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Machine Learning
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Supervised v.s. Reinforcement
Supervised Learning
◦ Training based on 

supervisor/label/annotation

◦ Feedback is instantaneous

◦ Time does not matter

Reinforcement Learning
◦ Training only based on 

reward signal

◦ Feedback is delayed

◦ Time matters

◦ Agent actions affect 
subsequent data
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Reinforcement Learning
RL is a general purpose framework for decision making
◦ RL is for an agent with the capacity to act

◦ Each action influences the agent’s future state

◦ Success is measured by a scalar reward signal

◦ Goal: select actions to maximize future reward
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Deep Learning
DL is a general purpose framework for representation learning
◦ Given an objective

◦ Learn representation that is required to achieve objective

◦ Directly from raw inputs

◦ Use minimal domain knowledge
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Deep Reinforcement Learning
AI is an agent that can solve human-level task
◦ RL defines the objective

◦ DL gives the mechanism

◦ RL + DL = general intelligence
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Deep RL AI Examples
Play games: Atari, poker, Go, …

Explore worlds: 3D worlds, …

Control physical systems: manipulate, …

Interact with users: recommend, optimize, personalize, …
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Introduction to RL
Reinforcement Learning
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Reinforcement Learning
RL is a general purpose framework for decision making
◦ RL is for an agent with the capacity to act

◦ Each action influences the agent’s future state

◦ Success is measured by a scalar reward signal
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Big three: action, state, reward



Agent and Environment
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Agent and Environment
At time step t
◦ The agent

◦ Executes action at

◦ Receives observation ot

◦ Receives scalar reward rt

◦ The environment
◦ Receives action at

◦ Emits observation ot+1

◦ Emits scalar reward rt+1

◦ t increments at env. step
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State
Experience is the sequence of observations, actions, rewards

State is the information used to determine what happens next
◦ what happens depends on the history experience
• The agent selects actions

• The environment selects observations/rewards

The state is the function of the history experience
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Environment State
The environment state 𝑠𝑡

𝑒 is the 
environment’s private representation
◦ whether data the environment uses to 

pick the next observation/reward

◦ may not be visible to the agent

◦ may contain irrelevant information
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Agent State
The agent state 𝑠𝑡

𝑎 is the agent’s 
internal representation
◦ whether data the agent uses to pick the 

next action  information used by RL 
algorithms

◦ can be any function of experience
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Information State
An information state (a.k.a. Markov state) contains all useful 
information from history

The future is independent of the past given the present

◦ Once the state is known, the history may be thrown away

◦ The state is a sufficient statistics of the future 
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A state is Markov iff



Fully Observable Environment
Full observability: agent directly observes environment state

information state = agent state = environment state
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This is a Markov decision process (MDP)



Partially Observable Environment
Partial observability: agent indirectly observes environment 

agent state ≠ environment state

Agent must construct its own state representation 𝑠𝑡
𝑎

◦ Complete history: 
◦ Beliefs of environment state: 
◦ Hidden state (from RNN):
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This is partially observable Markov decision process (POMDP)



Reward
Reinforcement learning is based on reward hypothesis

A reward rt is a scalar feedback signal
◦ Indicates how well agent is doing at step t
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Reward hypothesis:  all agent goals can be desired by 
maximizing expected cumulative reward



Sequential Decision Making
Goal: select actions to maximize total future reward
◦ Actions may have long-term consequences

◦ Reward may be delayed

◦ It may be better to sacrifice immediate reward to gain more 
long-term reward
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Markov Decision Process
Fully Observable Environment
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Markov Process
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Markov process is a memoryless random process
◦ i.e. a sequence of random states S1, S2, ... with the Markov property

Student Markov chain

Sample episodes from S1=C1
• C1 C2 C3 Pass Sleep
• C1 FB FB C1 C2 Sleep
• C1 C2 C3 Pub C2 C3 Pass Sleep
• C1 FB FB C1 C2 C3 Pub
• C1 FB FB FB C1 C2 C3 Pub C2 Sleep



Student MRP

Markov Reward Process (MRP)
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Markov reward process is a Markov chain with values
◦The return Gt is the total discounted reward from time-step t



Markov decision process is a MRP with decisions
◦ It is an environment in which all states are Markov

Markov Decision Process (MDP)
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Student MDP



Markov Decision Process (MDP)
S : finite set of states/observations

A : finite set of actions

P : transition probability

R : immediate reward

γ : discount factor

Goal is to choose policy π at time t that maximizes expected 
overall return:
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Reinforcement Learning
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Major Components in an RL Agent
An RL agent may include one or more of these components
◦ Policy: agent’s behavior function

◦ Value function: how good is each state and/or action

◦ Model: agent’s representation of the environment
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Policy
A policy is the agent’s behavior

A policy maps from state to action
◦ Deterministic policy: 

◦ Stochastic policy:
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Value Function
A value function is a prediction of future reward 
(with action a in state s)

Q-value function gives expected total reward
◦ from state      and action 

◦ under policy

◦ with discount factor

Value functions decompose into a Bellman 
equation
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Optimal Value Function
An optimal value function is the maximum achievable value

The optimal value function allows us act optimally

The optimal value informally maximizes over all decisions

Optimal values decompose into a Bellman equation
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Model
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A model predicts what the environment will do next
◦ P predicts the next state

◦ R predicts the next immediate reward



Reinforcement Learning Approach
Policy-based RL
◦ Search directly for optimal policy

Value-based RL
◦ Estimate the optimal value function

Model-based RL
◦ Build a model of the environment

◦ Plan (e.g. by lookahead) using model
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is the policy achieving maximum future reward 

is maximum value achievable under any policy



Maze Example
Rewards: -1 per time-step

Actions: N, E, S, W

States: agent’s location
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Maze Example: Policy
Rewards: -1 per time-step

Actions: N, E, S, W

States: agent’s location
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Arrows represent policy π(s) for each state s



Maze Example: Value Function
Rewards: -1 per time-step

Actions: N, E, S, W

States: agent’s location
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Numbers represent value Qπ(s) of each state s



Maze Example: Value Function
Rewards: -1 per time-step

Actions: N, E, S, W

States: agent’s location
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Grid layout represents transition model P
Numbers represent immediate reward R from each state s (same for all a)



Categorizing RL Agents
Value-Based
◦ No Policy (implicit)

◦ Value Function

Policy-Based
◦ Policy

◦ No Value Function

Actor-Critic
◦ Policy

◦ Value Function

Model-Free
◦ Policy and/or Value Function

◦ No Model

Model-Based
◦ Policy and/or Value Function

◦ Model
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RL Agent Taxonomy
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Problems within RL
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Learning and Planning
In sequential decision making
◦ Reinforcement learning
• The environment is initially unknown

• The agent interacts with the environment

• The agent improves its policy

◦ Planning
• A model of the environment is known

• The agent performs computations with its model (w/o any external interaction)

• The agent improves its policy (a.k.a. deliberation, reasoning, introspection, 
pondering, thought, search)
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Atari Example: Reinforcement Learning
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Rules of the game are unknown

Learn directly from interactive game-play 

Pick actions on joystick, see pixels and scores



Atari Example: Planning
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Rules of the game are known

Query emulator based on the perfect model inside agent’s brain
◦ If I take action a from state s: 

• what would the next state be?

• what would the score be?

Plan ahead to find optimal policy e.g. tree search 



Exploration and Exploitation
Reinforcement learning is like trial-and-error learning

The agent should discover a good policy from the 
experience without losing too much reward along the way

Exploration finds more information about the environment

Exploitation exploits known information to maximize reward
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When to try?

It is usually important to explore as well as exploit



Concluding Remarks
RL is a general purpose framework for decision making under 
interactions between agent and environment
◦ RL is for an agent with the capacity to act

◦ Each action influences the agent’s future state

◦ Success is measured by a scalar reward signal

◦ Goal: select actions to maximize future reward

An RL agent may include one or more of these components
◦ Policy: agent’s behavior function

◦ Value function: how good is each state and/or action

◦ Model: agent’s representation of the environment
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