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Review
Recurrent Neural  Network
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Recurrent Neural Network
Idea: condition the neural network on all previous words and 
tie the weights at each time step

Assumption: temporal information matters
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RNN Language Modeling
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Idea: pass the information from the previous hidden layer to leverage all contexts



RNNLM Formulation
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Recurrent Neural Network Definition

6http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

: tanh, ReLU



Model Training
All model parameters                                      can be updated by

7http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

yt-1 yt+1yt target

predicted



Outline
Language Modeling
◦ N-gram Language Model
◦ Feed-Forward Neural Language Model
◦ Recurrent Neural Network Language Model (RNNLM)

Recurrent Neural Network
◦ Definition
◦ Training via Backpropagation through Time (BPTT)
◦ Training Issue

Applications
◦ Sequential Input
◦ Sequential Output

◦ Aligned Sequential Pairs (Tagging)
◦ Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)
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Backpropagation
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Backpropagation
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Backpropagation through Time (BPTT)
Unfold

◦ Input: init, x1, x2, …, xt

◦ Output: ot

◦ Target: yt
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Backpropagation through Time (BPTT)
Unfold
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Backpropagation through Time (BPTT)
Unfold

◦ Input: init, x1, x2, …, xt

◦ Output: ot

◦ Target: yt
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Backpropagation through Time (BPTT)
Unfold

◦ Input: init, x1, x2, …, xt

◦ Output: ot

◦ Target: yt
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BPTT
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RNN Training Issue
The gradient is a product of Jacobian matrices, each 
associated with a step in the forward computation

Multiply the same matrix at each time step during backprop
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The gradient becomes very small or very large quickly
 vanishing or exploding gradient

Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [link]
Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
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Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [link]
Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

The error surface is either very flat or very steep

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf


Possible Solutions
Recurrent Neural  Network
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Exploding Gradient: Clipping
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clipped gradient
Idea: control the gradient value to 
avoid exploding

Parameter setting: values from half to 
ten times the average can still yield 
convergence



Vanishing Gradient: Initialization + ReLU
IRNN
◦ initialize all W as identity 

matrix I

◦ use ReLU for activation 
functions

21Le et al., “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units,” arXiv, 2016. [link]

https://arxiv.org/abs/1504.00941


Vanishing Gradient: Gating Mechanism
RNN models temporal sequence information
◦ can handle “long-term dependencies” in theory

22http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Issue: RNN cannot handle such “long-term dependencies” in practice due to vanishing gradient
 apply the gating mechanism to directly encode the long-distance information

“I grew up in France…
I speak fluent French.”



Extension
Recurrent Neural  Network
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Bidirectional RNN
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ℎ = ℎ; ℎ represents (summarizes) the past and future around a single token



Deep Bidirectional RNN
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Each memory layer passes an intermediate representation to the next



Concluding Remarks
Recurrent Neural Networks
◦ Definition

◦ Issue: Vanishing/Exploding Gradient

◦ Solution:
• Exploding Gradient: Clipping

• Vanishing Gradient: Initialization, ReLU, Gated RNNs

Extension
◦ Bidirectional

◦ Deep RNN
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