
Slide credit from Stanford class

Deep Learning Toolkit
Torch

Caffee

Theano (Keras, Lasagne)

Tensorflow

CNTK

CuDNN

Mxnet

etc.

2

Tool Design
Model specification
◦ Configuration file

▪ caffee, CNTK, etc

◦ Programmatic generation
▪ Torch, Theano, TensorFlow

High-level language
◦ Lua

▪ Torch

◦ Python
▪ Theano, TensorFlow

3

Introduction
TensorFlow is an open source software library for machine
intelligence developed by Google
◦ Provides primitives for defining functions on tensors and

automatically computing their derivatives

Prerequisite: Python 2.7/3.3+ & numpy

4

https://www.tensorflow.org/

What is a Tensor?
Definition
◦ Tensors are multilinear maps from vector spaces to the real

numbers  n-dimensional arrays

Example
◦ Scalar

◦ Vector

◦ Matrix

5

Deep learning process is flows of tensors  a sequence of tensor operations

Installation

6

Installation
Requirements
◦ Python API: Python 2.7 or Python 3.3+

◦ GPU: Cuda Toolkit >= 7.0 and cuDNN >= v3

Suggested procedure – virtualenv installation
1. Install pip & virtualenv

2. Create a virtualenv environment

3. Activate the virtualenv environment

4. Install tensorflow in the environment

5. Activate the environment every time you want to use TensorFlow

7

https://www.tensorflow.org/versions/r0.11/get_started/os_setup.html#virtualenv-installation

Review

8

Deep Learning Framework

9

Q1. What is the model?

Q2. What does a “good” function mean?

Q3. How do we pick the “best” function?

Model: Hypothesis Function Set
21, ff

Training: Pick the best function f *

*
f“Best” Function

Model Architecture

Loss Function Design

Optimization

After defining the model and loss function, TensorFlow automatically
computes the gradient for optimization

Sample Program

10

import tensorflow as tf

import numpy as np

x_data = np.random.rand(100).astype(np.float32)

y_data = x_data * 0.1 + 0.3

W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))

b = tf.Variable(tf.zeros([1]))

y = W * x_data + b

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

for step in range(201):

sess.run(train)

if step % 20 == 0:

print(step, sess.run(W), sess.run(b))

Create 100 phony x, y data points in
NumPy, y = x * 0.1 + 0.3

Try to find values for W and b that
compute y_data = W * x_data + b
(W should be 0.1 and b 0.3)

Minimize the mean squared errors.

Initialize the variables.

Launch the graph.

Fit the line.

 Learns best fit is W: [0.1], b: [0.3]

Import the APIs

Basic Usage
Represents computations as graphs

Executes graphs in the context of Sessions

Represents data as tensors

Maintains state with Variables

Uses feeds and fetches to get data into and out of any operations

11

TensorFlow programs are usually structured into a construction phase, that
assembles a graph, and an execution phase that uses a session to execute ops in
the graph

