(s,a,w))’

8253;) —E [('r +vQ(s, (s, u”),w”) — Q(s, a, w)) 8@(2,5,10)]

o Actor updates policy in direction that improves Q

OL(w) _ [8@(3 a, w) ga}

ou

Critic provides loss function for actor

DDPG in Simulated Physics

Goal: end-to-end learning of control policy from pixels
o [nput: state is stack of raw pixels from last 4 frames
o Qutput: two separate CNNs for Qand

a

32 44 file
iy 256 hidden units

16 BxB filers
4xB4xB4 Ofs.a)
m [T 0
Stack of 4 previous) Fully-connecte: d layer
frames Convelutional layer Convelutional layer of rectified linear units
of rectified linear units «of rectified linear units
32 4x4 filkers 256 hidden units Fully-eennected linear
output layer
|16 BxB fileers
4xBAxB4 7(s)
m i o
P
Stack of 4 previous) Fully-connecte: d layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear unics of rectified linear units.

Lillicrap et al., “Continuous control with deep reinforcement learning,” arXiv, 2015.

I\/\ode\ Based Deep RL

Agent’s Repre of the En nment

- 0000000000000 0000000000000

Model-Based Deep RL

Goal: learn a transition model of the environment and plan
based on the transition model

n(r,s' | s, a
(r,s' | s,a)

Objective is to maximize the measured
goodness of model

Model-based deep RL is challenging, and so far has failed in Atari

Issues for Model-Based Deep RL

Compounding errors
°Errors in the transition model compound over the trajectory
oA long trajectory may result in totally wrong rewards

Deep networks of value/policy can “plan” implicitly
o Each layer of network performs arbitrary computational step
o n-layer network can “lookahead” n steps

Model-Based Deep RL in Go

Monte-Carlo tree search (MCTS)

o MCTS simulates future trajectories

o Builds large lookahead search tree with millions of positions
o State-of-the-art Go programs use MCTS

Convolutional Networks

o12-layer CNN trained to predict expert moves

> Raw CNN (looking at 1 position, no search at all) equals performance
of MoGo with 105 position search tree

THE ULTIMATE GO CHALLENGE
GAME 10F 5

9 MARCH 2016

1st strong Go program

AlphaGo Lee Sedol

NUMBER

Silver, et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, 2016.

OpenAl Universe

Software platform for measuring and training an Al's general
intelligence via the OpenAl gym environment

https://universe.openai.com/
https://gym.openai.com/

Concluding Remarks
RL is a general purpose framework for decision making
under interactions between agent and environment

An RL agent may include one or more of these components

o Policy: agent’s behavior function
oValue function: how good is each state and/or action

o Model: agent’s representation of the environment

RL problems can be solved by end-to-end deep learning

Reinforcement Learning + Deep Learning = Al

References

Course materials by David Silver: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

ICLR 2015 Tutorial: http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf

ICML 2016 Tutorial: http://icml.cc/2016/tutorials/deep rl tutorial.pdf

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf
http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

