## Recurrent Neural Network (2) Nov 10<sup>th</sup>, 2016 Applied Deep Learning YUN-NUNG (VIVIAN) CHEN WWW.CSIE.NTU.EDU.TW/~YVCHEN/F105-ADL



Slide credit from Hung-Yi Lee & Richard Socher

# Review

Recurrent Neural Network

#### Recurrent Neural Network

Idea: condition the neural network on <u>all previous words</u> and tie the weights at each time step

Assumption: temporal information matters



#### **RNNLM Formulation**

At each time step,

$$h_{t} = \sigma(Wh_{t-1} + Ux_{t})$$

$$\hat{y}_{t} = \operatorname{softmax}(Vh_{t})$$

$$P(x_{t+1} = w_{j} \mid x_{1}, \cdots, x_{t}) = \hat{y}_{t,j}$$

$$h_{t-1} \bullet \bullet \cdots \bullet h_{t} \bullet \bullet \cdots \bullet W$$

$$W \bullet U$$

$$x_{t} \bullet U$$

$$x_{t} \bullet \bullet \cdots \bullet V$$

$$V$$

$$V$$

#### **Recurrent Neural Network Definition**

$$s_t = \sigma(Ws_{t-1} + Ux_t) \qquad \sigma(\cdot): \text{tanh, ReLU}$$
  
 $o_t = \text{softmax}(Vs_t)$ 



### Model Training

All model parameters  $\theta = \{U,V,W\}$  can be updated by  $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i) \mathbf{y}_{t-1}$ *y*<sub>t+1</sub> target **y**<sub>t</sub>  $\mathbf{I} C(\theta^i)$  $o_{t+1}$  predicted  $o_{t-1}$ W t+1 W W W Unfold U  $x_{t-1}$  $x_{t+1}$ x x

## Outline

Language Modeling

- N-gram Language Model
- Feed-Forward Neural Language Model
- Recurrent Neural Network Language Model (RNNLM)

#### **Recurrent Neural Network**

- Definition
- Training via Backpropagation through Time (BPTT)
- Training Issue

Applications

- Sequential Input
- Sequential Output
  - Aligned Sequential Pairs (Tagging)
  - Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)







#### Unfold S₊ **O**<sub>+</sub> W W X<sub>t-1</sub> W W $\delta^t$ W $\nabla C(y)$ Unfold **t**-1 UU• Input: init, *x*<sub>1</sub>, *x*<sub>2</sub>, ..., *x*<sub>t</sub> $\times \sigma'(z_1^t)$ **S**<sub>t-2</sub> X<sub>t-2</sub> $\delta^{t-1}$ • Output: *o*<sub>t</sub> 2 • Target: y<sub>t</sub> $\times \sigma'(z_1^{t-1})$ $\times \sigma'(z_2^t)$ n $\times \sigma'(z_2^{t-1})$ $\times \sigma'(z_n^t)$ init n

 $\times \sigma'(z_n^{t-1})$ 

y<sub>t</sub>

 $\theta$ 

#### Unfold y<sub>t</sub> S+ **O**<sub>+</sub> VW W X<sub>t-1</sub> $\nabla c$ WWW Unfold U t-1 U U• Input: init, *x*<sub>1</sub>, *x*<sub>2</sub>, ..., *x*<sub>t</sub> **S**<sub>t-2</sub> X<sub>t-2</sub> • Output: *o*<sub>t</sub> • Target: *y*<sub>t</sub> init









#### **RNN** Training Issue

The gradient is a product of Jacobian matrices, each associated with a step in the forward computation

Multiply the same matrix at each time step during backprop

$$\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$$

The gradient becomes very small or very large quickly → vanishing or exploding gradient

#### Rough Error Surface



Bengio et al., "Learning long-term dependencies with gradient descent is difficult," *IEEE Trans. of Neural Networks*, 1994. [link] Pascanu et al., "On the difficulty of training recurrent neural networks," in *ICML*, 2013. [link]

# **Possible Solutions**

Recurrent Neural Network

#### Exploding Gradient: Clipping



## Idea: control the gradient value to avoid exploding

Algorithm 1 Pseudo-code for norm clipping

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
  
 $\mathbf{if} \quad \|\hat{\mathbf{g}}\| \ge threshold \ \mathbf{then}$   
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$   
 $\mathbf{end} \ \mathbf{if}$ 

Parameter setting: values from half to ten times the average can still yield convergence

#### Vanishing Gradient: Initialization + ReLU

#### IRNN

- initialize all W as identity matrix I
- use ReLU for activation functions



### Vanishing Gradient: Gating Mechanism

#### RNN models temporal sequence information • can handle "long-term dependencies" in theory



Issue: RNN cannot handle such "long-term dependencies" in practice due to vanishing gradient  $\rightarrow$  apply the gating mechanism to directly encode the long-distance information

# Extension

Recurrent Neural Network

#### **Bidirectional RNN**



 $h = [\vec{h}; \vec{h}]$  represents (summarizes) the past and future around a single token

#### Deep Bidirectional RNN



$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)}h_{t}^{(i-1)} + \vec{V}^{(i)}\vec{h}_{t-1}^{(i)} + \vec{b}^{(i)})$$
  
$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)}h_{t}^{(i-1)} + \vec{V}^{(i)}\vec{h}_{t+1}^{(i)} + \vec{b}^{(i)})$$
  
$$y_{t} = g(U[\vec{h}_{t}^{(L)};\vec{h}_{t}^{(L)}] + c)$$

Each memory layer passes an intermediate representation to the next

## **Concluding Remarks**

Recurrent Neural Networks

Definition

$$s_t = \sigma(Ws_{t-1} + Ux_t)$$

$$o_t = \operatorname{softmax}(Vs_t)$$



- Issue: Vanishing/Exploding Gradient
- Solution:
  - Exploding Gradient: Clipping
  - Vanishing Gradient: Initialization, ReLU, Gated RNNs

Extension

- Bidirectional
- Deep RNN