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Abstract

Spoken language interfaces are being incorporated into various devices (smart-phones, smart

TVs, in-car navigating system, etc). The role of spoken language understanding is of great

significance to a successful spoken dialogue system: in order to capture the language variation

from dialogue participants, the spoken language understanding component must create a

mapping between the natural language inputs and semantic representations that captures

users’ intentions.

The semantic representation must include “concept”, “structure”, etc, where concepts are

the important semantics capturing the domain-specific topics, and the structure describes

the relation between concepts and conveys high-level intention. However, spoken dialogue

systems typically use manually predefined semantic elements to parse users’ utterances into

unified semantic representations. To define the knowledge and the structure, domain ex-

perts and professional annotators are often involved, and the cost of development can be

expensive. Therefore, current technology usually limits conversational interactions to a few

narrow predefined domains/topics. With the increasing conversational interactions, this dis-

sertation focuses on improving generalization and scalability of building dialogue systems by

automating the knowledge inference and structure learning from unlabelled conversations.

In order to achieve the goal, two questions need to be addressed: 1) Given unlabelled raw

audio recordings, how can a system automatically induce and organize the domain-specific

concepts? 2) With the automatically acquired knowledge, how can a system understand

individual utterances and user intents? To tackle the above problems, we propose to acquire

the domain knowledge that can be used in specific applications in order to capture human’s

semantics, intent, and behavior, and then build an SLU component based on the learned

knowledge to offer better interactions in dialogues.

The dissertation mainly focuses on five important stages: ontology induction, structure learn-

ing, surface form derivation, semantic decoding, and behavior prediction. To solve the first

problem, ontology induction automatically extracts the domain-specific concepts by leverag-

ing available ontologies and distributional semantics. Then an unsupervised machine learning

approach is proposed to learn the structure and then infer the meaningful organization for

the dialogue system design. Surface form derivation learns natural languages that describe

elements from the ontology and convey the domain knowledge to infer better understanding.



For the second problem, the learned knowledge can be utilized to decode users’ semantics and

predict the follow-up behaviors in order to provide better interactions.

In conclusion, the dissertation shows that it is feasible to build a dialogue learning system

that is able to understand how particular domains work based on unlabelled conversations.

As a result, the initial spoken dialogue system can be automatically built according to the

learned knowledge, and its performance can be quickly improved by interacting with users for

practical usage, presenting the potential of reducing human effort for spoken dialogue system

development.
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List of Abbreviations

AF Average F-Measure is an evaluation metric that measures the performance of a ranking

list by averaging the F-measure over all positions in the ranking list.

AMR Abstract Meaning Representation is a simple and readable semantic representation in

AMR Bank.

AP Average Precision is an evaluation metric that measures the performance of a ranking

list by averaging the precision over all positions in the ranking list.

ASR Automatic Speech Recognition, also known as computer speech recognition, is the

process of converting the speech signal into written text.

AUC Area Under the Precision-Recall Curve is an evaluation metric that measures the

performance of a ranking list by averaging the precision over a set of evenly spaced

recall levels in the ranking list.

BPR Bayesian Personalized Ranking is an approach to learn with implicit feedback for

matrix factorization, especially used in item reommendation.

CBOW Continuous Bag-of-Words is an architecture for learning distributed word represen-

tations, which is similar to the feedforward neural net language model but uses con-

tinuous distributed representation of the context.

CMU Carnegie Mellon University is a private research university in Pittsburgh.

FE Frame Element is a descriptive vocabulary for the components of each frame.

ISCA International Speech Communication Association is a non-profit organization that

aims to promote, in an international world-wide context, activities and exchanges in

all fields related to speech communication science and technology.

LTI Language Technologies Institute is a research department in the School of Computer

Science at Carnegie Mellon University.

LU Lexical Unit is a word with a sense.

MF Matrix Factorization is a decomposition of a matrix into a product of matrices in the

discipline of linear algebra.
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NLP Natural Language Processing is a field of artificial intelligence and linguistics that

studies the problems intrinsic to the processing and manipulation of natural language.

POS Part of Speech tag, also known as word class, lexical class or lexical class are traditional

categories of words intended to reflect their functions within a sentence.

SDS Spoken Dialogue System is an intelligent agent that interacts with a user via natural

spoken language in order to help the user obtain desired information or solve a problem

more efficiently.

SGD Stochastic Gradient Descent is a gradient descent optimization method for miniming

an objective function that is written as a sum of differentiable functions.

SLU Spoken Language Understanding is a component of a spoken dialogue system, which

parses the natural languages into semantic forms that benefit the system’s understand-

ing.

SVM Support Vector Machine is a supervised learning method used for classification and

regression based on the Structural Risk Minimization inductive principle.

WAP Weighted Average Precision is an evaluation metric that measures the performance of

a ranking list by weighting the precision over all positions in the ranking list.
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1Introduction
1.1 Spoken Dialogue System

A spoken dialogue system (SDS) is an intelligent agent that interacts with a user via natural

spoken language in order to help the user obtain desired information or solve a problem more

efficiently. As for current technologies, a dialogue system is one of many spoken language

applications that operate on limited specific domains. For instance, the CMU Communicator

system is a dialogue system for the air travel domain that provides information about flight,

car, and hotel reservations [81]. Another example, the JUPITER system [104], is a dialogue

system for a weather domain, which provides forecast information for the requested city.

More recently, a number of efforts in industry (e.g. Google Now1, Apple’s Siri2, Microsoft’s

Cortana3, and Amazon’s Echo4) and academia [1, 8, 34, 42, 61, 63, 73, 77, 78, 82, 97, 98] have

focused on developing semantic understanding techniques for building better SDSs.

An SDS typically is composed of the following components: an automatic speech recognizer

(ASR), a spoken language understanding (SLU) module, a dialogue manager, a natural lan-

guage generation module, and a speech synthesizer. When developing a dialogue system in a

new domain, we may be able to reuse some components that are designed independently of

domain-specific information, for example, the speech recognizer and the speech synthesizer.

However, the components that are integrated with domain-specific information have to be

reconstructed for each new domain, and the cost of development is expensive. Usually par-

ticipants engage in a conversation in order to achieve a specific goal such as accomplishing a

task in their mind or getting the answers to the questions, for example, to obtain the list of

restaurants in a specific location. Therefore in the context of this dissertation, domain-specific

information refers to the knowledge specific to a task that an SDS has to support rather than

the knowledge about general dialogue mechanisms. The dissertation mainly focuses on two

parts:

• Knowledge acquisition is to learn the domain-specific knowledge that is used by a

1http://www.google.com/landing/now/
2http://www.apple.com/ios/siri/
3http://www.microsoft.com/en-us/mobile/campaign-cortana/
4http://www.amazon.com/oc/echo
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Figure 1.1: An example output of the proposed knowledge acquisition approach.

Organized 

Domain 

Knowledge 

price=“cheap” 
target=“restaurant” 
behavior=navigation 

SLU Modeling 

SLU 

Component 

“can i have a cheap restaurant” 

Figure 1.2: An example output of the proposed SLU modeling approach.

spoken language understanding (SLU) component. The domain-specific information

used by an SLU component includes the organized ontology that a dialogue system has

to support in order to successfully understand the actual meaning. An example of the

necessary domain knowledge about restaurant recommendation is shown in Figure 1.1,

where the learned domain knowledge contains the semantic slots and their relations5.

• SLU modeling is to build an SLU module that is able to understand the actual meaning

of domain-specific utterances based on the domain-specific knowledge and then further

provide better responses. An example of the corresponding understanding procedure in

the restaurant domain is shown in Figure 1.2, where the decoded output by the SLU

component is the semantic form of the input utterance.

Conventionally the domain-specific knowledge is defined manually by domain experts or de-

velopers, who are familiar with the specific domains. For common domains like a weather

domain or a bus domain, system developers are usually able to identify the such information.

5The slot is defined as a semantic unit usually used in dialogue systems.
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However, some domains, such as a military domain [7], require the domain experts, which

makes the knowledge engineering process more difficult. Furthermore, the experts’ decision

may be subjective and may not cover all possible real-world users’ cases [99]. Therefore, poor

generalization results in the limited predefined information and even biases the subsequent

data collection and annotation. Another issue is about the efficiency: the manual definition

and annotation process for domain-specific tasks can be very time-consuming, and have high

financial costs. Finally, the maintenance cost is also non-trivial: when new conversational

data comes in, developers, domain experts, and annotators have to manually analyze the

audios or the transcriptions for updating and expanding the ontologies. With more available

conversational data, to acquire the domain knowledge, recent approaches are data-driven in

terms of generalization and scalability.

In the past decade, the computational linguistics community has focused on developing lan-

guage processing algorithms that can leverage the vast quantities of available raw data. Choti-

mongkol proposed a machine learning technique to acquire domain-specific knowledge, show-

ing the potential of reducing human effort in the SDS development [24]. However, the work

mainly focused on the low-level semantic units like word-level concepts. With increasing

high-level knowledge resources, such as knowledge bases, this dissertation moves forward to

investigate the possibility of developing a high-level semantic conversation analyzer for a

certain domain using an unsupervised machine learning approach. The human’s semantics,

intent, and behavior can be captured from a collection of unlabelled raw conversational data,

and then be modeled for building a good SDS.

Considering the practical usage, the acquired knowledge may be revised manually to improve

the system performance. Even though some revision might be required, the cost of revision

is significantly lower than the cost of analysis. Also, the automatically learned information

may consider the real-world users’ cases and avoid biasing the subsequent annotation. This

thesis focuses on the highlighted parts, inducing acquiring domain knowledge from the dia-

logues using the available ontology, and modeling the SLU module using the automatically

learned information. The proposed approach combining both data-driven and knowledge-

driven perspectives shows the potential of improving generalization, maintenance, efficiency,

and scalability of dialogue system development.

1.2 Thesis Statement

The main purpose of this work is to automatically develop SLU components for SDSs by using

the automatically learned domain knowledge in an unsupervised fashion. This dissertation

mainly focuses on acquiring the domain knowledge that is useful for better understanding and

designing the system framework and further modeling the semantic meaning of the spoken
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language. For knowledge acquisition, there are two important stages – ontology induction

and structure learning. After applying them, an organized domain knowledge is inferred

from the unlabeled conversations. For SLU modeling, there are two aspects – semantic

decoding and behavior prediction. Based on the learned information, semantic decoding

analyzes the meaning in each individual utterance and behavior prediction model user intents

and predicts possible follow-up behaviors. In conclusion, the thesis demonstrates the feasibil-

ity of building a dialogue learning system that is able to automatically learn the important

knowledge and understand how the domains work based on unlabelled raw audio. With the

domain knowledge, then the initial dialogue system can be constructed and improved quickly

by interacting with users. The main contribution of the dissertation is presenting the poten-

tial of reducing human work and showing the feasibility of improving efficiency for dialogue

system development by automating the knowledge learning process.

1.3 Thesis Structure

The thesis proposal is organized as below.

• Chapter 2 - Background and Related Work

This chapter reviews some background knowledge and summarizes related works. The

chapter also discusses current challenges of the task, describes several structured knowl-

edge resources and presents distributional semantics that may benefit understanding

problems.

• Chapter 3 - Ontology Induction for Knowledge Acquisition

This chapter focuses on inducing the ontology that are useful for developing SLU mod-

ules of SDSs based on the available structured knowledge resources in an unsupervised

way. Some of the contributions were published [20, 22]

– Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky, “Unsupervised

Induction and Filling of Semantic Slots for Spoken Dialogue Systems Using Frame-

Semantic Parsing,” in Proceedings of 2013 IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU’13), Olomouc, Czech Republic, 2013.

(Student Best Paper Award)

– Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky, “Leveraging

Frame Semantics and Distributional Semantics for Unsupervised Semantic Slot

Induction for Spoken Dialogue Systems,” in Proceedings of 2014 IEEE Workshop

on of Spoken Language Technology (SLT’14), South Lake Tahoe, Nevada, USA,

2014.

4



• Chapter 4 - Structure Learning for Knowledge Acquisition

This chapter focuses on learning the structures, such as the inter-slot relations, for

helping SLU development. Some of the contributions were published [23]:

– Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky, “Jointly Model-

ing Inter-Slot Relations by Random Walk on Knowledge Graphs for Unsupervised

Spoken Language Understanding,” in Proceeding of The 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies (NAACL-HLT’15), Denver, Colorado, USA, 2015.

• Chapter 5 - Surface Form Derivation for Knowledge Acquisition

This chapter focuses on deriving the surface forms conveying semantics for the enti-

ties from the ontology, where the derived information helps predict the probability of

semantics given the observation more accurately. Some of the contributions were pub-

lished [21]:

– Yun-Nung Chen, Dilek Hakkani-Tür, and Gokhan Tur, “Deriving Local Relational

Surface Forms from Dependency-Based Entity Embeddings for Unsupervised Spo-

ken Language Understanding,” in Proceedings of 2014 IEEE Workshop of Spoken

Language Technology (SLT’14), South Lake Tahoe, Nevada, USA, 2014.

• Chapter 6 - Semantic Decoding in SLU Modeling

This chapter focuses on decoding the users’ spoken languages into corresponding se-

mantic forms, which is the task of SLU models. Some of the contributions were under

review:

– Yun-Nung Chen, William Yang Wang, Anatole Gershman, and Alexander I. Rud-

nicky, “Matrix Factorization with Knowledge Graph Propagation for Unsupervised

Spoken Language Understanding,” under submission.

• Chapter 7 - Behavior Prediction in SLU Modeling

This chapter focuses on modeling the behaviors in the SLU component, so that the SDS

is able to predict the users’ behaviors and further provide better interactions. Some of

the contributions were published [18]:

– Yun-Nung Chen and Alexander I. Rudnicky, “Dynamically Supporting Unexplored

Domains in Conversational Interactions by Enriching Semantics with Neural Word

Embeddings,” in Proceedings of 2014 IEEE Workshop of Spoken Language Tech-

nology (SLT’14), South Lake Tahoe, Nevada, USA, 2014.

• Chapter 7 - Conclusions and Future Work

This chapter makes the conclusions and presents the proposed work and the timeline.
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2Background and Related

Work

2.1 Semantic Representation

Considering to understand natural language for machines, a semantic representation is intro-

duced. A semantic representation for an utterance carries its core content so that the actual

meaning behind the utterance can be inferred only through the representation. For exam-

ple, an utterance “show me action movies directed by james cameron” can be represented

as target=“movie”, genre=“action”, director=james cameron. Another utterance, “find a

cheap taiwanese restaurant in oakland” can be formed as target=“restaurant”, price=“cheap”,

type=“taiwanese”, location=“oakland”. The semantic representations are able to convey the

whole meaning of the utterances, which can be more easily processed by machines. The se-

mantic representation is not unique, and there are several forms for representing the meaning.

Below we describe two types of semantic forms:

• Slot-Based Semantic Representation

The slot-based representation includes flat semantic concepts, which are usually used

in simpler tasks. Above examples belong to slot-based semantic representation, where

semantic concepts are target, location, price, etc.

• Relation-Based Semantic Representation

The relation-based representation includes structured concepts, which are usually used

in tasks that have more complicate dependency relations. For instance, “show me action

movies directed by james cameron” can be represented as movie.directed by, movie.genre,

director.name=“james cameron”, genre.name=“action”. A semantic slot in the slot-

based representation is formed as relations, which can be either two concepts or the

concept’s name.

2.2 Spoken Language Understanding (SLU) Component

The main purpose of an SLU component is to convert the natural language into semantic

forms, which is also called as semantic decoding or semantic parsing. Building the state-of-

the-art semantic parsing system needs the large training data with annotations. For example,
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Berant et al. proposed SEMPRE1, which used the web-scaled knowledge bases to train the

semantic parser [6]. Das et al. proposed SEMAFOR2, which utilized a lexicon developed

based on a linguistic theory – Frame Semantics to train the semantic parser [29].

The SLU module includes following challenges:

• How to define the semantic elements from the unlabelled data?

• How to understand the structure between defined elements?

• How to detect the semantics for the testing data?

• How to use the learned information to predict user behaviors for improving the system

performance?

2.3 Ontology and Knowledge Base

There are two main types of knowledge resources available, generic concept and entity-based,

both of which may benefit SLU modules for SDSs. The generic concept knowledge bases cover

the concepts that are more common, such as a food domain and a weather domain. The entity-

based knowledge bases usually contain a lot of named entities that are specific for certain

domains, for example, a movie domain and a music domain. The following describes several

knowledge resources, which contain the rich semantics and may benefit the understanding

task.

2.3.1 Generic Concept Knowledge

There are two semantic knowledge resources, FrameNet and Abstract Meaning Representation

(AMR).

• FrameNet3 is a linguistically semantic resource that offers annotations of predicate-

argument semantics, and associated lexical units for English [3]. FrameNet is developed

based on semantic theory, Frame Semantics [38]. The theory holds that the meaning of

most words can be expressed on the basis of semantic frames, which encompass three

major components: frame (F), frame elements (FE), and lexical units (LU). For example,

the frame “food” contains words referring to items of food. A descriptor frame element

within the food frame indicates the characteristic of the food. For example, the phrase

1http://www-nlp.stanford.edu/software/sempre/
2http://www.ark.cs.cmu.edu/SEMAFOR/
3http://framenet.icsi.berkeley.edu
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Frame: Revenge

Noun revenge, vengeance, reprisal, retaliation
Verb avenge, revenge, retaliate (against), get back (at), get even (with), pay back

Adjective vengeful, vindictive

FE avenger, offender, injury, injured party, punishment

Table 2.1: The frame example defined in FrameNet.

The boy wants to go ARG1 

ARG0 

ARG0 

boy 
go-01 

want-01 

instance 

instance 
(w / want-01 
    :ARG0 (b / boy) 
    :ARG1 (g / go-01 
                   :ARG0 b)) 

Figure 2.1: A sentence example in AMR Bank.

“low fat milk” should be analyzed with “milk” evoking the food frame, where “low fat”

fills the descriptor FE of that frame and the word “milk” is the actual LU. A defined

frame example is shown in Table 2.1.

• Abstract Meaning Representation (AMR) is a semantic representation language

including the meanings of thousands of English sentences. Each AMR is a single rooted,

directed graph. AMRs include PropBank semantic roles, within-sentence coreference,

named entities and types, modality, negation, questions, quantities, etc [4]. The AMR

feature structure graph of an example sentence is illustrated in Figure 2.1, where the

“boy” appears twice, once as the ARG0 of want-01, and once as the ARG0 of go-01.

2.3.2 Entity-Based Knowledge

• Semantic Knowledge Graph is a knowledge base that provides structured and de-

tailed information about the topic with a lists of related links. Three different knowledge

graph examples, Google’s knowledge graph4, Microsoft’s Bing Satori, and Freebase, are

shown in Figure 2.2. The semantic knowledge graph is defined by a schema and com-

posed of nodes and edges connecting the nodes, where each node represents an entity-

type and the edge between each node pair describes their relation, as called as property.

An example from Freebase is shown in Figure 2.3, where nodes represent core entity-

4http://www.google.com/insidesearch/features/search/knowledge.html
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Google Knowledge Graph Bing Satori Freebase 

Figure 2.2: Three famous semantic knowledge graph examples (Google’s Knowledge Graph,
Bing Satori, and Freebase) corresponding to the entity “Lady Gaga”.

Avatar 
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Drama Kate 
Winslet 

James 
Cameron 

Canada 1997 

Oscar, best 
director 

Genre 

Cast 

Award 

Release 
Year 

Director 

Nationality 

Director 

Figure 2.3: A portion of the Freebase knowledge graph related to the movie domain.

types for the movie domain. The domains in the knowledge graphs span the web, from

“American Football” to “Zoos and Aquariums”.

• Wikipedia5 is a free-access, free content Internet encyclopedia, which contains a large

number of pages/articles related to a specific entity [74]. It is able to provide basic

background knowledge for help understanding tasks in the natural language processing

(NLP) field.

5http://en.wikipedia.org/wiki/Wikipedia
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I want to find some inexpensive and very fancy bars in north. 

desiring 
becoming_aware 

relational_quantity 

expensiveness degree building 
part_orientaional 

Figure 2.4: An example of FrameNet categories for ASR output labelled by probabilistic
frame-semantic parsing.

2.4 Knowledge-Based Semantic Analyzer

2.4.1 Generic Concept Knowledge

• FrameNet

SEMAFOR6 is a state-of-the-art semantic parser for frame-semantic parsing [27, 28].

Trained on manually annotated sentences in FrameNet, SEMAFOR is relatively accu-

rate in predicting semantic frames, FE, and LU from raw text. Augmented by the

dual decomposition techniques in decoding, SEMAFOR also produces the semantically-

labeled output in a timely manner. Note that SEMAFOR does not consider the rela-

tions between frames but treat each frame independently. Figure 3.2 shows the output

of probabilistic frame-semantic parsing.

• Abstract Meaning Representation (AMR)

JAMR7 is the first semantic parser that parses the sentences into AMRs [39]. Trained

on manually defined AMR Bank, JAMR applied an algorithm for finding the maximum,

spanning, connected subgraph and showed how to incorporate extra constraints with

Lagrangian relaxation. Figure 2.5 shows the output of JAMR on the example sentence.

2.4.2 Entity-Based Knowledge

• Semantic Knowledge Graph

Freebase API8 is an API for accessing the data, and the data can also be dumped

directly.

• Wikipedia

Wikifier9 is an entity linking (a.k.a. Wikification, Disambiguation to Wikipedia (D2W))

tool. The task is to identify concepts and entities in texts and disambiguate them into

6http://www.ark.cs.cmu.edu/SEMAFOR/
7http://github.com/jflanigan/jamr
8https://developers.google.com/freebase/
9http://cogcomp.cs.illinois.edu/page/software_view/Wikifier
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show me what richard lester directed 

(s / show-01 
 :ARG1 (d / direct-01 
  :ARG0 (p / person 
   :name (n / name 
    :op1 "lester” 
    :op2 "richard")))) 

Figure 2.5: An example of AMR parsed by JAMR on ASR output.

Michael Jordan is a machine learning expert. 

Michael Jordan is my favorite player. 

Figure 2.6: An example of Wikification.

the corresponding Wikipedia pages. An example is shown in Figure 2.6, where the

entities “Micheal Jordan” in two sentences refer to different people, pointing to different

Wikipedia pages.

2.5 Distributional Semantics

The distributional view of semantics hypothesizes that words occurring in the same contexts

may have similar meanings [47]. As the foundation for modern statistical semantics [40],

an early success that implements this distributional theory is Latent Semantic Analysis [32].

Recently, with the advance of deep learning techniques, the continuous representations as

word embeddings have further boosted the state-of-the-art results in many applications, such

as sentiment analysis [86], language modeling [68], sentence completion [70], and relation

detection [21].

In NLP, Brown et al. proposed an early hierarchical clustering algorithm that extracts word

clusters from large corpora [14], which has been used successfully in many NLP applica-

tions [67]. Comparing to standard bag-of-words n-gram language models, in recent years,

continuous word embeddings (a.k.a. word representations, or neural embeddings) are shown
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Figure 2.7: The CBOW and Skip-gram architectures. The CBOW model predicts the current
word based on the context, and the Skip-gram model predicts surrounding words given the
target word [70].

to be the state-of-the-art in many NLP tasks, due to its rich continuous representations (e.g.

vectors, or sometimes matrices, and tensors) that capture the context of the target semantic

unit [93, 5].

The continuous word vectors are derived from a recurrent neural network architecture [69].

The recurrent neural network language models use the context history to include long-distance

information. Interestingly, the vector-space word representations learned from the language

models were shown to capture syntactic and semantic regularities [72, 71]. The word rela-

tionships are characterized by vector offsets, where in the embedded space, all pairs of words

sharing a particular relation are related by the same constant offset.

The word embeddings are trained on the contexts of the target word, where the considered

contexts can be linear or dependency-based described as follows.

2.5.1 Linear Word Embeddings

Typical neural embeddings use linear word contexts, where a window size is defined to produce

contexts of the target words [72, 71, 70]. There are two model architectures for learning

distributed word representations: continuous bag-of-words (CBOW) model and continuous

skip-gram model, where the former predicts the current word based on the context and the

latter predicts surrounding words given the current word.
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2.5.1.1 Continuous Bag-of-Words (CBOW) Model

The word representations are learned by a recurrent neural network language model [69], as

illustrated in Figure 2.7. The architecture contains an input layer, a hidden layer with recur-

rent connections, and the corresponding weight matrices. Given a word sequence w1, ..., wT ,

the objective function of the model is to maximize the probability of observing the target

word wt given its contexts wt−c, wt−c+1, ..., wt+c−1, wt+c, where c is the window size:

1

T

T∑
t=1

∑
−c≤i≤c,i 6=0

log p(wt | wt+i). (2.1)

2.5.1.2 Continuous Skip-Gram Model

The training objective of the skip-gram model is to find word representations that are useful

for predicting the surrounding words, which is similar to the CBOW architecture. Given

a word sequence as the training data w1, ..., wT , the objective function of the model is to

maximize the average log probability:

1

T

N∑
i=t

∑
−c≤i≤c,i 6=0

log p(wt+i | wt) (2.2)

The objective can be trained using stochastic-gradient updates over the observed corpus.

2.5.2 Dependency-Based Word Embeddings

Most neural embeddings use linear bag-of-words contexts, where a window size is defined to

produce contexts of the target words [72, 71, 70]. However, some important contexts may

be missing due to smaller windows, while larger windows capture broad topical content. A

dependency-based embedding approach was proposed to derive contexts based on the syntac-

tic relations the word participates in for training embeddings, where the embeddings are less

topical but offer more functional similarity compared to original embeddings [64].

Figure 2.8 shows the extracted dependency-based contexts for each target word from the

dependency-parsed sentence, where headwords and their dependents can form the contexts

by following the arc on a word in the dependency tree, and −1 denotes the directionality

of the dependency. After replacing original bag-of-words contexts with dependency-based

contexts, we can train dependency-based embeddings for all target words [100, 10, 11].

For training dependency-based word embeddings, each target x is associated with a vector
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Word Contexts 

can have/ccomp 

i have/nsubj-1 

have can/ccomp-1, i/nsubj, restaurant/dobj 

a restaurant/det-1 

cheap restaurant/amod-1 

restaurant have/dobj-1, cheap/amod 

can i have a cheap restaurant 

ccomp 

amod 
dobj nsubj det 

Figure 2.8: The target words and associated dependency-based contexts extracted from the
parsed sentence for training depedency-based word embeddings.

vx ∈ Rd and each context c is represented as a context vector vc ∈ Rd, where d is the

embedding dimensionality. We learn vector representations for both targets and contexts

such that the dot product vx · vc associated with “good” target-context pairs belonging to

the training data D is maximized, leading to the objective function:

arg max
vx,vc

∑
(w,c)∈D

log
1

1 + exp(−vc · vx)
, (2.3)

which can be trained using stochastic-gradient updates [64]. We thus expect the syntac-

tic contexts to yield more focused embeddings, capturing more functional and less topical

similarity.
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3Ontology Induction for

Knowledge Acquisition

When building a dialogue system, a domain-specific knowledge base is required. To acquire

the domain knowledge, the chapter focuses on automatically extracting the domain-specific

concepts that can be used for SDSs.

3.1 Introduction

The distributional view of semantics hypothesizes that words occurring in the same contexts

may have similar meanings [47]. Recently, with the advance of deep learning techniques,

the continuous representations as word embeddings have further boosted the state-of-the-art

results in many applications. Frame semantics, on the other hand, is a linguistic theory that

defines meaning as a coherent structure of related concepts [37]. Although there has been

some successful applications in natural language processing (NLP) [51, 26, 48], the Frame

semantics theory has not been explored in the speech community.

The section focuses on using probabilistic frame-semantic parsing to automatically induce

and adapt the semantic ontology for designing SDSs in an unsupervised fashion [20], alleviat-

ing some of the challenging problems for developing and maintaining SLU-based interactive

systems [96]. Comparing to the traditional approach where domain experts and developers

manually define the semantic ontology for SDS, the proposed approach has the advantages

to reduce the costs of annotation, avoid human induced bias, and lower the maintenance

costs [20].

Given unlabeled raw audio files, we investigate an unsupervised approach for automatic in-

duction of semantic slots, the basic semantic units used in SDSs. To do this, we use a state-

of-the-art probabilistic frame-semantic parsing approach [27], and perform an unsupervised

approach to adapt, rerank, and map the generic FrameNet-style semantic parses to the target

semantic space that is suitable for the domain-specific conversation settings [3]. We utilize

continuous word embeddings trained on very large external corpora (e.g. Google News) to

improve the adaptation process. To evaluate the performance of our approach, we compare

the automatically induced semantic slots with the reference slots created by domain experts.

Empirical experiments show that the slot creation results generated by our approach align
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well with those of domain experts. Our main contributions of this paper are three-fold:

• We exploit continuous-valued word embeddings for unsupervised SLU;

• We propose the first approach of combining distributional and frame semantics for

inducing semantic ontology from unlabeled speech data;

• We show that this synergized method yields the state-of-the-art performance.

3.2 Related Work

The idea of leveraging external semantic resources for unsupervised SLU was popularized by

the work of Heck and Hakkani-Tür, and Tur et al. [49, 91]. The former exploited Semantic

Web for the intent detection problem in SLU, showing that the results obtained from the

unsupervised training process align well with the performance of traditional supervised learn-

ing [49]. The latter used search queries and obtained promising results on the slot filling task

in the movie domain [91]. Following the success of the above applications, recent studies have

also obtained interesting results on the tasks of relation detection [45], entity extraction [95],

and extending domain coverage [35]. The major difference between our work and previous

studies is that, instead of leveraging the discrete representations of Bing search queries or

Semantic Web, we build our model on top of the recent success of deep learning—we utilize

the continuous-valued word embeddings trained on Google News to induce semantic ontology

for task-oriented SDS.

Our approach is clearly relevant to recent studies on deep learning for SLU. Tur et al. have

shown that deep convex networks are effective for building better semantic utterance clas-

sification systems [90]. Following their success, Deng et al. have further demonstrated the

effectiveness of applying the kernel trick to build better deep convex networks for SLU [33].

To the best of our knowledge, our work is the first study that combines the distributional

view of meaning from the deep learning community, and the linguistic frame semantic view

for improved SLU.
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Figure 3.1: The proposed framework for ontology induction

3.3 The Proposed Framework

The main motivation of the work is to use a FrameNet-trained statistical probabilistic se-

mantic parser to generate initial frame-semantic parses from ASR decodings of the raw audio

conversation files. Then adapt the FrameNet-style frame-semantic parses to the semantic

slots in the target semantic space, so that they can be used practically in the SDSs. The

semantic mapping and adaptation problem are formulated as a ranking problem, where the

domain-specific slots should be ranked higher than the generic ones. This thesis proposes the

use of unsupervised clustering methods to differentiate the generic semantic concepts from

target semantic space for task-oriented dialogue systems [20]. Also, considering that only

using the small in-domain conversations as the training data may not robust enough, and

the performance would be easily influenced by the data, this thesis proposes a radical exten-

sion: we aim at improving the semantic adaptation process by leveraging distributed word

representations trained on very large external datasets [72, 71].

3.3.1 Probabilistic Semantic Parsing

In our approach, we parse all ASR-decoded utterances in our corpus using SEMAFOR intro-

duced in Section 2.3 and 2.4 of Chapter 2, a state-of-the-art semantic parser for frame-semantic

parsing [27, 28], and extract all frames from semantic parsing results as slot candidates, where

the LUs that correspond to the frames are extracted for slot filling. For example, Figure 3.2

shows an example of an ASR-decoded text output parsed by SEMAFOR. SEMAFOR gen-

erates three frames (capability, expensiveness, and locale by use) for the utterance, which we

consider as slot candidates. Note that for each slot candidate, SEMAFOR also includes

the corresponding lexical unit (can i, cheap, and restaurant), which we consider as possible

slot-fillers.

Since SEMAFOR was trained on FrameNet annotation, which has a more generic frame-

semantic context, not all the frames from the parsing results can be used as the actual
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can i have a cheap restaurant 

Frame: capability 
FT LU: can FE Filler: i 

Frame: expensiveness 
FT LU: cheap 

Frame: locale_by_use 
FT/FE LU: restaurant 

Figure 3.2: An example of probabilistic frame-semantic parsing on ASR output. FT: frame
target. FE: frame element. LU: lexical unit.

slots in the domain-specific dialogue systems. For instance, in Figure 3.2, we see that the

frames “expensiveness” and “locale by use” are essentially the key slots for the purpose of

understanding in the restaurant query domain, whereas the “capability” frame does not convey

particular valuable information for SLU. In order to fix this issue, we compute the prominence

of these slot candidates, use a slot ranking model to rank the most important slots, and then

generate a list of induced slots for use in domain-specific dialogue systems.

3.3.2 Independent Semantic Decoder

With outputted semantic parses, we extract the frames with the top 50 highest frequency as

our slot candidates for training SLU. The features for training are generated by word confusion

network, where confusion network features are shown to be useful in developing more robust

systems for SLU [43]. We build a vector representation of an utterance as u = [x1, ..., xj , ...].

xj = E[Cu(n-gramj)]
1/|n-gramj |, (3.1)

where Cu(n-gramj) counts how many times n-gramj occurs in the utterance u,

E(Cu(n-gramj)) is the expected frequency of n-gramj in u, and |n-gramj | is the number

of words in n-gramj .

For each slot candidate si, we generate a pseudo training data Di to train a binary classifier

Mi for predicting the existence of si given an utterance, Di = {(uk, l
i
k) | uk ∈ R+, lik ∈

{−1,+1}}Kk=1, where lik = +1 when the utterance uk contains the slot candidate si in its

semantic parse, lik = −1 otherwise, and K is the number of utterances.

3.3.3 Adaptation Process and SLU Model

The generic concepts should be distinguished from the domain-specific concepts in the adap-

tation process. With the trained independent semantic decoders for all slot candidates, adap-

tation process computes the prominence of slot candidates for ranking and then selects a list of

induced slots associated with their corresponding semantic decoders for use in domain-specific

20



dialogue systems. Then with each induced slot si and its corresponding trained semantic de-

coderMi, an SLU model can be built to predict whether the semantic slot occurs in the given

utterance in a fully unsupervised way. In other words, the SLU model is able to transform

the testing utterance into semantic representations without human involvement. The detail

of the adaptation is described in the following section.

3.4 Slot Ranking Model

The purpose of the ranking model is to distinguish between generic semantic concepts and

domain-specific concepts that are relevant to an SDS. To induce meaningful slots for the

purpose of SDS, we compute the prominence of the slot candidates using a slot ranking

model described below.

With the semantic parses from SEMAFOR, the model ranks the slot candidates by integrat-

ing two scores [20, 22]: (1) the normalized frequency of each slot candidate in the corpus,

since slots with higher frequency may be more important. (2) the coherence of slot-fillers

corresponding to the slot. Assuming that domain-specific concepts focus on fewer topics,

the coherence of the corresponding slot-fillers can help measure the prominence of the slots

because they are similar to each other.

w(s) = (1− α) · log f(s) + α · log h(s), (3.2)

where w(s) is the ranking weight for the slot candidate s, f(s) is its normalized frequency

from semantic parsing, h(s) is its coherence measure, and α is the weighting parameter within

the interval [0, 1], which balances the frequency and coherence.

For each slot s, we have the set of corresponding slot-fillers, V (s), constructed from the

utterances including the slot s in the parsing results. The coherence measure of the slot

s, h(s), is computed as the average pair-wise similarity of slot-fillers to evaluate if slot s

corresponds to centralized or scattered topics.

h(s) =

∑
xa,xb∈V (s) Sim(xa, xb)

|V (s)|2
, (3.3)

where V (s) is the set of slot-fillers corresponding slot s, |V (s)| is the size of the set, and

Sim(xa, xb) is the similarity between the slot-filler pair xa and xb. The slot s with higher h(s)

usually focuses on fewer topics, which is more specific and more likely to be a slot for the

dialogue system. The detail about similarity measure is introduced in the following section.
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3.5 Word Representations for Similarity Measure

To capture the semantics of each word, we transform each token x into a corresponding vector

x by following methods. Then given that word representations can capture the semantic

meanings, the topical similarity between each slot-filler pair xa and xb can be computed as

Sim(xa, xb) =
xa · xb

‖xa‖‖xb‖
. (3.4)

We assume that words occurring in similar domains have similar word representations, and

thus Sim(xa, xb) will be larger when xa and xb are semantically related. To build the word

representations, we consider two techniques, in-domain clustering vectors and external word

vectors.

3.5.1 In-Domain Clustering Vectors

The in-domain data is used to cluster words using Brown hierarchical word clustering algo-

rithm [14, 67]. For each word x, we construct a vector x = [c1, c2, ..., cK ], where ci = 1 when

the word x is clustered into the i-th cluster, and ci = 0 otherwise, and K is the number of

clusters. The assumption is that topically similar words may be clustered together since they

occur with the same contexts more frequently. Therefore, the cluster-based vectors that carry

the such information can help measure similarity between words.

3.5.2 External Word Vectors

Section 2.5 of Chapter 2 introduces the distributional semantics, and a lot of studies have

utilized the semantically-rich continuous word representations to benefit many NLP tasks.

Considering that this distributional semantic theory may benefit our SLU task, we leverage

word representations trained from large external data to differentiate semantic concepts. The

rationale behind applying the distributional semantic theory to our task is straight-forward:

because spoken language is a very distinct genre comparing to the written language on which

FrameNet is constructed, it is necessary to borrow external word representations to help

bridge these two data sources for the unsupervised adaptation process. More specifically, to

better adapt the FrameNet-style parses to the target task-oriented SDS domain, we make use

of continuous word vectors derived from a recurrent neural network architecture [69]. The

learned word embeddings are able to capture both syntactic and semantic relations [72, 71],

which provide more robust relatedness information between words and may help distinguish

the domain-specific information from the generic concepts.
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Considering that continuous space word representations may capture more robust topical in-

formation [72], we leverage word embeddings trained on an external large dataset to involve

distributional semantics of slot-fillers. That is, the word vectors are built as their word em-

beddings, and the learning process is introduced in Section 2.5 of Chapter 2. The external

word vectors rely on the performance of pre-trained word representations, and higher dimen-

sionality of embedding words results in more accurate performance but greater complexity.

3.6 Experiments

To evaluate the effectiveness of our induced slots, we performed two evaluations. First, we

examine the slot induction accuracy by comparing the ranked list of frame-semantic parsing

induced slots with the reference slots created by developers of the corresponding system [101].

Secondly, based on the ranked list of induced slots, we can train a semantic decoder for each

slot to build an SLU component, and then evaluate the performance of our SLU model by

comparing against the human annotated semantic forms. For the experiments, we evaluate

both on ASR transcripts of the raw audio, and on the manual transcripts.

3.6.1 Experimental Setup

In this experiment, we used the Cambridge University SLU corpus, previously used on several

other SLU tasks [52, 19]. The domain of the corpus is about restaurant recommendation in

Cambridge; subjects were asked to interact with multiple SDSs in an in-car setting. There

were multiple recording settings: 1) a stopped car with the air condition control on and

off; 2) a driving condition; and 3) in a car simulator. The distribution of each condition in

this corpus is uniform. The corpus contains a total number of 2,166 dialogues, and 15,453

utterances, which is separated into training and testing parts as shown in Table 3.1. The

training part is for self-training the SLU model.

The data is gender-balanced, with slightly more native than non-native speakers. The vo-

cabulary size is 1,868. An ASR system was used to transcribe the speech; the word error

rate was reported as 37%. There are 10 slots created by domain experts: addr, area, food,

name, phone, postcode, price range, signature, task, and type. The parameter α in (3.2) can be

empirically set; we use α = 0.2, N = 100 for all experiments.

To include distributional semantics information, we use the distributed vectors trained on

109 words from Google News1. Training was performed using the continuous bag of words

architecture, which predicts the current word based on the context, with sub-sampling using

1https://code.google.com/p/word2vec/
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Train Test Total

Dialogue 1522 644 2166
Utterance 10571 4882 15453

Male : Female 28 : 31 15 : 15 43 : 46
Native : Non-Native 33 : 26 21 : 9 54 : 47

Avg. #Slot 0.959 0.952 0.957

Table 3.1: The statistics of training and testing corpora

speak_on_topic addr 

area 

food 

phone 

part_orientational 
direction 
locale 
part_inner_outer 

food 
origin 

contacting 

postcode 

price range 

task 

type 

sending 

commerce scenario 
expensiveness 
range 

seeking 
desiring 
locating 

locale_by_use 
building 

Figure 3.3: The mappings from induced slots (within blocks) to reference slots (right sides of
arrows).

threshold 1×e−5, and with negative sampling with 3 negative examples per each positive one.

The resulting vectors have dimensionality 300, vocabulary size is 3× 106; the entities contain

both words and automatically derived phrases. The dataset provides a larger vocabulary and

better coverage.

3.6.2 Evaluation Metrics

To eliminate the influence of threshold selection when choosing induced slots, in the following

metrics, we take the whole ranking list into account and evaluate the performance by the

metrics that are independent on the selected threshold.

3.6.2.1 Slot Induction

To evaluate the accuracy of the induced slots, we measure their quality as the proximity

between induced slots and reference slots. Figure 3.3 shows the mappings that indicate

semantically related induced slots and reference slots [20]. For example, “expensiveness →
price”, “food → food”, and “direction → area” show that these induced slots can be mapped

into the reference slots defined by experts and carry important semantics in the target domain

for developing the task-oriented SDS. Note that two slots, name and signature, do not have

proper mappings, because they are too specific on restaurant-related domain, where name

records the name of restaurant and signature refers to signature dishes. This means that
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Approach
ASR Manual

Slot Induction SLU Model Slot Induction SLU Model
AP AUC WAP AF AP AUC WAP AF

Frequency (α = 0) 56.69 54.67 35.82 43.28 53.01 50.80 36.78 44.20

In-Domain 60.06 58.02 34.39 43.28 59.96 57.89 39.84 44.99
External 71.70 70.35 44.51 45.24 74.41 73.57 50.48 73.57

Max RI (%) +26.5 +28.7 +24.3 +4.5 +40.4 +44.8 +37.2 +66.4

Table 3.2: The performance of slot induction and SLU modeling (%)

the 80% recall is achieved by our approach because we consider all outputted frames as slot

candidates.

Since we define the adaptation task as a ranking problem, with a ranked list of induced slots

and their associated scores, we can use the standard average precision (AP) as our metric,

where the induced slot is counted as correct when it has a mapping to a reference slot. For

a ranked list of induced slots l = s1, ..., sk, ..., where the sk is the induced slot ranked at k-th

position, the average precision is

AP(l) =

∑n
k=1 P (k)× 1[sk has a mapping to a reference slot]

number of induced slots with mapping
, (3.5)

where P (k) is the precision at cut-off k in the list and 1 is an indicator function equaling

1 if ranked k-th induced slot sk has a mapping to a reference slot, 0 otherwise. Since the

slots generated by our method cover only 80% of the referenced slots, the oracle recall is 80%.

Therefore, average precision is a proper way to measure the slot ranking problem, which is

also an approximation of the area under the precision-recall curve (AUC) [12].

3.6.2.2 SLU Model

While semantic slot induction is essential for providing semantic categories and imposing

semantic constraints, we are also interested in understanding the performance of our unsu-

pervised SLU models. For each induced slot with the mapping to a reference slot, we can

compute an F-measure of the corresponding semantic decoder, and weight the average pre-

cision with corresponding F-measure as weighted average precision (WAP) to evaluate the

performance of slot induction and SLU tasks together. The metric scores the ranking result

higher if the induced slots corresponding to better semantic decoders are ranked higher. An-

other metric is the average F-measure (AF), which is the average micro-F of SLU models at

all cut-off positions in the ranked list. Compared to WAP, AF additionally considers the slot

popularity in the dataset.
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3.6.3 Evaluation Results

Table 3.2 shows the results. The first row is the baseline, which only considers the frequency

of slot candidates for ranking. It is found that the performance of SLU induction for ASR is

better than for manual results. The reason about better AP and AUC scores of ASR may

be that users tend to speak keywords clearer than generic words, higher word error rate of

generic words makes these slot candidates ranked lower due to lower frequency.

In-Domain and External are the results of proposed word vector models with leveraging

distributional word representations, in-domain clustering vectors and external word vectors

respectively. In terms of both slot induction and SLU modeling, we find most results are

improved by including distributed word information. With only in-domain data, the perfor-

mance of slot induction can be significantly improved, from 57% to 60% on AP and from

55% to 58% on AUC. However, for SLU models, in-domain clustering approach does not

show the improvement on ASR transcripts and improves the performance on manual results

a little. With the external word vector approach, the performance is significantly improved

for ASR and manual transcripts, which shows the effectiveness of involving external data for

the similarity measurement.

To compare different similarity measures, we evaluate two approaches of computing distribu-

tional semantic similarity: in-domain clustering vectors and external word vectors. For both

ASR and manual transcripts, the similarity derived from external word vectors significantly

outperforms one from in-domain clustering vectors. The reason may be that external word

vectors have more accurate semantic representations to measure similarity because they are

trained on the large data, while in-domain clustering vectors rely on a small training set,

which may be biased by the data and degrade with recognition errors.

We see that leveraging distributional semantics with frame-semantic parsing produces promis-

ing slot ranking performance; this demonstrates the effectiveness of our proposed approaches

for slot induction. The 72% of AP indicates that our proposed approach can generate good

coverage for domain-specific slots in a real-world SDS, reducing labor cost of system develop-

ment.

3.7 Summary

This chapter proposes the first unsupervised approach unifying distributional and frame se-

mantics for domain ontology induction. Our work makes use of a state-of-the-art seman-

tic parser, and adapts the generic linguistic FrameNet representation to a semantic space

characteristic of a domain-specific SDS. With the incorporation of distributional word repre-
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sentations, we show that our automatically induced semantic slots align well with reference

slots, yielding the state-of-the-art performance. Also, we demonstrate that it is feasible that

the automatically induced ontology benefit SLU tasks. The automating process of ontology

induction reduces the cost of human annotations, speeding up the SDS development.
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4Structure Learning for

Knowledge Acquisition

Ontology induction extracts the domain-specific concepts, but the induced information is

flat and unstructured. Considering that a well-organized ontology may help understanding,

inter-slot relations should be considered for organizing the domain knowledge. The structure

learning approach is introduced in this chapter.

4.1 Introduction

An important requirement for building a successful SDS is to define a coherent slot set and

the corresponding slot-fillers for the SLU component. Unfortunately, since the semantic slots

are often mutually-related, it is non-trivial for domain experts and professional annotators to

design a such slot set for semantic representation of SLU.

Considering the restaurant domain [52], “restaurant” is the target slot, and important adjec-

tive modifiers such as “Asian” (the restaurant type) and “cheap” (the price of the restaurant)

should be included in the slot set, so that the semantic representation of SLU can be more

coherent and complete. In this case, it is challenging to design such a coherent and complete

slot set manually, while considering various lexical, syntactic, and semantic dependencies.

Instead of considering slots independently, this chapter takes a data-driven approach to model

word-to-word relations via syntactic dependency and further infer slot-to-slot relations. To

do this, we incorporate the typed dependency grammar theory in a state-of-the-art frame-

semantic driven unsupervised slot induction framework [30, 20]. In particular, we build two

knowledge graphs: a slot-based semantic knowledge graph and a word-based lexical knowledge

graph. Using typed dependency triples, we then study the stochastic relations between slots

and words, using a mutually-reinforced random walk inference procedure to combine the two

knowledge graphs. In evaluations, we use the jointly learned inter-slot relations to induce a

coherent slot set in an unsupervised fashion. Our contributions in this chapter are three-fold:

• We are among the first to combine semantic and lexical knowledge graphs for unsuper-

vised SLU;
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Figure 4.1: The proposed framework

• We propose a novel typed syntactic dependency grammar driven random walk model

for relation discovery;

• Our experimental results suggest that jointly considering inter-slot relations helps obtain

a more coherent and complete semantic slot set, showing that the ontology structure is

essential to build a better SLU component.

4.2 Related Work

With the recent success of commercial SDSs and personal assistants (e.g., Microsoft’s Cor-

tana1, Google Now2, Apple’s Siri3, and Amazon’s Echo4), a key focus on developing SLU

techniques is the scalability issue. From the knowledge management perspective, empowering

the dialogue system with large knowledge base is of crucial significance to modern SDSs. On

this end, our work clearly aligns with recent studies on leveraging semantic knowledge graphs

for SLU [50, 45, 46, 35, 21]. While leveraging external knowledge is the trend, efficient infer-

ence algorithms, such as random walks, are still less-studied for direct inference on knowledge

graphs of the spoken contents.

In the NLP literature, Lao et al. used a random walk algorithm to construct inference rules on

large entity-based knowledge bases [59], and leveraged syntactic information for reading the

Web [60]. Even though this work has important contributions, the proposed algorithm cannot

learn mutually-recursive relations, and does not to consider lexical items—in fact, more and

more studies show that, in addition to semantic knowledge graphs, lexical knowledge graphs

that model surface-level natural language realization [54, 87, 66], multiword expressions, and

context [65], are also critical for short text understanding [87, 94].

1
http://www.windowsphone.com/en-us/how-to/wp8/cortana

2
http://www.google.com/landing/now

3
http://www.apple.com/ios/siri

4http://www.amazon.com/oc/echo
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From the engineering perspective, quick and easy development turnaround time for domain-

specific dialogue applications is also critical [18]. However, most works treat each slot inde-

pendently and have not considered the inter-slot relations when inducing the semantic slots.

Considering that a well-organized ontology may benefit a better SLU component construction

and the system development, the semantic structure of the ontology is included when inducing

the domain knowledge. To the best of our knowledge, we are the first to use syntactically-

informed random walk algorithms to combine the semantic and lexical knowledge graphs,

and not individually but globally inducing the semantic slots for building better unsupervised

SLU components.

4.3 The Proposed Framework

The approach is built on top of the success of an unsupervised frame-semantic parsing ap-

proach introduced in Chapter 3 [20]. The main motivation is to use a FrameNet-trained

statistical probabilistic semantic parser to generate initial frame-semantic parses from ASR

decodings of the raw audio conversation files, and then adapt the FrameNet-style frames

to the semantic slots in the target semantic space, so that they can be used practically in

the SDSs. In stead of inducing an unstructured ontology, this chapter improves the adap-

tation process by leveraging distributed word embeddings associated with typed syntactic

dependencies between words to infer inter-slot relations in order to learn a well-organized on-

tology [71, 72, 64]. The proposed framework is shown in Figure 4.1. Frame-semantic parsing,

independent semantic decoder, and adaptation process are similar to one from Chapter 3,

except that the slot ranking model does consider the relation information. Finally we can

build the SLU models based on the learned semantic decoders and induced slots to evaluate

whether the ontology structure helps SLU modeling.

4.4 Slot Ranking Model

The purpose of the ranking model is to distinguish between generic semantic concepts and

domain-specific concepts that are relevant to an SDS. To induce meaningful slots for the

purpose of SDS, we compute the prominence of the slot candidates additionally considering

the structure information.

With the semantic parses from SEMAFOR, where each frame is viewed independently, so

inter-slot relations are not included, the model ranks the slot candidates by integrating two

information: (1) the frequency of each slot candidate in the corpus, since slots with higher

frequency may be more important. (2) the relations between slot candidates. Assuming

that domain-specific concepts are usually related to each other, globally considering inter-slot
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Figure 4.2: A simplified example of the two knowledge graphs, where a slot candidate si is
represented as a node in a semantic knowledge graph and a word wj is represented as a node
in a lexical knowledge graph.

relations induces a more coherent slot set. Here for baseline scores, we only use the frequency

of each slot candidate as its prominence without the structure information.

First we construct two knowledge graphs, one is a slot-based semantic knowledge graph and

another is a word-based lexical knowledge graph, both of which encode the typed dependency

relations in their edge weights. We also connect two graphs to model the relations between

slot-filler pairs.

4.4.1 Knowledge Graphs

We construct two undirected graphs, semantic and lexical knowledge graphs. Each node in

the semantic knowledge graph is a slot candidate si outputted by the frame-semantic parser,

and each node in the lexical knowledge graph is a word wj .

• Slot-based semantic knowledge graph is built as Gs = 〈Vs, Ess〉, where Vs = {si}
and Ess = {eij | si, sj ∈ Vs}.

• Word-based lexical knowledge graph is built as Gw = 〈Vw, Eww〉, where Vw = {wi}
and Eww = {eij | wi, wj ∈ Vw}.

With two knowledge graphs, we build the edges between slots and slot-fillers to inte-

grate them as shown in Figure 4.2. Thus the combined graph can be formulated as

G = 〈Vs, Vw, Ess, Eww, Ews〉, where Ews = {eij | wi ∈ Vw, sj ∈ Vs}. Ess, Eww, and Ews

correspond the slot-to-slot relations, word-to-word relations, and the word-to-slot relations

respectively [16, 17].
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Figure 4.3: The dependency parsing result on an utterance.

4.4.2 Edge Weight Estimation

Considering the relations in the knowledge graphs, the edge weights for Eww and Ess are

measured based on the dependency parsing results. The example utterance “can i have

a cheap restaurant” and its dependency parsing result are illustrated in Figure 4.3. The

arrows denote the dependency relations from headwords to their dependents, and words

on arcs denote types of the dependencies. All typed dependencies between two words are

encoded in triples and form a word-based dependency set Tw = {〈wi, t, wj〉}, where t is the

typed dependency between the headword wi and the dependent wj . For example, Figure 4.3

generates 〈restaurant,amod, cheap〉, 〈have,dobj, restaurant〉, etc. for Tw. Similarly, we build

a slot-based dependency set Ts = {〈si, t, sj〉} by transforming dependencies between slot-fillers

into ones between slots. For example, 〈restaurant,amod, cheap〉 from Tw is transformed into

〈locale by use,amod, expensiveness〉 for building Ts, because both sides of the non-dotted line

are parsed as slot-fillers by SEMAFOR.

For the edges within a single knowledge graph, we assign a weight of the edge connecting

nodes xi and xj as r̂(xi, xj), where x is either s or w. Since the weights are measured based

on the relations between nodes regardless of the directions, we combine the scores of two

directional dependencies:

r̂(xi, xj) = r(xi → xj) + r(xj → xi), (4.1)

where r(xi → xj) is the score estimating the dependency including xi as a head and xj

as a dependent. In Section 4.4.2.1 and 4.4.2.2, we propose two scoring functions for r(·),
frequency-based as r1(·) and embedding-based as r2(·) respectively.

For the edges in Ews, we estimate the edge weights based on the frequency that the slot

candidates and the words are parsed as slot-filler pairs. In other words, the edge weight

between the slot-filler wi and the slot candidate sj , r̂(wi, sj), is equal to how many times the

filler wi corresponds to the slot candidate sj in the parsing results.
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Typed Dependency Relation Target Word Contexts

Word 〈restaurant,amod, cheap〉 restaurant cheap/amod
cheap restaurant/amod−1

Slot 〈locale by use,amod, expensiveness〉 locale by use expensiveness/amod
expansiveness locale by use/amod−1

Table 4.1: The contexts extracted for training dependency-based word/slot embeddings from
the utterance of Fig. 3.2.

4.4.2.1 Frequency-Based Measurement

Based on the dependency set Tx, we use t∗xi→xj to denote the most frequent typed dependency

with xi as a head and xj as a dependent.

t∗xi→xj = arg max
t
C(xi −→

t
xj), (4.2)

where C(xi −→
t
xj) counts how many times the dependency 〈xi, t, xj〉 occurs in the dependency

set Tx.

Then the scoring function that estimates the dependency xi → xj is measured as

r1(xi → xj) = C(xi −−−−→
t∗xi→xj

xj), (4.3)

which equals to the highest observed frequency of the dependency xi → xj among all types

from Tx.

4.4.2.2 Embedding-Based Measurement

It is shown that a dependency-based embedding approach introduced in Section 2.5.2 of Chap-

ter 2 is able to capture more functional similarity because using dependency-based syntactic

contexts for training word embeddings [64]. Table 4.1 shows some extracted dependency-

based contexts for each target word from the example in Figure 4.3, where headwords and

their dependents can form the contexts by following the arc on a word in the dependency tree,

and −1 denotes the directionality of the dependency. We learn vector representations for both

words and contexts such that the dot product vw · vc associated with “good” word-context

pairs belonging to the training data is maximized. Then we can obtain the dependency-based

slot and word embeddings using Ts and Tw respectively.

With trained dependency-based embeddings, we estimate the probability that xi is the head-
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word and xj is its dependent via the typed dependency t as

P (xi −→
t
xj) =

Sim(xi, xj/t) + Sim(xj , xi/t
−1)

2
, (4.4)

where Sim(xi, xj/t) is the cosine similarity between word/slot embeddings vxi
and context

embeddings vxj/t after normalizing to [0, 1]. Then we can measure the scoring function r2(·)
as

r2(xi → xj) = C(xi −−−−→
t∗xi→xj

xj) · P (xi −−−−→
t∗xi→xj

xj), (4.5)

which is similar to (4.3) but additionally weighted by the estimated probability. The estimated

probability smooths the observed frequency to avoid overfitting due to the smaller dataset.

4.4.3 Random Walk Algorithm

We first compute Lww = [r̂(wi, wj)]|Vw|×|Vw| and Lss = [r̂(si, sj)]|Vs|×|Vs|, where r̂(wi, wj) and

r̂(si, sj) are either from frequency-based (r1(·)) or embedding-based measurements (r2(·)).
Similarly, Lws = [r̂(wi, sj)]|Vw|×|Vs| and Lsw = [r̂(wi, sj)]

T
|Vw|×|Vs|, where r̂(wi, sj) is the fre-

quency that sj and wi are a slot-filler pair computed in Section 4.4.2. Then we only keep the

top N highest weights for each row in Lww and Lss (N = 10), which means that we filter out

the edges with smaller weights within the single knowledge graph. Column-normalization are

performed for Lww, Lss, Lws, Lsw [83]. They can be viewed as word-to-word, slot-to-slot, and

word-to-slot relation matrices.

4.4.3.1 Single-Graph Random Walk

Here we run random walk only on the semantic knowledge graph to propagate the scores

based on inter-slot relations through the edges Ess.

R(t+1)
s = (1− α)R(0)

s + αLssR
(t)
s , (4.6)

where R
(t)
s denotes the importance scores of the slot candidates Vs in t-th iteration. In the

algorithm, the score is the interpolation of two scores, the normalized baseline importance of

slot candidates (R
(0)
s ), and the scores propagated from the neighboring nodes in the semantic

knowledge graph based on the slot-to-slot relations Lss. The algorithm will converge when

R
(t+1)
s = R

(t)
s = R∗s and (4.7) can be satisfied.

R∗s = (1− α)R(0)
s + αLssR

∗
s (4.7)
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We can solve R∗s as below.

R∗s =
(

(1− α)R(0)
s eT + αLss

)
R∗s = M1R

∗
s, (4.8)

where the e = [1, 1, ..., 1]T . It has been shown that the closed-form solution R∗s of (4.8) is

the dominant eigenvector of M1 [58], or the eigenvector corresponding to the largest absolute

eigenvalue of M1. The solution of R∗s denotes the updated importance scores for all utterances.

Similar to the PageRank algorithm [13], the solution can also be obtained by iteratively

updating R
(t)
s .

4.4.3.2 Double-Graph Random Walk

Here we borrow the idea from two-layer mutually reinforced random walk to propagate the

scores based on not only internal importance propagation within the same graph but external

mutual reinforcement between different knowledge graphs [16, 17].{
R

(t+1)
s = (1− α)R

(0)
s + αLssLswR

(t)
w

R
(t+1)
w = (1− α)R

(0)
w + αLwwLwsR

(t)
s

(4.9)

In the algorithm, they are the interpolations of two scores, the normalized baseline importance

(R
(0)
s and R

(0)
w ) and the scores propagated from another graph. For the semantic knowledge

graph, LswR
(t)
w is the score from the word set weighted by slot-to-word relations, and then

the scores are propagated based on slot-to-slot relations Lss. Similarly, nodes of the lexical

knowledge graph also include the scores propagated from the semantic knowledge graph. Then

R
(t+1)
s and R

(t+1)
w can be mutually updated by the latter parts in (4.9) iteratively. When the

algorithm converges, we have R∗s and R∗w can be derived similarly.{
R∗s = (1− α)R

(0)
s + αLssLswR

∗
w

R∗w = (1− α)R
(0)
w + αLwwLwsR

∗
s

(4.10)

R∗s = (1− α)R(0)
s + αLssLsw

(
(1− α)R(0)

w + αLwwLwsR
∗
s

)
= (1− α)R(0)

s + α(1− α)LssLswR
(0)
w + α2LssLswLwwLwsR

∗
s

=
(

(1− α)R(0)
s eT + α(1− α)LssLswR

(0)
w eT + α2LssLswLwwLws

)
R∗s

= M2R
∗
s.

(4.11)

The closed-form solution R∗s of (4.11) is the dominant eigenvector of M2.

36



4.5 Experiments

The goal is to validate the effectiveness of including the structure information for SLU. We

evaluate our approach in two ways. First, we examine the slot induction accuracy by compar-

ing the ranked list of induced slots with the reference slots created by system developers [101].

Secondly, with the ranked list of induced slots and their associated semantic decoders, we can

evaluate the SLU performance. For the experiments, we evaluate both on ASR transcripts of

the raw audio, and on the manual transcripts.

4.5.1 Experimental Setup

The data used is Cambridge University SLU corpus described in previous chapter. For param-

eter setting, the damping factor for random walk α is empirically set as 0.9 for all experiments.

For training the semantic decoders, we use SVM with a linear kernel to predict each semantic

slot. We use Stanford Parser to obtain the collapsed typed syntactic dependencies [85] and

set the dimensionality of embeddings d = 300 in all experiments.

4.5.2 Evaluation Metrics

To evaluate the accuracy of the induced slots, we measure their quality as the proximity

between induced slots and reference slots. Figure 3.3 in Chapter 3 shows the mappings that

indicate semantically related induced slots and reference slots [20]. As the same as the metrics

in Chapter 3, we use standard average precision (AP) and the area under the precision-recall

curve (AUC) for evaluating slot induction.

To evaluate the influence of SLU modeling brought by the proposed approaches, we use

weighted average precision (WAP) to evaluate the performance of slot induction and SLU

tasks together. Also, another metric is the average F-measure (AF), which is the average

micro-F of SLU models at all cut-off positions in the ranked list. Compared to WAP, AF

additionally considers the slot popularity in the dataset.

4.5.3 Evaluation Results

Table 4.2 shows the results on both ASR and transcripts. Rows (a) is the baseline only con-

sidering the frequency of each slot candidate for ranking. Rows (b) and (c) show performance

after leveraging a semantic knowledge graph through random walk. Rows (d) and (e) are the

results after combining two knowledge graphs. We find almost all results are improved by
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Approach
ASR Manual

Slot Induction SLU Model Slot Induction SLU Model
AP AUC WAP AF AP AUC WAP AF

(a) Baseline (α = 0) 56.69 54.67 35.82 43.28 53.01 50.80 36.78 44.20

(b)
Single

Freq. 63.88 62.05 41.67 47.38 63.02 61.10 43.76 48.53
(c) Embed. 69.04 68.25 46.29 48.89 75.15 74.50 54.50 50.86

(d)
Double

Freq. 56.83 55.31 32.64 44.91 52.12 50.54 34.01 45.05
(e) Embed. 71.48 70.84 44.06 47.91 76.42 75.94 52.89 50.40

Table 4.2: The performance of induced slots and corresponding SLU models (%)

additionally considering inter-slot relations in terms of single- and double-graph random walk

for both ASR and manual transcripts.

4.5.3.1 Slot Induction

For both ASR and manual transcripts, almost all results outperform the baseline, which

shows that the inter-slot relations significantly influence the performance of slot induction.

The best performance is from the results of double-graph random walk with the embedding-

based measurement, which integrate a semantic knowledge graph and a lexical knowledge

graph together and jointly consider the slot-to-slot, word-to-word, and word-to-slot relations

when scoring the prominence of slot candidates to generate a coherent slot set.

4.5.3.2 SLU Model

For both ASR and manual transcripts, almost all results outperform the baseline, which shows

the practical usage for training dialogue systems. The best performance is from the results of

single-graph random walk with embedding-based measurement, which only use the semantic

knowledge graph to involve the inter-slot relations. The semantic knowledge graph is not as

precise as the lexical one and may be influenced by the performance of the semantic parser

more. Although the row (e) doesn’t show better performance than the row (c), double-graph

random walk may be more robust because it additionally includes the words’ relations to

avoid from only relying on the relations tied with the slot candidates.

4.5.4 Discussion and Analysis

4.5.4.1 Comparing Frequency- and Embedding-Based Measurements

Table 4.2 shows that all results with embedding-based measurement perform better than with

frequency-based measurement. The frequency-based measurement also brings large improve-
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ment for single-graph approaches, but does not for double-graph ones. The reason is probably

that using observed frequencies in the lexical knowledge graph may result in overfitting issues

due to the smaller dataset. Additionally including embedding information can smooth the

edge weights and deal with data sparsity to improve the performance, especially for the lexical

knowledge graph.

4.5.4.2 Comparing Single- and Double-Graph Approaches

Considering embedding-based measurement performs better, we only compare the results of

single- and double-graph random walk using this measurement (rows (c) and (e)). It can be

seen that the difference between them is not consistent in terms of slot induction and SLU

model.

For evaluating slot induction (AP and AUC), the double-graph random walk (row (e)) per-

forms better on both ASR and manual results, which implies that additionally integrating the

lexical knowledge graph helps decide a more coherent and complete slot set since we can model

the score propagation more precisely (not only slot-level but word-level information). How-

ever, for SLU evaluation (WAP and AF), the single-graph random walk (row (c)) performs

better, which may imply that the slots carrying the coherent relations from the row (e) may

not have good semantic decoder performance so that the performance is decreased a little.

For example, double-graph random walk scores the slots local by use and expensiveness higher

than the slot contacting, while the single-graph method ranks the latter higher. local by use

and expensiveness are more important on this domain but contacting has very good perfor-

mance of its semantic decoder, so the double-graph approach does not show the improvement

when evaluating SLU. This allows us to try an improved method of jointly optimizing the

slot coherence and SLU performance in the future.

4.5.4.3 Relation Discovery Analysis

To interpret the inter-slot relations, we output the relations that connect the slots with highest

scores from the best results (row (e) in Table 4.2) in Table 4.3. It can be shown that the

outputted inter-slot relations are reasonable and usually connect two important semantic

slots. The automatically learned structure is able to construct a corresponding slot-based

semantic knowledge graph as Figure 4.4. This proves that inter-slot relations help decide a

coherent and complete slot set and enhance the interpretability of semantic slots, and from a

practical perspective, developers are able to design the framework of dialogue systems more

easily.
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Rank Relation

1 〈locale by use,nn, food〉
2 〈food,amod, expensiveness〉
3 〈locale by use,amod, expensiveness〉
4 〈seeking,prep for, food〉
5 〈food,amod, relational quantity〉
6 〈desiring,dobj, food〉
7 〈seeking,prep for, locale by use〉
8 〈food,det, quantity〉

Table 4.3: The top inter-slot relations learned from the training set of ASR outputs.

locale_by_use 

food expensiveness 

seeking 

relational_quantity 

PREP_FOR 

PREP_FOR 

NN 
AMOD 

AMOD 

AMOD 

desiring 

DOBJ 

Figure 4.4: A simplified example of the automatically derived knowledge graph.

4.6 Summary

The chapter proposes an approach of jointly considering inter-slot relations for slot induction

to output a more coherent slot set, where two knowledge graphs, a slot-based semantic knowl-

edge graph and a word-based lexical knowledge graph, are built and combined by a random

walk algorithm. The automatically induced slots carry coherent and interpretable relations

and can be used for better understanding, showing that the relation information helps SLU

modeling.
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5
Surface Form Derivation

for Knowledge

Acquisition

With the available structured ontology, the domain knowledge can be learned for building a

domain-specific dialogue system. However, the entities in the ontology have various surface

forms, for example, in a movie domain, “movie” and “film” can be used to refer to the same

entity of an ontology. This chapter focuses on deriving surface forms and shows that the

derived surface forms can benefit the SLU modeling performance.

5.1 Introduction

An SLU component aims to detect the semantic frames that include domain-related informa-

tion. Traditional SDSs are trained with annotated examples and support limited domains.

Recently, the structured semantic knowledge such as Freebase1 [9], FrameNet2 [2], etc. is uti-

lized to obtain domain-related knowledge and help SLU for tackling open domain problems

in SDSs [49, 50, 46, 20, 22].

Knowledge graphs, such as Freebase, usually carry rich information for named entities, which

is encoded in triples about entity pairs and their relation. Such information is usually used

for interpretation of natural language in SDSs [53, 89, 46]. However, the entity lists/gazat-

teers may bring noise and ambiguity to SLU, for example, the commonly used words “Show

me” and “Up” can be movie names, and “Brad Pitt” can be an actor name or a producer

name, which makes interpretation more difficult. Some works focused on assigning weights

for entities or entity types to involve prior background knowledge of entities, where the prob-

abilistic confidences offer better cues for SLU [53, 46]. Also, many works focused on mining

natural language forms based on the ontology by web search or query click logs, which benefit

discovering new relation types from large text corpora [45, 44]. The mined data can also be

used to help SLU by adaptation from the text domain to the spoken domain [50].

On the other hand, the distributional view of semantics hypothesizes that words occurring in

the same contexts may have similar meanings, and words can be represented as high dimen-

sional vectors. Recently, with the advancement of deep learning techniques, the continuous

1http://www.freebase.com
2http://framenet.icsi.berkeley.edu
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User Utterance: 
find movies produced by james cameron 

SPARQL Query (simplified): 
SELECT ?movie {?movie. ?movie.produced_by?producer. ?producer.name"James Cameron".} 

Logical Form: 
λx. Ǝy. movie.produced_by(x, y) Λ person.name(y, z) Λ z=“James Cameron” 

Relation: 
movie.produced_by producer.name 

User Utterance: 
who produced avatar 

SPARQL Query (simplified): 
SELECT ?producer {?movie.name"Avatar". ?movie.produced_by?producer.} 

Logical Form: 
λy. Ǝx. movie.produced_by(x, y) Λ movie.name(x, z) Λ z=“Avatar” 

Relation: 
movie.name movie.produced_by 

produced_by 

name 

MOVIE PERSON 

produced_by 

name 

MOVIE PERSON 

Figure 5.1: The relation detection examples.

word representations that represent words as dense vectors have been shown to perform well

in many applications [72, 71, 70, 100, 10, 11]. Furthermore, dependency-based word embed-

dings were proposed to capture more functional similarity based on the dependency-based

contexts instead of the linear contexts using the similar training procedure [64].

Following the successes, we leverage dependency-based entity embeddings to learn relational

information including entity surface forms and entity contexts from the text data. Integrating

derived relational information as local cues and gazetteers as background knowledge performs

well for the relation detection task in a fully unsupervised fashion.

5.2 Knowledge Graph Relations

Given an utterance, we can form a set of relations that encode the user’s intent for informa-

tional queries based on the semantic graph ontology. Figure 5.1 presents two user utterances

and their invoked relations, which can be used to create requests in query languages (i.e.,

SPARQL Query Language for RDF3). The two examples in this figure include two nodes and

the same relation movie.produced by, and we differentiate these examples by including the

originating node types in the relation (movie.name, producer.name) instead of just plain

names (the nodes with gray color denote specified entities). Given all these, this task is richer

than the regular relation detection task. The motivation to do that is, since we are trying to

write queries to the knowledge source, we need to make sure that the queries are well-formed

and relation arcs originate from the correct nodes in them. Therefore, this paper focuses

on detecting not only movie.produced by but also the specified entities producer.name and

3http://www.w3.org/TR/ref-sparql-query/

42

http://www.w3.org/TR/ref-sparql-query/


Semantics Inference 

from Gazetteers 
Entity 

Dict. 

Surface Form 

Derivation 
Entity 

Embeddings 

PF (r | w) 

Entity Surface Forms 

PC (r | w) 

PE (r | w) 

Entity Syntactic Contexts 

Knowledge Graph Entity 

Probabilistic 

Enrichment 

Ru (r) 

Relabel 

Boostrapping 

Final Results 

“find me some films directed by james cameron” 
Input Utterance 

Background Knowledge 

Local Surface Form 

Query 

Snippets 

Knowledge Graph 

Figure 5.2: The proposed framework.

movie.name, so that we can obtain a better understanding of user utterances.

5.3 Proposed Framework

The whole system framework is shown in Fig 4.1. There are two major components: 1) we

first utilize background knowledge as a prior to infer relations, and 2) we capture natural

language surface forms for detecting local observations, which are described in Sections 5.4

and Section 5.5 respectively.

Then probabilistic enrichment is used to integrate probabilistic information from background

knowledge and local relational observations given the input utterance. Finally an unsuper-

vised learning approach is proposed to boost the performance. The detail is presented in

Section 5.6.

5.4 Relation Inference from Gazetteers

Due to ambiguity of entity mentions, we utilize prior knowledge from gazetteers to esti-

mate the probability distribution of associated relations for each entity [46]. For exam-

ple, “James Cameron” can be a director or a producer, which infers movie.directed by or

movie.produced by relations respectively. Given a word wj , the estimated probability of

inferred relation ri is defined as

PE(ri | wj) = PE(ti | wj) =
C(wj , ti)∑

tk∈T (wj)
C(wj , tk)

, (5.1)
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Avatar is a 2009 American epic science fiction film Cameron. directed by James 

nsub 
num det cop 

nn vmod 
prop_by 

nn 

$movie $director nn nn nn 
prop pobj 

Figure 5.3: An example of dependency-based contexts.

where ti is the type corresponding to the relation ri (e.g. the entity type director.name

infers the relation movie.directed by), T (wj) denotes the set of all possible entity types of

the word wj , and C(wj , ti) is the number of times the specific entity wj is observed with a

specific type ti in the knowledge graph. For example, the number of movies James Cameron

has directed.

5.5 Relational Surface Form Derivation

5.5.1 Web Resource Mining

Based on the ontology of knowledge graph, we extract all possible entity pairs that are

connected with specific relations. Following the previous work, we get search snippets for

entity pairs tied with specific relations by web search4 [49, 45]. Then we mine the patterns used

in natural language realization of the relations. With the query snippets, we use dependency

relations to learn natural language surface forms about each specific relation by dependency-

based entity embeddings introduced below.

5.5.2 Dependency-Based Entity Embeddings

As Section 2.5.2 of Chapter 2 introduces, the dependency-based embeddings contain more

relational information because of training on the dependency-based contexts [64].

An example sentence “Avatar is a 2009 American epic science fiction film directed by James

Cameron.” and its dependency parsing result are illustrated in Figure 5.3. Here the sentence

comes from snippets returned by searching the entity pair, “Avatar” (movie) and “James

Cameron” (director). The arrows denote the dependency relations from headwords to their

dependents, and words on arcs denote type of the dependency relations. Relations that

include a preposition are “collapsed” prior to context extraction (dashed arcs in Figure 5.3), by

directly connecting the head and the object of the preposition, and subsuming the preposition

4http://www.bing.com
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Word Contexts

$movie film/nsub−1

is film/cop−1

a film/det−1

2009 film/num−1

american, epic, science, fiction film/nn−1

film
avatar/nsub, is/cop, a/det, 2009/num, american/nn
epic/nn, science/nn, fiction/nn, directed/vmod

directed $director/prep by

$diretor directed/prep by−1

Table 5.1: The contexts extracted for training dependency entity embeddings in the example
of the Figure 5.3.

itself into the dependency label. Before training embeddings, we replace entities with their

entity tags such as $movie for “Avatar” and $director for “James Cameron”.

The dependency-based contexts extracted from the example are given in Table 5.1, where

headwords and their dependents can form the contexts by following the arc on a word in the

dependency tree, and −1 denotes the directionality of the dependency. With the target words

and associated dependency-based contexts, we can train dependency-based entity embeddings

for all target words [100, 10, 11].

5.5.3 Surface Form Derivation

In addition to named entities detected by gazetteers, there are two different relational surface

forms used in natural languages, entity surface forms and entity syntactic contexts, which are

derived from trained embeddings by following approaches.

5.5.3.1 Entity Surface Forms

With only background knowledge gazetteers provided in Section 5.4, the unspecified entities

cannot be captured because knowledge graph does not contain such information like the

words “film” and “director”. This procedure is to discover the words that play the same

role and carry similar functional dependency as the specified entities. For example, the entity

$character may derive the word “role”, and $movie may derive “film”, “movie” as their entity

surface forms. The unspecified entities provide important cues for inferring corresponding

relations.

We first define a set of entity tags E = {ei} and a set of words W = {wj}. Based on the

trained dependency-based entity embeddings, for each entity tag ei, we compute the score of
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the word wj as

SFi (wj) =
FormSim(wj , ei)∑

ek∈E FormSim(wj , ek)
, (5.2)

where FormSim(w, e) is the cosine similarity between the embeddings of the word w and the

entity tag e. SFi (wj) can be viewed as the normalized weights of the words indicating the

importance for discriminating different entities. Based on SFi (wj), we propose to extract

top N similar words for each entity tag ei, to form a set of entity surface forms Fi, where Fi

includes surface form candidates of entity ei. The derived words may have similar embeddings

as the target entity, for example, “director” and $director may encode the same context

information such as directed/prep by−1 in their embeddings. Therefore, the word “director”

can be extracted by the entity tag $director to serve its surface form. With derived words Fi

for entity tag ei, we can normalize the relation probabilities the word wj ∈ Fi infers.

PF (ri | wj) = PF (ei | wj) =
SFi (wj)∑

k,wj∈Fk
SFk (wj)

, (5.3)

where ri is the relation inferred from the entity tag ei, S
F
k (wj) is the score of the word wj that

belongs to the set Fk extracted by the entity tag ek, and PF (ri | wj) is similar to PE(ri | wj)
in (5.1) but based on derived words instead of specified entities.

5.5.3.2 Entity Syntactic Contexts

Another type of relational cues comes from contexts of entities; for example, a user utterance

“find movies produced by james cameron” includes an unspecified movie entity “movies” and

a specified entity “james cameron”, which may be captured by entity surface forms via PF and

gazetteers via PE respectively. However, it doesn’t consider local observations “produced by”.

In this example, the most likely relation of the entity “james cameron” from the background

knowledge is director.name, which infers movie.directed by, and the local observations

are not be used to derive the correct relation movie.produced by for this utterance.

This procedure is to discover the relational entity contexts based on syntactic dependency.

With dependency-based entity embeddings and their context embeddings, for each entity tag

ei, we extract top N syntactic contexts to form a set of entity contexts Ci, which includes

the words that are the most activated by a given entity tag ei. The extraction procedure is

similar to one in Section 5.5.3.1; for each entity tag ei, we compute the score of the word wj

as

SCi (wj) =
CxtSim(wj , ei)∑

ek∈E CxtSim(wj , ek)
, (5.4)

where CxtSim(wj , ei) is the cosine similarity between the context embeddings of the word wj

and the embeddings of the entity tag ei.
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The derived contexts may serve the indicators of possible relations. For instance, for the

entity tag $producer, the most activated contexts include “produced/prep by−1”, so the word

“produced” can be extracted by this procedure for detecting local observations other than

entities. Then we can normalize the relation probabilities the contexts imply to compute

PC(ri | wj) similar to (5.3):

PC(ri | wj) = PC(ei | wj) =
SCi (wj)∑

k,wj∈Ck
SCk (wj)

. (5.5)

5.6 Probabilistic Enrichment and Bootstrapping

Hakkani-Tür et al. proposed to use probabilistic weights for unsupervised relation detec-

tion [46]. We extend the approach to integrate induced relations from prior knowledge

PE(ri | wj) and from local relational surface forms PF (ri | wj) and PC(ri | wj) to enrich

the relation weights for effectively detecting relations given the utterances. This paper exper-

iments to integrate multiple distributions in three ways:

• Unweighted

Rw(ri) =

{
1 , if PE(ri | w) > 0 or PF (ri | w) > 0 or PC(ri | w) > 0.

0 , otherwise.
(5.6)

This method combines possible relations from all sources, which tends to capture as

many as possible relations (higher recall).

• Weighted

Rw(ri) = max(PE(ri | w), PF (ri | w), PC(ri | w)) (5.7)

This method assumes that the relation ri invoked in word w comes from the source

that carries the highest probability, so it simply selects the highest one among the three

sources.

• Highest Weighted

Rw(ri) = max(P ′E(ri | w), P ′F (ri | w), P ′C(ri | w)),

P ′(ri | w) = 1[i = arg max
i
P (ri | w)] · P (ri | w). (5.8)

This method only combines the most likely relation for each word, because P ′(ri | w) = 0

when the relation ri is not the most likely relation of the word w.
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r actor produced by location

PE(r | w) 0.7 0.3 0
PF (r | w) 0.4 0 0.6
PC(r | w) 0 0 0

Unweighted Rw(r) 1 1 1
Weighted Rw(r) 0.7 0.3 0.6

Highest Weighted Rw(r) 0.7 0 0.6

Table 5.2: An example of three different methods in probabilistic enrichment (w = “pitt”).

Algorithm 1: Bootstrapping

Data: the set of user utterances U = {uj}; the relation weights for the utterances,
Ruj (ri), uj ∈ U ;

Result: the multi-class multi-label classifier E that estimates relations given an
utterance

Initializing relation labels L0(uj) = {ri | Ruj (ri) ≥ δ};
repeat

Training ensemble of M weak classifiers Ek on U and Lk(uj);

Classifying the utterance uj by Ek and output probability distribution of relations

as R
(k+1)
ui (ri);

Creating relation labels L(k+1)(uj) = {ri | R(k+1)
uj (ri) ≥ δ};

until L(k+1)(uj) ∼ Lk(uj);
return Ek;

An example of relation weights about the word “pitt” with three different methods is shown

in Table 5.2. The final relation weight of the relation ri given an utterance u, Ru(ri), can be

compute as

Ru(ri) = max
w∈u

Rw(ri). (5.9)

With enriched relation weights, Ru(ri), we train a multi-class, multi-label classifier in an

unsupervised way, where we learn ensemble of weak classifiers by creating pseudo training

labels in each iteration for boosting the performance [45, 31, 62, 88]. The detail of the

algorithm is shown in Algorithm 1. Then the returned classifier Ek can be used to detect

relations given unseen utterances.

5.7 Experiments

5.7.1 Dataset

The experiments use a list of entities/gazetteers from the publicly available Freebase knowl-

edge graph. The list includes 670K entities of 78 entity types, including movie names, actors,
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Query Statistics Train Test

% entity only 8.9% 10.7%
% rel only with specified movie names 27.1% 27.5%
% rel only with specified other names 39.8% 39.6%
% more complicated relations 15.4% 14.7%
% not covered 8.8% 7.6%

#utterance with SPARQL annotations 3338 1084

Table 5.3: Relation detection datasets used in the experiments.

Micro F-measure (%) Unweighted Weighted Highest

Baseline
(a) Gazetteer 35.21 37.93 36.08
(b) Gazetteer + Weakly Supervised 25.07 39.04 39.40

BOW (c) Gazetteer + Surface Form 34.23 36.57 34.69

(d) Gazetteer + Surface Form 37.44 41.01 39.19
Dep.-Based (e) Gazetteer + Context 35.31 38.04 37.25

(f) Gazetteer + Surface Form + Context 37.66 40.29 40.07

Table 5.4: The SLU performance of all proposed approaches without bootstrapping (N = 15).

release dates, etc. after filtering out the movie entities with lower confidences [53].

The relation detection datasets include crowd-sourced utterances addressed to a conversa-

tional agent and are described in Table 5.3. Both train and test sets are manually annotated

with SPARQL queries, which are used to extract relation annotations. Most of data includes

the relations with either specified movie names or specified other names. In addition, the

relations only with specified movie names are difficult to capture by gazetteers, which empha-

sizes the contribution of this task. We use 1/10 training data as a development set to tune

the parameters δ, M , and the optimal number of iterations in Algorithm 1. The training set

is only used to train the classifier of Algorithm 1 for bootstrapping in an unsupervised way;

note that the manual annotations are not used here.

For retrieving the snippets, we use 14 entity pairs from the knowledge graph related to movie

entities, which include director, character, release date, etc. We extract snippets related to

each pair from web search results, and we end up with 80K snippets, where the pairs of

entities are marked in the returned snippets5. For all query snippets, we parse all with the

Berkeley Parser [76], and then convert the output parse trees to dependency parses using the

LTH Constituency-to-Dependency Conversion toolkit6 for training dependency-based entity

embeddings [56]. The trained entity embeddings have dimension 200 and vocabulary size is

1.8× 105.

5In this work, we use top 10 results from Bing for each entity pair.
6
http://nlp.cs.lth.se/software/treebank_converter
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Micro F-measure (%) Unweighted Weighted Highest

Baseline
(a) Gazetteer 36.91 40.10 38.89
(b) Gazetteer + Weakly Supervised 37.39 39.07 39.98

BOW (c) Gazetteer + Surface Form 34.91 38.13 37.16

(d) Gazetteer + Surface Form 38.37 41.10 42.74
Dep.-Based (e) Gazetteer + Context 37.23 38.88 38.04

(f) Gazetteer + Surface Form + Context 38.64 41.98 43.34

Table 5.5: The SLU performance of all proposed approaches with bootstrapping (N = 15).

Entity Tag Derived Word

$character character, role, who, girl, she, he, officer
$director director, dir, filmmaker
$genre comedy, drama, fantasy, cartoon, horror, sci

$language language, spanish, english, german
$producer producer, filmmaker, screenwriter

Table 5.6: The examples of derived entity surface forms based on dependency-based entity
embeddings.

5.7.2 Results

In the experiments, we train multi-class, multi-label classifiers using icsiboost [36], a boosting-

based classifier, where we extract word unigrams, bigrams, and trigrams as classification

features. The evaluation metric we use is micro F-measure for relation detection [46]. The

performance with all of the proposed approaches before and after bootstrapping with N = 15

(top 15 similar words of each tag) is shown in Table 5.4 and Table 5.5 respectively.

The first baseline here (row (a)) uses gazetteers to detect entities and then infers the rela-

tions by background knowledge described in Section 5.4. Row (b) is another baseline [45],

which uses the retrieved snippets and their inferred relations as labels to train a multi-class

multi-label classifier, then outputs the relation probabilities for each utterance as Ru(w), and

integrates with the first baseline. Here the data for training only uses the patterns between

entity pairs in the paths of dependency trees. Row (c) is the results of adding entity surface

forms derived from original embeddings, which is shown for demonstrating the effectiveness

of dependency-based entity embeddings (row (d)). Row (e) is the results of adding entity

contexts, and row (f) combines both of entity surface forms and entity contexts. Below we

analyze the effectiveness of proposed approaches.
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5.8 Discussion

We analyze the effectiveness of learned entity surface forms and entity contexts, and compare

different probabilistic enrichment methods, and validate the effectiveness of bootstrapping

below.

5.8.1 Effectiveness of Entity Surface Forms

The row (c) and row (d) show the performance of using entity surface forms derived from

bag-of-words and dependency-based embeddings respectively. It can be found that the words

derived from original embeddings do not successfully capture the surface forms of entity

tags, and the results cannot be improved. On the other hand, the results from dependency-

based embeddings outperform the baselines for all enrichment methods, which demonstrate

the effectiveness of including entity surface forms based on dependency relations for relation

detection. To analyze results of entity surface forms, we show some examples about derived

words in Table 5.6. It can be shown that the functional similarity carried by dependency-based

entity embeddings effectively benefits relation detection task.

5.8.2 Effectiveness of Entity Contexts

Row (e) shows the results of adding entity contexts learned from dependency-based con-

texts. It does not show improvement compared to baselines. Nevertheless, combining with

dependency-based entity surface forms, the F-measure achieves 43% by highest weighted

probabilistic enrichment, which implies that including local observations based on syntactic

contexts may help relation detection, but the influence is not significant.

5.8.3 Comparison of Probabilistic Enrichment Methods

From Table 5.4 and Table 5.5, among the three probabilistic enrichment methods, unweighted

method performs worst, because it does not differentiate the relations with higher and lower

confidence, and some relations with lower probabilities will be mistakenly outputted. Com-

paring between weighted and highest weighted methods, the first baseline using the weighted

method performs better, while other approaches using the highest weighted method perform

better. The reason probably is that weighted method can provide more possible relations

for the baseline only using gazetteers to increase the recall, so the weighted method benefits

the first baseline. On the other hand, proposed approaches have higher recall and the high-

est weighted method provides more precise relations, resulting in better performance when

applying the highest weighted method.
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Figure 5.4: Learning curves over incremental iterations of bootstrapping.

5.8.4 Effectiveness of Bootstrapping

The F-measure learning curves of all results using highest weighted probabilistic enrichment

on the test set are presented in Fig. 5.4. The light blue line marked with circles is the first

baseline, which applies only gazetteers with probability distribution of entity types to rela-

tion detection. After bootstrapping, the performance is significantly improved and achieves

about 39% of F-measure. Another baseline using a weakly supervised classifier (orange line

marked with squares) performs well before bootstrapping, while the performance cannot be

significantly improved with increased iterations. All other results show significant improve-

ments after bootstrapping. The best result is the combination of all approaches (green line

marked with crosses), and the curve shows the effectiveness and efficiency of bootstrapping.

The reason probably is that the probabilities came from different sources can complement

each other, and then benefit the classifiers. Also, only adding dependency-based entity sur-

face forms (yellow line marked with triangles) performs similar to the combination result,

showing that the major improvement comes from relational entity surface forms. The figure

demonstrates the effectiveness of bootstrapping for improving relation detection.

5.8.5 Overall Results

The proposed approaches successfully capture local information other than background knowl-

edge, where the relational surface forms can be learned by dependency-based entity embed-
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dings trained on query snippets. After combining with prior relations induced by gazetteers,

the relational information from the text domain can benefit the relation detection for the

spoken domain. Also, the fully unsupervised approach shows the effectiveness of applying

structured knowledge to SLU for tackling open domain problems.

5.9 Summary

This chapter proposes to automatically capture the relational surface forms including entity

surface forms and entity contexts based on dependency-based entity embeddings. The de-

tected semantics viewed as local observations can be integrated with background knowledge

by probabilistic enrichment methods. Experiments show that involving derived entity surface

forms as local cues together with prior knowledge can significantly help open domain SLU.

Therefore, it is shown that the surface forms corresponding to the ontology carry important

knowledge for building a good SLU component.
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6Semantic Decoding in

SLU Modeling

With the organized ontology automatically learned by the knowledge acquisition, this chapter

introduces a novel matrix factorization (MF) approach to learn latent feature vectors for

utterances and semantic concepts. More specifically, our model learns the semantic slots for a

domain-specific SDS in an unsupervised fashion, and then performs semantic decoding using

latent MF techniques. To further consider the global semantic structure, such as inter-word

and inter-slot relations, we augment the latent MF-based model with the structure of the

learned ontology. The final goal of the model is, given an utterance, to predict semantic slots

and word patterns, considering their relations and domain-specificity in a joint fashion.

6.1 Introduction

A key component of a spoken dialogue system (SDS) is the spoken language understanding

(SLU) module—it parses the users’ utterances into semantic representations; for example,

the utterance “find a cheap restaurant” can be parsed into (price=cheap, target=restaurant).

To design the SLU module of a SDS, most previous studies relied on predefined slots1 for

training the decoder [82, 34, 42, 8]. However, these predefined semantic slots may bias the

subsequent data collection process, and the cost of manually labeling utterances for updating

the ontology is expensive [96].

In recent years, this problem leads to the development of unsupervised SLU techniques [49,

50, 20]. In particular, Chen et al. [20] proposed a frame-semantics based framework for

automatically inducing semantic slots given raw audios. However, these approaches generally

do not explicitly learn the latent factor representations to model the measurement errors [84],

nor do they jointly consider the complex lexical, syntactic, and semantic relations among

words, slots, and utterances.

Another challenge of SLU is the inference of the hidden semantics. Considering an user

utterance “can i have a cheap restaurant”, from its surface patterns, we can see that it includes

explicit semantic information about “price (cheap)” and “target (restaurant)”; however, it

also includes hidden semantic information, such as “food” and “seeking”, since the SDS needs

1A slot is defined as a basic semantic unit in SLU, such as “price” and “target” in the example.
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to infer that the user wants to “find” some cheap “food”, even though they are not directly

observed in the surface patterns. Nonetheless, these implicit semantics are important semantic

concepts for domain-specific SDSs. Traditional SLU models use discriminative classifiers [52]

to predict whether the predefined slots occur in the utterances or not, ignoring the unobserved

concepts and the hidden semantic information.

In this chapter, we take a rather radical approach: we propose a novel matrix factorization

(MF) model for learning latent features for SLU, taking account of additional information

such as the word relations, the induced slots, and the slot relations. To further consider

the global coherence of induced slots, we combine the MF model with a knowledge graph

propagation based model, fusing both a word-based lexical knowledge graph and a slot-

based semantic graph. In fact, as it is shown in the Netflix challenge, MF is credited as

the most useful technique for recommendation systems [57]. Also, MF model considers the

unobserved patterns and estimates their probabilities instead of viewing them as negative

examples. However, to the best of our knowledge, MF technique is not well-understood in

the SLU and SDS communities, and it is not very straight-forward to use MF methods to

learn latent feature representations for semantic parsing in SLU. To evaluate the performance

of our model, we compare with standard discriminative SLU baselines, and show that our

MF-based model is able to produce strong results in semantic decoding, and the knowledge

graph propagation model further improves the performance. Our contributions are three-fold:

• We are among the first to study matrix factorization techniques for unsupervised SLU,

taking account of the automatically learned knowledge;

• We augment the MF model with a knowledge graph propagation model, increasing the

global coherence of semantic decoding using induced slots;

• Our experimental results show that the MF-based unsupervised SLU outperforms strong

discriminative baselines, obtaining promising results.
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Figure 6.1: (a): the proposed framework. (b): our matrix factorization method completes a
partially-missing matrix for implicit semantic parsing. Dark circles are observed facts, shaded
circles are inferred facts. Slot induction maps observed surface patterns to semantic slot can-
didates. Word relation model constructs correlations between surface patterns. Slot relation
model learns the slot-level correlations based on propagating the automatically derived se-
mantic knowledge graphs. Reasoning with matrix factorization incorporates these models
jointly, and produces a coherent, domain-specific SLU model.

6.2 Related Work

Unsupervised SLU Tur et al. [89, 91] are among the first to consider unsupervised ap-

proaches for SLU, where they exploited query logs for slot-filling. In a subsequent study,

Heck and Hakkani-Tür [49] studied the Semantic Web for the intent detection problem in

SLU, showing that results obtained from the unsupervised training process align well with

the performance of traditional supervised learning. Following their success of unsupervised

SLU, recent studies have also obtained interesting results on the tasks of relation detec-

tion [45, 21], entity extraction [95], and extending domain coverage [35]. However, most of

the studies above do not explicitly learn latent factor representations from the data—while

we hypothesize that the better robustness in noisy data can be achieved by explicitly model-
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ing the measurement errors (usually produced by automatic speech recognizers (ASR)) using

latent variable models and taking additional local and global semantic constraints.

Latent Variable Modeling in SLU Early studies on latent variable modeling in speech

include the classic hidden Markov model for statistical speech recognition [55]. Recently,

Celikyilmaz et al. [15] is the first to study the intent detection problem using query logs

and a discrete Bayesian latent variable model. In the field of dialogue modeling, the partially

observable Markov decision process (POMDP) [102] model is a popular technique for dialogue

management, reducing the cost of hand-crafted dialogue managers while producing robustness

against speech recognition errors. More recently, Tur et al. used a semi-supervised LDA model

to show the improvement of the slot filling task [92]. Also, Zhai and Williams proposed an

unsupervised model for connecting words with latent states in HMMs using topic models,

obtaining interesting qualitative and quantitative results [103]. However, for unsupervised

learning for SLU, it is not obvious how to incorporate additional information in the HMMs.

To the best of our knowledge, this thesis is the first to consider MF techniques for learning

latent feature representations in unsupervised SLU, taking various local and global lexical,

syntactic, and semantic information into account.

6.3 The Proposed Framework

This thesis introduces matrix factorization techniques for unsupervised SLU. The proposed

framework is shown in Figure 4.1(a). Given the utterances, the task of the SLU model is

to decode their surface patterns into semantic forms and differentiate the target semantic

concepts from generic semantic space for task-oriented SDSs simultaneously.

In the proposed model, we first build a feature matrix to represent the training utterances,

where each row represents an utterance, and each column refers to an observed surface pattern

or a induced slot candidate. Figure 4.1(b) illustrates an example of the matrix. Given a testing

utterance, we convert it into a vector based on the observed surface patterns, and then fill

in the missing values of the slots. In the first utterance in the figure, although semantic

slot food is not observed, the utterance implies the meaning about food. The MF approach

is able to learn the latent feature vectors for utterances and semantic elements, inferring

implicit semantic concepts to improve the decoding process—namely, by filling the matrix

with probabilities (lower part of the matrix).

The feature model is built on the observed word patterns and slot candidates, where the slot

candidates are obtained from slot induction component through frame-semantic parsing (the

yellow block in Figure 4.1(a)) [20]. Section 6.4.1 explains the detail of the feature model.

In order to consider the additional inter-word and inter-slot relations, we propose a knowledge
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graph propagation model based on two knowledge graphs, which includes a word relation

model (blue block) and a slot relation model (pink block), described in Section 4.4.1. The

method of automatic knowledge graph construction is introduced in Section ??, where we

leverage distributed word embeddings associated with typed syntactic dependencies to model

the relations [71, 72, 64, 23].

Finally, we train the SLU model by learning latent feature vectors for utterances and slot

candidates through MF techniques. Combining with a knowledge graph propagation model

based on word/slot relations, the trained SLU model estimates the probability that each

semantic slot occurs in the testing utterance, and how likely each slot is domain-specific

simultaneously. In other words, the SLU model is able to transform the testing utterances

into domain-specific semantic representations without human involvement.

6.4 The Matrix Factorization Approach

Considering the benefits brought by MF techniques, including 1) modeling the noisy data,

2) modeling hidden semantics, and 3) modeling the dependencies between observations, this

theis applies an MF approach to SLU model building for SDSs. In our model, we use U to

denote the set of input utterances, W as the set of word patterns, and S as the set of semantic

slots we would like to predict. The pair of an utterance u ∈ U and a word pattern/semantic

slot x ∈ {W + S}, 〈u, x〉, is a fact. The input to our model is a set of observed facts O,

and the observed facts for a given utterance is denoted by {〈u, x〉 ∈ O}. The goal of our

model is to estimate, for a given utterance u and a given word pattern/semantic slot x, the

probability, p(Mu,x = 1), where Mu,x is a binary random variable that is true if and only if x

is the word pattern/domain-specific semantic slot in the utterance u. We introduce a series of

exponential family models that estimate the probability using a natural parameter θu,x and

the logistic sigmoid function:

p(Mu,x = 1 | θu,x) = σ(θu,x) =
1

1 + exp (−θu,x)
(6.1)

We construct a matrix M|U |×(|W |+|S|) as observed facts for MF by integrating a feature model

and a knowledge graph propagation model below.

6.4.1 Feature Model

First, we build a binary word pattern matrix Fw based on observations, where each row refers

to an utterance and each column refers to an observed word pattern. In other words, Fw

carries the basic word vectors for the utterances, which is illustrated as the left part of the
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matrix in Figure 4.1(b).

To induce the semantic elements, we parse all ASR-decoded utterances in our corpus using

SEMAFOR2, a state-of-the-art semantic parser for frame-semantic parsing [27, 28], and ex-

tract all frames from semantic parsing results as slot candidates [20]. Figure 3.2 shows an

example of an ASR-decoded output parsed by SEMAFOR. Three FrameNet-defined frames

(capability, expensiveness, and locale by use) are generated for the utterance, which we con-

sider as slot candidates for a domain-specific dialogue system [3]. Then we build a binary slot

matrix Fs based on the outputted slots, which also denotes the slot features for the utterances

(right part of the matrix in Figure 4.1(b)).

For building the feature model MF , we concatenate two matrices:

MF = [ Fw Fs ], (6.2)

which refers to the upper part of the matrix in Fig. 4.1(b) for training utterances. Note that

we do not use any annotations, so all slot candidates are included.

6.4.2 Knowledge Graph Propagation Model

Since SEMAFOR was trained on FrameNet annotation, which has a more generic frame-

semantic context, not all the frames from the parsing results can be used as the actual

slots in the domain-specific dialogue systems. For instance, in Figure 3.2, we see that the

frames “expensiveness” and “locale by use” are essentially the key slots for the purpose of

understanding in the restaurant query domain, whereas the “capability” frame does not convey

particular valuable information for SLU.

Assuming that domain-specific concepts are usually related to each other, globally considering

relations between semantic slots induces a more coherent slot set. It is shown that the

relations on knowledge graphs help decision of domain-specific slots [23]. Considering two

directed graphs, semantic and lexical knowledge graphs built in Section 4.4.1 of Chapter 4,

each node in the semantic knowledge graph is a slot candidate si outputted by the frame-

semantic parser, and each node in the lexical knowledge graph is a word wj . The structured

graph helps define a coherent slot set. To model the relations between words/slots based on

the knowledge graphs, we define two relation models below.

• Semantic Relation

For modeling word semantic relations, we compute a matrix RSw = [Sim(wi, wj)]|W |×|W |,

where Sim(wi, wj) is the cosine similarity between the dependency embeddings of the

2
http://www.ark.cs.cmu.edu/SEMAFOR/
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word patterns wi and wj after normalization. For slot semantic relations, we compute

RSs = [Sim(si, sj)]|S|×|S| similarly3. The matrices RSw and RSs model not only the

semantic but functional similarity since we use dependency-based embeddings [64].

• Dependent Relation

Assuming that important semantic slots usually mutually related to each other, that is,

connected by syntactic dependencies, our automatically derived knowledge graphs are

able to help model the dependent relations. For word dependent relations, we compute

a matrix RDw = [r̂(wi, wj)]|W |×|W |, where r̂(wi, wj) measures the dependency between

two word patterns wi and wj based on the word-based lexical knowledge graph, which

can be computed by (4.1) in Section 4.4.2.2 of Chapter 4. For slot dependent relations,

we similarly compute RDs = [r̂(si, sj)]|S|×|S| based on the slot-based semantic knowledge

graph.

With the built word relation models (RSw and RDw ) and slot relation models (RSs and RDs ), we

combine them as a knowledge graph propagation matrix MR
4.

MR =
[ RSDw 0

0 RSDs

]
, (6.3)

where RSDw = RSw +RDw and RSDs = RSs +RDs to integrate semantic and dependent relations.

The goal of this matrix is to propagate scores between nodes according to different types of

relations in the knowledge graphs [16].

6.4.3 Integrated Model

With a feature model MF and a knowledge graph propagation model MR, we integrate them

into a single matrix.

M = MF · (MR + I),

= [ Fw Fs ]
[ Rw + I 0

0 Rs + I

]
,

=
[ FwRw + Fw 0

0 FsRs + Fs

]
,

(6.4)

where M is final matrix and I is the identity matrix in order to remain the original values.

The matrix M is similar to MF , but some weights are enhanced through the knowledge graph

propagation model, MR. The word relations are built by FwRw, which is the matrix with

3For each column in RS
w and RS

s , we only keep top 10 highest values, which correspond the top 10 seman-
tically similar nodes.

4The values in the diagonal of MR are 0 to only model the propagation from other entries.
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internal weight propagation on the lexical knowledge graph (the blue arrow in Fig. 4.1(b)).

Similarly, FsRs models the slot correlations, and can be treated as the matrix with internal

weight propagation on the semantic knowledge graph (the pink arrow in Fig. 4.1(b)).

Fs contains all slot candidates outputted by SEMAFOR, which may include some generic slots

(such as capability), so the original feature model cannot differentiate the domain-specific and

generic concepts. By integrating with Rs, the semantic and dependent relations can be prop-

agated via the knowledge graph, and the domain-specific concepts may have higher weights

based on the assumption that the slots for dialogue systems are often mutually related [23].

Hence, the structure information can be automatically involved in the matrix. Also, the

word relation model brings the same function but on the word level. In conclusion, for each

utterance, the integrated model not only predicts the probability that semantic slots occur

but also considers whether the slots are domain-specific. The following sections describe the

learning process.

6.4.4 Parameter Estimation

The proposed model is parametrized through weights and latent component vectors, where

the parameters are estimated by maximizing the log likelihood of observed data [25].

θ∗ = arg max
θ

∏
u∈U

p(θ |Mu)

= arg max
θ

∏
u∈U

p(Mu | θ)p(θ)

= arg max
θ

∑
u∈U

ln p(Mu | θ)− λθ,

(6.5)

where Mu is the vector corresponding to the utterance u from Mu,x in (6.1), because we

assume that each utterance is independent of others.

To avoid treating unobserved facts as designed negative facts, we consider our positive-only

data as implicit feedback. Bayesian Personalized Ranking (BPR) is an approach to learn

with implicit feedback, which uses a variant of the ranking: giving observed true facts higher

scores than unobserved (true or false) facts [79]. Riedel et al. also showed that BPR learn

the implicit relations for improving the relation extraction task [80].

6.4.4.1 Objective Function

To estimate the parameters in (6.5), we create a dataset of ranked pairs from M in (6.4):

for each utterance u and each observed fact f+ = 〈u, x+〉, where Mu,x ≥ δ, we choose each
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word pattern/slot x− such that f− = 〈u, x−〉, where Mu,x < δ, which refers to the word

pattern/slot we have not observed to be in utterance u. That is, we construct the observed

data O from M . Then for each pair of facts f+ and f−, we want to model p(f+) > p(f−)

and hence θf+ > θf− according to (6.1). BPR maximizes the summation of each ranked pair,

where the objective is ∑
u∈U

ln p(Mu | θ) =
∑
f+∈O

∑
f− 6∈O

lnσ(θf+ − θf−). (6.6)

The BPR objective is an approximation to the per utterance AUC (area under the ROC

curve), which directly correlates to what we want to achieve – well-ranked semantic slots per

utterance.

6.4.4.2 Optimization

To maximize the objective in (6.6), we employ a stochastic gradient descent (SGD) algo-

rithm [79]. For each randomly sampled observed fact 〈u, x+〉, we sample an unobserved fact

〈u, x−〉, which results in |O| fact pairs 〈f−, f+〉. For each pair, we perform an SGD update

using the gradient of the corresponding objective function for matrix factorization [41].

6.5 Experiments

6.5.1 Experimental Setup

In this experiment, we used the Cambridge University SLU corpus, previously used on several

other SLU tasks [52, 19]. The domain of the corpus is about restaurant recommendation in

Cambridge; subjects were asked to interact with multiple SDSs in an in-car setting. The

corpus contains a total number of 2,166 dialogues, including 15,453 utterances (10,571 for

self-training and 4,882 for testing). The data is gender-balanced, with slightly more native

than non-native speakers. The vocabulary size is 1868. An ASR system was used to transcribe

the speech; the word error rate was reported as 37%. There are 10 slots created by domain

experts: addr, area, food, name, phone, postcode, price range, signature, task, and type.

For parameter setting, the threshold for define the unobserved facts δ is set as 1.0 for all

experiments. We use Stanford Parser to obtain the collapsed typed syntactic dependencies [85]

and set the dimensionality of embeddings d = 300 in all experiments.
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Approach ASR Manual

Logistic Regression (a) 33.96 38.78

Random (b) 22.45§ 25.09§

MostPopular (c) 32.88 38.41

MF
Feature (d) 37.61† 45.34†

Feature + KGP (e) 43.51† 53.40†

Table 6.1: The MAP of predicted slots (%); † and § mean that the result is better and worse
with p < 0.05 respectively.

6.5.2 Evaluation Metrics

To evaluate the accuracy of the automatically decoded slots, we measure their quality as the

proximity between predicted slots and reference slots. Figure 3.3 shows the mappings that

indicate semantically related induced slots and reference slots [20].

To eliminate the influence of threshold selection when predicting semantic slots, in the fol-

lowing metrics, we take the whole ranking list into account and evaluate the performance

by the metrics that are independent of the selected threshold. For each utterance, with the

predicted probabilities of all slot candidates, we can compute an average precision (AP) to

evaluate the performance of SLU by treating the slots with mappings as positive. AP scores

the ranking result higher if the correct slots are ranked higher, which also equals to the area

under the precision-recall curve. Mean average precision (MAP) is the metric for evaluating

all utterances. For all experiments, we perform paired t-test on the AP scores of the results

to test the significance.

6.5.3 Evaluation Results

Table 6.1 shows the MAP performance of predicted slots for all experiments on ASR and

manual transcripts. For the first baseline, we use the observed data to self-train a logistic

regression model for predicting the probability of each semantic slot (row (a)) [75]. To improve

probability estimation, we perform all experiments by combining with the result of logistic

regression. Two baselines are performed as references, Random (row (b)) and MostPopular

(row (c)). The former assigns random probabilities for all slots, which significantly degrades

the performance for both ASR and manual transcripts. The later assigns higher probabilities

for the slots occurring more frequently, which does not produce significant difference for both

ASR and manual results.

The proposed MF approaches show that only using feature model for building the matrix (row

(d)) significantly outperforms the baseline, where the performance comes from about 34.0%

to 37.6% and from 38.8% to 45.3% for ASR and manual results respectively. Additionally

64



Model Feature Feature + Knowledge Graph Propagation Model

Rel. (a) None (b) Semantic (c) Dependent (d) Word (e) Slot (f) All

MR -
[ RSw 0

0 RSs

] [ RDw 0
0 RDs

] [ RSDw 0
0 0

] [ 0 0
0 RSDs

] [ RSDw 0
0 RSDs

]
ASR 37.61 41.39† 41.63† 39.19† 42.10† 43.51†

Manual 45.34 51.55† 49.04† 45.18 49.91† 53.40†

Table 6.2: The MAP of predicted slots using different types of relation models in MR (%); †

means that the result is better with p < 0.05

integrating with a knowledge graph propagation (KGP) model (row (e)) further improves

the performance (achieving MAP of 43.5% and 53.4%), showing that the proposed models

successfully learn the implicit semantics and consider the relations and domain-specificity

simultaneously.

6.6 Discussion and Analysis

With promising results of proposed models, we analyze the detailed difference between dif-

ferent relation models in Table 6.2.

6.6.1 Effectiveness of Semantic and Dependent Relation Models

To evaluate the effectiveness of semantic and dependent relations, we consider each of them

individually in MR of (6.3) (columns (b) and (c) in Table 6.2). Comparing to the original

model (column (a)), both modeling semantic relations and modeling dependent relations

significantly improve the performance for ASR and manual results. It is shown that semantic

relations help the SLU model infer the implicit meaning, and then the prediction becomes

more accurate. Also, dependent relations successfully differentiate the generic concepts from

the domain-specific concepts, so that the SLU model is able to predict more coherent set

of semantic slots [23]. Integrating two types of relations (column (f)) further improves the

performance.

6.6.2 Comparing Word/ Slot Relation Models

To analyze the performance results from inter-word and inter-slot relations, the column (d)

and (e) show the results considering only word relations and only slot relations respectively. It

is presented that the inter-slot relation model significantly improves the performance for both

ASR and manual results. However, the inter-word relation model only performs slightly better

results for ASR output (from 37.6% to 39.2%), and there is no difference after applying the
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inter-word relation model on manual transcripts. The reason may be that inter-slot relations

carry high-level semantics that align well with the structure of SDSs, but inter-word relations

do not. Nevertheless, combining two relations (column (f)) outperforms both results for ASR

and manual transcripts, showing that different types of relations can compensate each other

and then benefit the SLU performance.

6.7 Summary

This chapter presents an MF approach to self-train the SLU model for semantic decoding

with consideration of a well-organized ontology in an unsupervised way. The purpose of

the proposed model is not only to predict the probability of each semantic slot but also to

distinguish between generic semantic concepts and domain-specific concepts that are related

to an SDS. The experiments show that the MF-based model obtains promising results of SLU,

outperforming strong discriminative baselines.
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7Behavior Prediction for

SLU Modeling

SLU modeling has different aspects. In addition to semantic decoding, behavior prediction is

another aspect about understanding user intents. A good SLU module is able to accurately

understand users’ semantics and further predict their follow-up behaviors to offer better

interactions. This chapter focuses on predicting user behaviors in order to deeply understand

user intents in an unsupervised manner.

7.1 Introduction

The semantic representations of users’ utterances usually refer to the specified information

that directly occurs in the utterances. To involve deeper understanding, the high-level in-

tention should be considered. For example, in a restaurant domain, “find me a chinese

restaurant” has the semantic form (type=chinese, target=restaurant), and follow-up behavior

might be asking the location or asking for navigation, which can be viewed as the high-level

intention. Assuming that the SDS is able to predict an user’s follow-up behavior, the sys-

tem may not only return the user a restaurant list but also ask whether the user needs the

corresponding location or navigating instructions, providing better and more user-friendly

conversational interactions.

7.2 Proposed Framework

Behavior prediction is another aspect of SLU modeling, so that the proposed framework can

be modified from Chapter 6, which is shown in Figure 7.1.
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Figure 7.1: (a): the proposed framework. (b): our matrix factorization method completes a
partially-missing matrix for implicit semantic parsing. Dark circles are observed facts, shaded
circles are inferred facts. Behavior identification maps observed features to behaviors. Fea-
ture relation model constructs correlations between features. Behavior relation model trains
the correlations between behaviors or their transitions. Predicting with matrix factorization
incorporates these models jointly, and produces an SLU model that understands the users
better by predicting the follow-up behaviors.

7.3 Data Description

The data we plan to work includes interactions in two domains, mobile application interactions

and insurance-related interactions. The detail information is described below.

7.3.1 Mobile Application Interaction

Considering to expand useful domains of SDS, we extract the most popular applications from

mobile app stores to define important domains users tend to access frequently, and the defined

domains are used to design the experiments for the task. Fig. 7.2 shows total 13 domains

we define for the experiments. The speech corpus used in this experiment is collected from 5
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6. text 9. share the video 3. make a phone call 

10. navigation 

11. address request 

12. translation 

13. read the book 

Figure 7.2: Total 13 tasks in the corpus (only pictures are shown to subjects for making
requests).

Task ID Transcript of the utterance

3
please dial a phone call to alex
can i have a telcon with alex

10
how can i go from my home to cmu
i’d like navigation instruction from my home to cmu

Table 7.1: The recording examples collected from some subjects.

non-native subjects (1 female and 4 males). They are only provided with pictures referring

to domain-specific tasks in a random order, and for each picture/task a subject is asked to

use 3 different ways to make requests for fulfilling the task implied by the displayed picture.

Thus 39 utterances (total 13 tasks and 3 ways for each) are collected from each subject.

Fig. 7.2 shows provided pictures and implied tasks, and some recording examples are shown

in Table 7.1. The corpus contains 195 utterances. An automatic speech recognition (ASR)

system was used to transcribe speech into text, and the word error rate is reported as 19.8%.

Here we use Google Speech API to perform better recognition results because it covers more

named entities, which may be out-of-vocabulary words for most recognizers. The average

number of words in an utterance is 6.8 for ASR outputs and 7.2 for manual transcripts, which

implies the challenge of retrieving relevant applications with limited information in a query.
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7.3.2 Insurance-Related Interaction

The used data is the conversations between customers and agents collected by MetLife1, where

there are total 52 conversations and the number of utterances is 2,205 segmented by short

pauses and different speakers.

7.4 Behavior Identification

This section describes the procedure about identifying user behaviors from above two domains.

7.4.1 Mobile Application

The data for retrieval archive was collected from Google Play2 in November 2012. Each

Android app in Google Play has its own description page, and the extracted metadata we

use includes its name, number of downloads3, and content description. The total number of

considered applications is 140,8544. For evaluation, subjects are asked to manually annotate

applications from Google Play that can support the corresponding tasks. Then we use the

subject-labelled applications as our ground truth for evaluating our returned applications.

7.4.2 Insurance

The behaviors in the data include request info, call back, verify id, etc, which should be man-

ually annotated with consideration of the flow in these dialogues.

7.5 Feature Relation Model

We can use various feature observations such as words, explicit semantic concepts (the in-

formation predicted by Chapter 6 can be treated as observations), etc. in the matrix. The

relations between features can be built by their similarity or dependency for building a feature

relation model.

1https://www.metlife.com/
2
http://play.google.com

3Google does not provide the absolute number of downloads. Instead, it discretizes this number into several
ranges.

4Google defines two major categories for the programs, “game” and “application”. This paper only uses
apps with category “application”.
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7.6 Behavior Relation Model

The behavioral dynamics can be modeled according to their transitional probabilities, which

may benefit to better prediction. To build the transition model, some self-training methods

are considered to model the relations between behaviors.

7.7 Summary

With the previous success on predicting implicit semantics given an utterance using an MF

technique, user intents may be predictable based on the similar approach.
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8Conclusions and Future

Work

8.1 Conclusions

Our work consists in automatically acquiring domain knowledge from available semantic re-

sources and then understanding both the semantics of individual utterances and user intents.

While the amount of spoken interactions from different domains is increasing, automating

the system development is a trend considering efficiency and maintenance. The proposal

addresses two challenges of SDS, missing a predefined structured ontology and shallow un-

derstanding, and proposes knowledge acquisition and SLU modeling techniques to show the

potential solutions.

For knowledge acquisition, semantic concepts, the structure, and surface forms are automati-

cally learned. It is shown that such information is helpful to understand the semantics better.

For SLU modeling, we predict the semantics from the individual utterances with consider-

ation of the structured ontology, since knowledge acquisition part shows effectiveness of the

automatically learned ontology on the understanding task. The proposed MF framework is

useful and easy to expand more features and predicted elements. The final step is to predict

user behaviors by modeling their intents. For this purpose, we plan to use a similar MF

approach for the prediction tasks in two different domains.

8.2 Future Work

8.2.1 Chapter 2

• Write detailed background knowledge

• Survey more related work

8.2.2 Chapter 7

• Behavior identification for the insurance domain

• Behavior annotation for the insurance domain
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• Implement the behavior prediction approach

• Evaluate the performance

• Analyze and discuss the results

8.3 Timeline

• April 2015: finish annotating the behavior labels for the insurance data

• June 2015: implement behavior prediction

• July 2015: submit a conference paper about behavior prediction

• August 2015: submit a journal paper

• September 2015: finish thesis writing

• October 2015: thesis defense

• December 2015: finish thesis revision

74



Bibliography

[1] James F Allen, Donna K Byron, Myroslava Dzikovska, George Ferguson, Lucian
Galescu, and Amanda Stent. Toward conversational human-computer interaction. AI
magazine, 22(4):27, 2001.

[2] Collin Baker. Framenet, present and future. Programme Committee 7, 2008.

[3] Collin F Baker, Charles J Fillmore, and John B Lowe. The Berkeley FrameNet project.
In Proceedings of COLING, pages 86–90, 1998.

[4] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Herm-
jakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract
meaning representation for sembanking. In Proceedings of Language Annotation Work-
shop, 2013.

[5] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a
systematic comparison of context-counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguis-
tics, volume 1, 2014.

[6] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on
freebase from question-answer pairs. In EMNLP, pages 1533–1544, 2013.

[7] Dan Bohus and Alexander I Rudnicky. LARRI: A language-based maintenance and re-
pair assistant. In Spoken multimodal human-computer dialogue in mobile environments,
pages 203–218. Springer, 2005.

[8] Dan Bohus and Alexander I Rudnicky. The RavenClaw dialog management framework:
Architecture and systems. Computer Speech & Language, 23(3):332–361, 2009.

[9] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In
Proceedings of International Conference on Management of Data, 2008.

[10] Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua Bengio, et al. Learning struc-
tured embeddings of knowledge bases. In Proceedings of AAAI, 2011.

[11] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Proceedings
of NIPS, 2013.

[12] Kendrick Boyd, Vitor Santos Costa, Jesse Davis, and C David Page. Unachievable
region in precision-recall space and its effect on empirical evaluation. In Machine learn-
ing: proceedings of the International Conference. International Conference on Machine
Learning, volume 2012, page 349. NIH Public Access, 2012.

75



[13] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer networks and ISDN systems, 30(1):107–117, 1998.

[14] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C
Lai. Class-based n-gram models of natural language. Computational linguistics, 18(4):
467–479, 1992.

[15] Asli Celikyilmaz, Dilek Hakkani-Tür, and Gokhan Tür. Leveraging web query logs to
learn user intent via bayesian discrete latent variable model. 2011.

[16] Yun-Nung Chen and Florian Metze. Two-layer mutually reinforced random walk for im-
proved multi-party meeting summarization. In Proceedings of The 4th IEEE Workshop
on Spoken Language Tachnology, pages 461–466, 2012.

[17] Yun-Nung Chen and Florian Metze. Multi-layer mutually reinforced random walk
with hidden parameters for improved multi-party meeting summarization. In INTER-
SPEECH, pages 485–489, 2013.

[18] Yun-Nung Chen and Alexander I. Rudnicky. Dynamically supporting unexplored do-
mains in conversational interactions by enriching semantics with neural word embed-
dings. In Proceedings of SLT, 2014.

[19] Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky. An empirical investi-
gation of sparse log-linear models for improved dialogue act classification. In Proceedings
of ICASSP, pages 8317–8321, 2013.

[20] Yun-Nung Chen, William Yang Wang, and Alexander I Rudnicky. Unsupervised in-
duction and filling of semantic slots for spoken dialogue systems using frame-semantic
parsing. In Proceedings of ASRU, pages 120–125, 2013.

[21] Yun-Nung Chen, Dilek Hakkani-Tür, and Gokhan Tur. Deriving local relational sur-
face forms from dependency-based entity embeddings for unsupervised spoken language
understanding. In Proceedings of SLT, 2014.

[22] Yun-Nung Chen, William Yang Wang, and Alexander I Rudnicky. Leveraging frame se-
mantics and distributional semantics for unsupervised semantic slot induction in spoken
dialogue systems. In Proceedings of SLT, 2014.

[23] Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky. Jointly modeling
inter-slot relations by random walk on knowledge graphs for unsupervised spoken lan-
guage understanding. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, 2015.

[24] Ananlada Chotimongkol. Learning the structure of task-oriented conversations from the
corpus of in-domain dialogs. PhD thesis, Carnegie Mellon University, 2008.

[25] Michael Collins, Sanjoy Dasgupta, and Robert E Schapire. A generalization of principal
components analysis to the exponential family. In Advances in neural information
processing systems, pages 617–624, 2001.

76



[26] Bob Coyne, Daniel Bauer, and Owen Rambow. VigNet: Grounding language in graphics
using frame semantics. In Proceedings of the ACL 2011 Workshop on Relational Models
of Semantics, pages 28–36, 2011.

[27] Dipanjan Das, Nathan Schneider, Desai Chen, and Noah A Smith. Probabilistic frame-
semantic parsing. In Proceedings of NAACL-HLT, pages 948–956, 2010.
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[75] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in Python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.

[76] Slav Petrov and Dan Klein. Learning and inference for hierarchically split pcfgs. In
Proceedings of the National Conference on Artificial Intelligence, 2007.

[77] Roberto Pieraccini, Evelyne Tzoukermann, Zakhar Gorelov, J Gauvain, Esther Levin,
Chin-Hui Lee, and Jay G Wilpon. A speech understanding system based on statisti-
cal representation of semantics. In Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 193–196. IEEE, 1992.

[78] Patti Price. Evaluation of spoken language systems: The ATIS domain. In Proceedings
of the Third DARPA Speech and Natural Language Workshop, pages 91–95. Morgan
Kaufmann, 1990.

[79] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 452–461. AUAI
Press, 2009.

[80] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. Relation
extraction with matrix factorization and universal schemas. 2013.

[81] Alexander I Rudnicky, Eric H Thayer, Paul C Constantinides, Chris Tchou, R Shern,
Kevin A Lenzo, Wei Xu, and Alice Oh. Creating natural dialogs in the carnegie mellon
communicator system.

80



[82] Stephanie Seneff. TINA: A natural language system for spoken language applications.
Computational linguistics, 18(1):61–86, 1992.

[83] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

[84] Anders Skrondal and Sophia Rabe-Hesketh. Generalized latent variable modeling: Mul-
tilevel, longitudinal, and structural equation models. Crc Press, 2004.

[85] Richard Socher, John Bauer, Christopher D Manning, and Andrew Y Ng. Parsing with
compositional vector grammars. In In Proceedings of the ACL conference, 2013.

[86] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic composi-
tionality over a sentiment treebank. In Proceedings of EMNLP, pages 1631–1642, 2013.

[87] Yangqiu Song, Haixun Wang, Zhongyuan Wang, Hongsong Li, and Weizhu Chen.
Short text conceptualization using a probabilistic knowledgebase. In Proceedings of the
Twenty-Second international joint conference on Artificial Intelligence-Volume Volume
Three, pages 2330–2336. AAAI Press, 2011.

[88] Gokhan Tur. Multitask learning for spoken language understanding. In Proceedings of
ICASSP, 2006.

[89] Gokhan Tur, Dilek Z Hakkani-Tür, Dustin Hillard, and Asli Celikyilmaz. Towards
unsupervised spoken language understanding: Exploiting query click logs for slot filling.
In Proceedings of INTERSPEECH, 2011.

[90] Gokhan Tur, Li Deng, Dilek Hakkani-Tür, and Xiaodong He. Towards deeper under-
standing: deep convex networks for semantic utterance classification. In Proceedings of
ICASSP, pages 5045–5048, 2012.

[91] Gokhan Tur, Minwoo Jeong, Ye-Yi Wang, Dilek Hakkani-Tür, and Larry P Heck. Ex-
ploiting the semantic web for unsupervised natural language semantic parsing. In Pro-
ceedings of INTERSPEECH, 2012.

[92] Gokhan Tur, Asli Celikyilmaz, and Dilek Hakkani-Tur. Latent semantic modeling for
slot filling in conversational understanding. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 8307–8311. IEEE, 2013.

[93] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple
and general method for semi-supervised learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 384–394. Association
for Computational Linguistics, 2010.

[94] Fang Wang, Zhongyuan Wang, Zhoujun Li, and Ji-Rong Wen. Concept-based short text
classification and ranking. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, pages 1069–1078. ACM,
2014.

[95] Lu Wang, Dilek Hakkani-Tür, and Larry Heck. Leveraging semantic web search and
browse sessions for multi-turn spoken dialog systems. In Proceedings of ICASSP, 2014.

81



[96] William Yang Wang, Dan Bohus, Ece Kamar, and Eric Horvitz. Crowdsourcing the
acquisition of natural language corpora: Methods and observations. In Proceedings of
SLT, pages 73–78, 2012.

[97] Wayne Ward and Sunil Issar. Recent improvements in the CMU spoken language
understanding system. In Proceedings of the Workshop on Human Language Technology,
pages 213–216, 1994.

[98] Wei Xu and Alexander I Rudnicky. Task-based dialog management using an agenda.
In Proceedings of the 2000 ANLP/NAACL Workshop on Conversational systems, pages
42–47, 2000.

[99] Nicole Yankelovich. Using natural dialogs as the basis for speech interface design. In
Human Factors and Voice Interactive Systems, pages 255–290. Springer, 2008.

[100] Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-relation
question answering. In Proceedings of ACL, 2014.

[101] Steve Young. CUED standard dialogue acts. Technical report, Cambridge University
Engineering Department, 2007.

[102] Steve Young, Milica Gasic, Blaise Thomson, and Jason D Williams. Pomdp-based
statistical spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–
1179, 2013.

[103] Ke Zhai and Jason D Williams. Discovering latent structure in task-oriented dialogues.
In Proceedings of the Association for Computational Linguistics, 2014.

[104] Victor Zue, Stephanie Seneff, James R Glass, Joseph Polifroni, Christine Pao, Timothy J
Hazen, and Lee Hetherington. JUPlTER: a telephone-based conversational interface for
weather information. IEEE Transactions on Speech and Audio Processing, 8(1):85–96,
2000.

82


	Introduction
	Spoken Dialogue System
	Thesis Statement
	Thesis Structure

	Background and Related Work
	Semantic Representation
	Spoken Language Understanding (SLU) Component
	Ontology and Knowledge Base
	Generic Concept Knowledge
	Entity-Based Knowledge

	Knowledge-Based Semantic Analyzer
	Generic Concept Knowledge
	Entity-Based Knowledge

	Distributional Semantics
	Linear Word Embeddings
	Continuous Bag-of-Words (CBOW) Model
	Continuous Skip-Gram Model

	Dependency-Based Word Embeddings


	Ontology Induction for Knowledge Acquisition
	Introduction
	Related Work
	The Proposed Framework
	Probabilistic Semantic Parsing
	Independent Semantic Decoder
	Adaptation Process and SLU Model

	Slot Ranking Model
	Word Representations for Similarity Measure
	In-Domain Clustering Vectors
	External Word Vectors

	Experiments
	Experimental Setup
	Evaluation Metrics
	Slot Induction
	SLU Model

	Evaluation Results

	Summary

	Structure Learning for Knowledge Acquisition
	Introduction
	Related Work
	The Proposed Framework
	Slot Ranking Model
	Knowledge Graphs
	Edge Weight Estimation
	Frequency-Based Measurement
	Embedding-Based Measurement

	Random Walk Algorithm
	Single-Graph Random Walk
	Double-Graph Random Walk


	Experiments
	Experimental Setup
	Evaluation Metrics
	Evaluation Results
	Slot Induction
	SLU Model

	Discussion and Analysis
	Comparing Frequency- and Embedding-Based Measurements
	Comparing Single- and Double-Graph Approaches
	Relation Discovery Analysis


	Summary

	Surface Form Derivation for Knowledge Acquisition
	Introduction
	Knowledge Graph Relations
	Proposed Framework
	Relation Inference from Gazetteers
	Relational Surface Form Derivation
	Web Resource Mining
	Dependency-Based Entity Embeddings
	Surface Form Derivation
	Entity Surface Forms
	Entity Syntactic Contexts


	Probabilistic Enrichment and Bootstrapping
	Experiments
	Dataset
	Results

	Discussion
	Effectiveness of Entity Surface Forms
	Effectiveness of Entity Contexts
	Comparison of Probabilistic Enrichment Methods
	Effectiveness of Bootstrapping
	Overall Results

	Summary

	Semantic Decoding in SLU Modeling
	Introduction
	Related Work
	The Proposed Framework
	The Matrix Factorization Approach
	Feature Model
	Knowledge Graph Propagation Model
	Integrated Model
	Parameter Estimation
	Objective Function
	Optimization


	Experiments
	Experimental Setup
	Evaluation Metrics
	Evaluation Results

	Discussion and Analysis
	Effectiveness of Semantic and Dependent Relation Models
	Comparing Word/ Slot Relation Models

	Summary

	Behavior Prediction for SLU Modeling
	Introduction
	Proposed Framework
	Data Description
	Mobile Application Interaction
	Insurance-Related Interaction

	Behavior Identification
	Mobile Application
	Insurance

	Feature Relation Model
	Behavior Relation Model
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	Chapter 2
	Chapter 7

	Timeline


