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Machine Translation
Sequence-to-sequence learning: both input and output are 
both sequences with different lengths. 

E.g. 深度學習→ deep learning
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Machine Translation with Attention
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Machine Translation with Attention
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Machine Translation with Attention
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Machine Translation with Attention
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Machine Translation with Attention
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Speech Recognition with Attention

11Chan et al., “Listen, Attend and Spell”, arXiv, 2015 .



Image Captioning
Input: image

Output: word sequence
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Image Captioning with Attention
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Image Captioning with Attention
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Image Captioning with Attention
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Image Captioning
Good examples
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Image Captioning
Bad examples
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Video Captioning
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Video Captioning
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Reading Comprehension
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Reading Comprehension
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Memory Network
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Memory Network
Muti-hop performance analysis

23https://www.facebook.com/Engineering/videos/10153098860532200/



Special Attention: Spatial Transformers
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Jaderber et al., ”Spatial Transformer Networks,” arXiv, 2015.
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Neural Turing Machine
Von Neumann architecture

Neural Turing Machine is an advanced RNN/LSTM.

26Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.

https://www.quora.com/How-does-the-Von-Neumann-architecture-provide-flexibility-for-program-development


Neural Turing Machine
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.
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Neural Turing Machine
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.
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Neural Turing Machine
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Neural Turing Machine
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.
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Stack RNN

31Joulin and Mikolov, “Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets,” 2015.
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Concluding Remarks
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