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Machine Translation

Sequence-to-sequence learning: both input and output are
both sequences with different lengths.

E.g. *EEE > deep learning
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Machine Translation with Attention
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Machine Translation with Attention
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Machine Translation with Attention
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Machine Translation with Attention
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Speech Recognition with Attention

Alignment between the Characters and Audio
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Chan et al., “Listen, Attend and Spell”, arXiv, 2015 .




Image Captioning

Input: image
Output: word sequence
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Image Captioning with Attention
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Image Captioning with Attention
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Image Captioning with Attention
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Image Captioning

Good examples

0 S

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
. mountain in the background.

_,,.:.E_

A little girl sitting on a bed with A group of people sitting on a boat |
a teddy bear. in the water. trees in the background.




Image Captioning

Bad examples

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.




Video Captioning

Ref: A man and a woman ride a motorcycle

A man and a woman are talking on the



Video Captioning

Ref: A woman is frying food
Someone is frying a fish in a pot
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Memory Network
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Memory Network

Muti-hop performance analysis

Story (16: basic induction) Support| Hop1 | Hop 2
Brian is a frog. yes 0.00

Lily is gray. 0.07 0.00
Brian is yellow. yes E -:]? 0.00
Julius is green. 0.00
Greg is a frog. yes - 0.02

Hop 3

0.00
0.00

0.00
0.00

What color is Gr&g? Answer: yallnw Prediction: yallnw

https://www.facebook.com/Engineering/videos/10153098860532200/



Special Attention: Spatial Transformers
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Jaderber et al., ”Spatial Transformer Networks,” arXiv, 2015.
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Neural Turing Machine

Von Neumann architecture
Neural Turing Machine is an advanced RNN/LSTM.

Arithmetic
Logic

Unit

Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.


https://www.quora.com/How-does-the-Von-Neumann-architecture-provide-flexibility-for-program-development

Neural Turing Machine
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Neural Turing Machine

k' et a'
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Neural Turing Machine
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Neural Turing Machine
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Zhang et al., “Structured Memory for Neural Turing Machines,” arXiv, 2015.



Stack RNN
stack ‘ - .

0.7 0.2 0.1
Push, Pop, Nothing

Information
to store
Push
Pop -1 -1
Nothing -1

Joulin and Mikolov, “Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets,” 2015.



Concluding Remarks
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