Machine Learning Tutorial YUN-NUNG (VIVIAN) CHEN HTTP://VIVIANCHEN.IDV.TW

Slide credit from Hung-Yi Lee and Mark Chang

TSMC Jan 23rd, 2016

Talk Outline

Part I: Introduction to Machine Learning & Deep Learning

Part II: Variants of Neural Nets

Part III: Beyond Supervised Learning & Recent Trends

Talk Outline

Part I: Introduction to Machine Learning & Deep Learning

Part II: Variants of Neural Nets

Part III: Beyond Supervised Learning & Recent Trends

Introduction to Machine Learning & Deep Learning

Part I: Introduction to ML & DL

- Basic Machine Learning
- Basic Deep Learning
- Toolkits and Learning Recipe

Part I: Introduction to ML & DL

Basic Machine Learning

Basic Deep Learning

Toolkits and Learning Recipe

Machine Learning

7

Machine learning is rising rapidly in recent days

What the y-axis shows is this: of all the bigrams (two word letter combinations) contained in Google's sample of books written in English, what percentage of them are "machine learning" or "actuarial science"?

Recent Trend

8

What Computers Can Do?

Programs can do the things you ask them to do

Program for Solving Tasks

10

Task: predicting positive or negative given a product review

Some tasks are complex, and we don't know how to write a program to solve them.

Learning ≈ Looking for a Function

11

Task: predicting positive or negative given a product review

Given a large amount of data, the machine learns what the function f should be.

Learning ≈ Looking for a Function

Speech Recognition f(_____)="你好" Image Recognition) = cat□ Go Playing) = 5.5 (next move) Dialogue System

f("台積電怎麼去")="地址為... 現在建議搭乘計程車"

Image Recognition:

Framework

$$f_{1}(\bigcup) = \text{``cat''} \qquad f_{2}(\bigcup) = \text{``monkey''}$$
$$f_{1}(\bigcup) = \text{``dog''} \qquad f_{2}(\bigcup) = \text{``snake''}$$

Image Recognition:

Framework

"cat"

14

Image Recognition:

Why to Learn Machine Learning?

□ AI Age

Al can work for most of labor work?

■ New job market **■** AI 訓練師

(Machine Learning Expert 機器學習專家、 Data Scientist 資料科學家)

Step 1: define a set of function

Step 3: pick the best function

□ 寶可夢訓練師

- 挑選適合的寶可夢來戰鬥
 寶可夢有不同的屬性
- 召喚出來的寶可夢不一定聽話
 - E.g. 小智的噴火龍
- → 需要足夠的經驗

□ AI 訓練師

- 在 step 1 · AI訓練師要挑選 合適的模型
 - 不同模型適合處理不同 的問題
- 不一定能在 step 3 找出 best function
 - E.g. Deep Learning
- → 需要足夠的經驗

AI訓練師

□ 萬害的 AI · AI 訓練師功不可沒 □ 讓我們一起朝 AI 訓練師之路邁進

Machine Learning Map

Machine Learning Map

21

Regression

Stock Market Forecast

Self-driving Car

) = 方向盤角度

Recommendation

f(使用者 A 商品 B) = 購買可能性

Example Application

Estimating the Combat Power (CP) of a pokemon after evolution

Step 1: Model

24

$$y = b + w \cdot x_{cp}$$
w and b are parameters
(can be any value)

$$f_1; y = 10.0 + 9.0 \cdot x_{cp}$$

$$f_2; y = 9.8 + 9.2 \cdot x_{cp}$$

$$f_3; y = -0.8 - 1.2 \cdot x_{cp}$$
..... infinite

$$f($$

$$x) =$$

$$CP after evolution$$

$$y$$
Linear model:
$$y = b + \sum w_i x_i$$

$$x_i: an attribute of input x feature w_i: weight, b: bias$$

$$y = b + w \cdot x_{cp}$$
A set of
function
$$f_1, f_2 \cdots$$
Training
Data

Source: https://www.openintro.org/stat/data/?data=pokemon

28

Loss Function

$$L(w,b) = \sum_{n=1}^{10} \left(\hat{y}^n - (b + w \cdot x_{cp}^n) \right)^2$$

Each point in the figure is a function

The color represents L(w, b)

Step 3: Best Function

30

Consider loss function L(w) with one parameter w:

31

Consider loss function L(w) with one parameter w: $w^* = arg \min L(w)$ (Randomly) Pick an initial value w⁰ $\succ \quad \text{Compute} \, \frac{dL}{dw} |_{w=w^0} \qquad w^1 \leftarrow w^0 - \eta \, \frac{dL}{dw} |_{w=w^0}$ Loss L(w)n is called w^0 "learning rate" $-\eta \frac{dL}{dw}|_{w=w^0}$ W

32

Consider loss function L(w) with one parameter w:

33

How about two parameters? $w^*, b^* = arg \min L(w, b)$ wh (Randomly) Pick an initial value w⁰, b⁰ $\succ \text{ Compute } \frac{\partial L}{\partial w}|_{w=w^0,b=b^0}, \frac{\partial L}{\partial b}|_{w=w^0,b=b^0}$ $w^1 \leftarrow w^0 - \eta \frac{\partial L}{\partial w}|_{w=w^0, b=b^0} \qquad b^1 \leftarrow b^0 - \eta \frac{\partial L}{\partial h}|_{w=w^0, b=b^0}$ $\succ \text{ Compute } \frac{\partial L}{\partial w}|_{w=w^1,b=b^1}, \frac{\partial L}{\partial b}|_{w=w^1,b=b^1}$ $w^2 \leftarrow w^1 - \eta \frac{\partial L}{\partial w}|_{w=w^1, b=b^1} \qquad b^2 \leftarrow b^1 - \eta \frac{\partial L}{\partial b}|_{w=w^1, b=b^1}$

34

Color: Value of loss L(w, b)

Local optimal

Linear regression \rightarrow No local optimal

36

\Box Formulation of $\partial L / \partial w$ and $\partial L / \partial b$

$$L(w,b) = \sum_{n=1}^{10} \left(\hat{y}^n - (b + w \cdot x_{cp}^n) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)$$

 $\frac{\partial L}{\partial b} = ?$
Step 3: Gradient Descent

37

\Box Formulation of $\partial L / \partial w$ and $\partial L / \partial b$

$$L(w,b) = \sum_{n=1}^{10} \left(\hat{y}^n - (b + w \cdot x_{cp}^n) \right)^2$$

$$\frac{\partial L}{\partial w} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right) \left(-x_{cp}^n\right)$$

$$\frac{\partial L}{\partial b} = ? \sum_{n=1}^{10} 2\left(\hat{y}^n - \left(b + w \cdot x_{cp}^n\right)\right)$$

Learned Model

What we really care about is the error on new data (testing data)

41

42

- Select another model $y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$
- Best function
 Average Error = 14.9
- Testing

Average Error = 28.8

The results become worse

43

- Select another model $y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$
- Best function

Average Error = 12.8

Testing

Average Error = 232.1

The results are so bad

Machine Learning Map

Classification

46

Binary Classification – Spam Filtering

47

Multi-Class – Image Recognition

"monkey"

Multi-Class – Topic Classification

Machine Learning Map

Part I: Introduction to ML & DL

- Basic Machine Learning
- Basic Deep Learning
- Toolkits and Learning Recipe

Stacked Functions Learned by Machine

Production line (生產線)

End-to-end training: what each function should do is learned automatically

Deep learning usually refers to neural network based model

Three Steps for Deep Learning

Step 2: goodness of function

Three Steps for Deep Learning

Neural Network

55

Neuron

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

Neural Network

Fully Connected Feedforward Network

Fully Connected Feedforward Network

Fully Connected Feedforward Network

Given network structure, define *a function set*

Fully Connect Feedforward Network

Why Deep? Universality Theorem

62

Any continuous function f
 f: R^N → R^M
 can be realized by a network with only hidden layer
 □ (given enough hidden neurons)

Why "deep" not "fat"?

Fat + Shallow v.s. Thin + Deep

63

Two networks with the same number of parameters

Why Deep

- Logic circuits
 - Consists of gates
 - A two layers of logic gates
 can represent any Boolean
 function.
 - Using multiple layers of logic gates to build some functions are much simpler

less gates needed

- Neural network
 - consists of neurons
 - A hidden layer network can represent any continuous function.
 - Using multiple layers of neurons to represent some functions are much simpler

Deep = Many Hidden Layers

http://cs231n.stanford.e du/slides/winter1516_le cture8.pdf

65

8 layers

AlexNet (2012)

Output Layer

Softmax layer as the output layer

Ordinary Layer

In general, the output of network can be any value.

May not be easy to interpret

Output Layer

Example Application

🗆 Input

Output

Ink $\rightarrow 1$ No ink $\rightarrow 0$

Each dimension represents the confidence of a digit.

Example Application

70

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

Q: How many layers? How many neurons for each layer? Trial and Error + Intuition

Q: Can we design the network structure?

Variants of Neural Networks (next lecture)

Q: Can the structure be automatically determined?

Yes, but not widely studied yet.

Three Steps for Deep Learning

Training Data

74

Preparing training data: images and their labels

The learning target is defined on the training data.

Learning Target

Loss

76

"1" **Y**₁ 1 X_1 As close as possible Softmax X Given a set of **Y**₂ \mathbf{O} parameters Loss x256 0 **Y**₁₀

Loss can be **square error** or **cross entropy** between the network **target** output and target

A good function should make the loss of all examples as small as possible.

Total Loss

□ For all training data ...

Total Loss:

Find <u>the network</u> parameters θ^* that minimize total loss L

Three Steps for Deep Learning

How to pick the best function

Find *network parameters* θ^* that minimize total loss L

79

E.g. speech recognition: 8 layers and 1000 neurons each layer

Network parameters $\theta = \{w_1, w_2, \cdots, b_1, b_2, \cdots\}$

Find *network parameters* θ^* that minimize total loss L

Random, RBM pre-train

Usually good enough

Network parameters $\theta = \{w_1, w_2, \cdots, b_1, b_2, \cdots\}$

82

Network parameters $\theta = \{w_1, w_2, \cdots, b_1, b_2, \cdots\}$

Find *network parameters* θ^* that minimize total loss L

83

Network parameters $\theta = \{w_1, w_2, \cdots, b_1, b_2, \cdots\}$

84

□ Assume that θ has two variables { θ_1 , θ_2 }

Hopfully, we would reach a minima

86

 W_1

Local Minima

87

The value of a network parameter w

Local Minima

88

Gradient descent never guarantee global

This is the "learning" of machines in deep learning Even AlphaGo using this approach.

People image

Actually

I hope you are not too disappointed :p

Part I: Introduction to ML & DL

- Basic Machine Learning
- Basic Deep Learning
- Toolkits and Learning Recipe

Deep Learning Toolkit

91

□ Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

theano

Chainer

Three Steps for Deep Learning

Deep Learning is so simple

Now If you want to find a function

If you have lots of function input/output (?) as training data

You can use deep learning

Keras

Interface of TensorFlow or Theano

Easy to learn and use (still have some flexibility) You can modify it if you can write TensorFlow or Theano

Keras

- François Chollet is the author of Keras.
 - He currently works for Google as a deep learning engineer and researcher.
- Keras means horn in Greek
- Documentation: <u>http://keras.io/</u>
- Example
 - https://github.com/fchollet/keras/tree/master/examples
- Step-by-step lecture by Prof. Hung-Yi Lee
 - Slide

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Keras.pdf

Lecture recording:

https://www.youtube.com/watch?v=qetE6uUoLQA

感謝 沈昇勳 同學提供圖檔

朋友覺得我在

Deep Learning研究生

我媽覺得我在

大眾覺得我在

指導教授覺得我在

事實上我在

Example Application

96

Handwriting Digit Recognition

MNIST Data: http://yann.lecun.com/exdb/mnist/ "Hello world" for deep learning

Keras provides data sets loading function: http://keras.io/datasets/

Three Steps for Deep Learning

Deep Learning is so simple

Overfitting

- Possible solutions
 - more training samples
 - some tips: dropout, etc.

- Possible reasons
 - no good function exists: bad hypothesis function set
 - \rightarrow reconstruct the model architecture
 - cannot find a good function: local optima
 - \rightarrow change the training strategy

Better performance on training but worse performance on dev \rightarrow overfitting

Concluding Remarks

- Basic Machine Learning
 - 1. Define a set of functions
 - 2. Measure goodness of functions
 - 3. Pick the best function
- Basic Deep Learning
 - Stacked functions

Talk Outline

Part I: Introduction to Machine Learning & Deep Learning

Part II: Variants of Neural Nets

Part III: Beyond Supervised Learning & Recent Trends

Variants of Neural Networks
PART II: Variants of Neural Networks

- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)

PART II: Variants of Neural Networks

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)

Widely used in image processing

(Zeiler, M. D., ECCV 2014)

111

Can the network be simplified by considering the properties of images?

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

113

□ The same patterns appear in different regions.

114

Subsampling the pixels will not change the object

bird

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

Three Steps for Deep Learning

Deep Learning is so simple

Image Recognition

116

N					
mite		container ship	r	notor scooter	leopard
	mite	container ship		motor scooter	leopard
	black widow	lifeboat		go-kart	jaguar
Π	cockroach	amphibian		moped	cheetah
	tick	fireboat		bumper car	snow leopard
Π	starfish	drilling platform		golfcart	Egyptian cat

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Image Recognition

Local Connectivity

Parameter Sharing

121

□ The same feature in different positions

Neurons share the same weights

Parameter Sharing

122

Different features in the same position

Neurons have different weights

Hyper-parameters of CNN

□ Stride Padding Padding = 0Stride = 10 0 Padding = 1Stride = 2

Example

129

er W	1 (3	x3x3)	Output Volume (3x3x2)						
1	1]	0[:	-4	3				
1	1		<u>د</u>	4	~				
1	-1		2	-4	-2				
0	-1		2	0	5				
:,:,1] 0[:,:,1]									
-1	1		-3	-3	0				
-1	0		5	10	-3				
0	0		1	0	6				
:,	:,2]							
1	-1								
0	1								

Bias b1 (1x1x1) b1[:,:,0]

Filter W1 (3x3x3)				0	Output Volume (3x3x2)						
w1[:,:,0]				0	o[:,:,0]						
1	1	1		C)	-4	3				
1	1	-1		5	5	-4	-2				
1	0	-1		2	2	0	5				
w1 [:,:	,1]	0	0[:,:,1]						
1	-1	1		-	3	-3	0				
1	-1	0		5	5	10	-3				
-1	0	0		1	l	0	6				
w1 [w1[:,:,2]										
1	1	-1									
-1	0	1									
-1	0	-1									

Bias b1 (1x1x1) b1[:,:,0] 0

Output Volume (3x3x2)

3

-4 -2

0 5

10 -3

0[:,:,1]

-3 -3 0

1 0 6

0[:,:,0]

0

5

2

5

-4

2

1 1

0 1

0 0 0 0 0

2 0

0

0

Output Volume (3x3x2) o[:,:,0] 0 -4 3 5 -4 -2 2 0 5 o[:,:,1] -3 -3 0 5 10 -3 1 0 6

Pooling Layer

Why "Deep" Learning?

Visual Perception of Human

Image

http://www.nature.com/neuro/journal/v8/n8/images/nn0805-975-F1.jpg

Visual Perception of Computer

Visual Perception of Computer

Fully-Connected Layer

- Fully-Connected Layers : Global feature extraction
- Softmax Layer: Classifier

Convolutional Neural Network

What CNN Learned

□ Alexnet

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

http://vision03.csail.mit.edu/cnn_art/data/single_layer.png

DNN are easily fooled

Visualizing CNN

Gradient Ascent

Gradient Ascent

Gradient Ascent

Different Layers of Visualization

Multiscale Image Generation

visualize

Multiscale Image Generation

Deep Dream

CNN

3.9

2.3

1.5

150

□ Given a photo, machine adds what it sees

http://deepdreamgenerator.com/

Deep Dream

http://deepdreamgenerator.com/

Given a photo, machine adds what it sees

Deep Style

http://deepdreamgenerator.com/

Given a photo, make its style like famous paintings

Deep Style

Given a photo, make its style like famous paintings

Deep Style

A Neural Algorithm of Artistic Style https://arxiv.org/abs/1508.06576

Neural Art Mechanism

Go Playing

More Application: Playing Go

Why CNN for playing Go?

158

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

The same patterns appear in different regions

Why CNN for playing Go?

159

Subsampling the pixels will not change the object

Max Pooling How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a <u>rectifier nonlinearity</u>. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves *k* filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1 with a different bies for each position and applies a soft max func-tion. The Alpha Go does not use Max Pooling Extended Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

PART II: Variants of Neural Networks

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)

Neural Network with Memory

Example Application

161

Slot Filling

Example Application

1-of-N encoding

How to represent each word as a vector?

1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size. $apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ Each dimension corresponds $bag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ to a word in the lexicon $cat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ The dimension for the word $dog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}

Example Application

Solving slot filling by time of departure dest feedforward network? y_1 y_2 Input: a word (Each word is represented as a vector)

Output:

probability distribution that the input word belonging to the slots

Example Application

Three Steps for Deep Learning

Deep Learning is so simple

Recurrent Neural Network (RNN)

RNN

The same network is used again and again.

RNN

Deep RNN

Bidirectional RNN

RNN

Deep Learning is so simple

Learning Target

Rough Error Surface

174

[Razvan Pascanu, ICML'13]

Rough Error Surface

Toy Example

RNN Applications

Many-to-One

177

Input is a vector sequence, but output is only one vector

Many-to-Many (Output is shorter)

- Both input and output are both sequences, *but the output is shorter.*
 - **E**.g. Speech Recognition

Many-to-Many (Output is shorter)

179

- Both input and output are both sequences, <u>but the output is</u> <u>shorter.</u>
- Connectionist Temporal Classification (CTC)

[Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

Many-to-Many (Output has no limitation)

- Both input and output are both sequences <u>with different</u> <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

Many-to-Many (Output has no limitation)

181

- Both input and output are both sequences <u>with different</u> <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - □ E.g. Machine Translation (machine learning→機器學習)

Many-to-Many (Output has no limitation)

http://zh.pttpedia.wikia.com/wiki/%E6%8E%A5%E9%BE%8D%E6%8E%A8%E6%96%87 (鄉民百科)

Many-to-Many (Output has no limitation)

183

- Both input and output are both sequences with different <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)

[Ilya Sutskever, NIPS'14][Dzmitry Bahdanau, arXiv'15]

Image Caption Generation

184

Input an image, but output a sequence of words

[Kelvin Xu, arXiv'15][Li Yao, ICCV'15]

Image Caption Generation

Video Caption Generation

Chit-Chat Bot

187

LSTM Encoder

LSTM Decoder

電視影集 (~40,000 sentences)、美國總統大選辯論

Sci-Fi Short Film - SUNSPRING

https://www.youtube.com/watch?v=LY7x2Ihqj

Attention and Memory

http://henrylo1605.blogspot.tw/2015/05/blog-post_56.html

Attention on Sensory Info

When the input is a very long sequence or an image

Pay attention on partial of the input object each time

Machine Translation

191

- Sequence-to-sequence learning: both input and output are both sequences <u>with different lengths</u>.
- □ E.g. 深度學習 → deep learning

What is match ?

- Cosine similarity of z and h
- Small NN whose input is z and h, output a scalar

$$\succ \alpha = h^T W z$$

How to learn the parameters?

Speech Recognition with Attention

197

Alignment between the Characters and Audio

Chan et al., "Listen, Attend and Spell", arXiv, 2015.

Image Captioning

198

- Input: image
- Output: word sequence

Image Captioning with Attention

Image Captioning with Attention

200

Image Captioning with Attention

Image Captioning

202

Good examples

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

Image Captioning

203

Bad examples

A large white <u>bird</u> standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

A person is standing on a beach with a <u>surfboard</u>.

A woman is sitting at a table with a large pizza.

A man is talking on his cell <u>phone</u> while another man watches.

Video Captioning

204

Ref: A man and a woman ride a motorcycle A man and a woman are talking on the road

Video Captioning

205

Ref: A woman is frying food Someone is frying a fish in a pot

Reading Comprehension

Reading Comprehension

Memory Network

Memory Network

209

Muti-hop performance analysis

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow	w Prediction: yellow			

Attention on Memory

211

- Von Neumann architecture
- Neural Turing Machine is an advanced RNN/LSTM.

214

Zhang et al., "Structured Memory for Neural Turing Machines," arXiv, 2015.

215

Concluding Remarks

216

Convolutional Neural Network (CNN) Input Convolutional Pooling Convolutional Pooling Recurrent Neural Network (RNN)

Talk Outline

Part I: Introduction to Machine Learning & Deep Learning

Part II: Variants of Neural Nets

Part III: Beyond Supervised Learning & Recent Trends

Beyond Supervised Learning & Recent Trend

Introduction

- Big data ≠ Big annotated data
- Machine learning techniques include:
 - Supervised learning (if we have labelled data)
 - Reinforcement learning (if we have an environment for reward)
 - Unsupervised learning (if we do not have labelled data)

What can we do if there is no sufficient labelled training data?

Machine Learning Map

220

Outline

- Semi-Supervised Learning
- Transfer Learning
- Unsupervised Learning
 - 化繁為簡 Representation Learning
 - ■無中生有 Generative Model
- Reinforcement Learning

Outline

Semi-Supervised Learning

- Transfer Learning
- Unsupervised Learning
 - 化繁為簡 Representation Learning
 - ■無中生有 Generative Model
- Reinforcement Learning

Semi-Supervised Learning

Labelled data

Unlabeled data

(Image of cats and dogs without labeling)

Semi-Supervised Learning

224

Why semi-supervised learning helps?

The distribution of the unlabeled data provides some cues

Outline

Semi-Supervised Learning

Transfer Learning

- Unsupervised Learning
 - 化繁為簡 Representation Learning
 - ■無中生有 Generative Model
- Reinforcement Learning

Transfer Learning

226

elephant

elephant

tiger

tiger

Not related to the task considered

Transfer Learning

227

- Widely used on image processing
 - Using sufficient labeled data to learn a CNN
 - Using this CNN as feature extractor

Transfer Learning Example

228

Outline

Semi-Supervised Learning

Transfer Learning

- Unsupervised Learning
 - 化繁為簡 Representation Learning
 - ■無中生有 Generative Model

Reinforcement Learning

Outline

Semi-Supervised Learning

Transfer Learning

Unsupervised Learning

- 化繁為簡 Representation Learning
 - ■無中生有 Generative Model
- Reinforcement Learning

Unsupervised Learning

231

The unlabeled data sometimes is not related to the task

data

Unlabeled data

(Just crawl millions of images from the Internet)

Unsupervised Learning

□ 化繁為簡

Unsupervised Learning

233

- How does self-taught learning work?
- Why does unlabeled and unrelated data help the tasks?

Finding latent factors that control the observations

Latent Factors for Handwritten Digits

Latent Factors for Documents

Latent Factors for Recommendation

Latent Factor Exploitation

237

Handwritten digits

The handwritten images are composed of **strokes**

Strokes (Latent Factors)

Latent Factor Exploitation

238

Strokes (Latent Factors)

Outline

Semi-Supervised Learning

Transfer Learning

- Unsupervised Learning
 - 化繁為簡 Representation Learning
 - ■無中生有 Generative Model
- Reinforcement Learning

Autoencoder

240

- Represent a digit using 28 X 28 dimensions
- Not all 28 X 28 images are digits

Idea: represent the images of digits in a more compact way

Compact representation of the input object

Can reconstruct the original object

Autoencoder

241

Autoencoder

242

De-noising auto-encoder

Deep Autoencoder

243

Deep Autoencoder

Feature Representation

245

Auto-encoder – Text Retrieval

Autoencoder – Text Retrieval

247

Bag-of-word (document or query)

Autoencoder – Similar Image Retrieval

248

Retrieved using Euclidean distance in pixel intensity space

Autoencoder – Similar Image Retrieval

249

(crawl millions of images from the Internet)

Autoencoder – Similar Image Retrieval

250

Images retrieved using Euclidean distance in pixel intensity

space

Images retrieved using 256 codes

Learning the useful latent factors

Autoencoder for DNN Pre-Training

251

□ Greedy layer-wise pre-training *again*

Autoencoder for DNN Pre-Training

252

□ Greedy layer-wise pre-training *again*

Autoencoder for DNN Pre-Training

253

□ Greedy layer-wise pre-training *again*

Autoencoder for DNN Pre-Training

Word Vector/Embedding

255

Machine learn the meaning of words from reading a lot of documents without supervision

Word Embedding

- Machine learn the meaning of words from reading a lot of documents without supervision
- A word can be understood by its context

Prediction-Based

Minimizing cross entropy

Prediction-Based

You shall know a word by the company it keeps

Various Architectures

260

Continuous bag of word (CBOW) model

Word2Vec LM

261

Goal: predicting the next words given the proceeding contexts $p(w_{t+1} \mid w_t)$

https://ronxin.github.io/wevi/

Word2Vec CBOW

262

□ Goal: predicting the target word given the surrounding words

$$p(w_t \mid w_{t-m}, \cdots , w_{t-1}, w_{t+1}, \cdots, w_{t+m})$$

https://ronxin.github.io/wevi/

Word2Vec Skip-Gram

263

Skip-gram training data:

apple|drink^juice,orange|eat^apple,rice|drink^juice,juice|drink^milk,mil k|drink^rice,water|drink^milk,juice|orange^apple,juice|apple^drink,milk |rice^drink,drink|milk^water,drink|water^juice,drink|juice^water

https://ronxin.github.io/wevi/

Word Embedding

http://www.slideshare.net/hustwj/cikm-keynotenov2014

Word Embedding

Characteristics

 $V(hotter) - V(hot) \approx V(bigger) - V(big)$ $V(Rome) - V(Italy) \approx V(Berlin) - V(Germany)$ $V(king) - V(queen) \approx V(uncle) - V(aunt)$

Solving analogies

Rome : Italy = Berlin : ?

Compute V(Berlin) - V(Rome) + V(Italy)Find the word w with the closest V(w) V(Germany) $\approx V(Berlin) - V(Rome) + V(Italy)$

Outline

Semi-Supervised Learning

Transfer Learning

Unsupervised Learning

■ 化繁為簡 Representation Learning

■無中生有 Generative Model

Reinforcement Learning

Creation

Creation

Generative Models

https://openai.com/blog/generative-models/

What I cannot create, I do not understand.

Richard Feynman

PixelRNN

269

□ To create an image, generating a pixel each time

Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv preprint, 2016

PixelRNN

Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv preprint, 2016

PixelRNN – beyond Image

271

Audio: Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, WaveNet: A Generative Model for Raw Audio, arXiv preprint, 2016

Video: Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves, Koray Kavukcuoglu, Video Pixel Networks, arXiv preprint, 2016

Generative Adversarial Network (GAN)

272

What are some recent and potentially upcoming breakthroughs in unsupervised learning?

Yann LeCun, Director of Al Research at Facebook and Professor at NYU Written Jul 29 · Upvoted by Joaquin Quiñonero Candela, Director Applied Machine Learning at Facebook and Huang Xiao

Adversarial training is the coolest thing since sliced bread.

I've listed a bunch of relevant papers in a previous answer.

Expect more impressive results with this technique in the coming years.

What's missing at the moment is a good understanding of it so we can make it work reliably. It's very finicky. Sort of like ConvNet were in the 1990s, when I had the reputation of being the only person who could make them work (which wasn't true).

Ref: Generative Adversarial Networks, http://arxiv.org/abs/1406.2661

Discriminative v.s. Generative Models

- Discriminative
 - learns a function that maps the input data (x) to some desired output class label (y)
 - directly learn the conditional distribution P(y/x)

Generative

- tries to learn the joint probability of the input data and labels simultaneously, i.e. P(x,y)
 - can be converted
 to P(y|x) for classification via
 Bayes rule

Advantage: generative models have the potential to <u>understand and explain</u> <u>the underlying structure</u> of the input data even when there are no labels

Generator

275

Decoder from autoencoder as generator

The generator is to generate the data from the code

Generative Adversarial Networks (GAN)

276

Two competing neural networks: generator & discriminator

Training two networks jointly \rightarrow the generator knows how to adapt its parameters in order to produce output data that can fool the discriminator

http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/

Generator Evolution

Cifar-10

□ Which one is machine-generated?

https://openai.com/blog/generative-models/

Generated Bedrooms

279

Radford et al., "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks," arXiv:1511.06434.

Comics Drawing

https://github.com/mattya/chainer-DCGAN

Comics Drawing

281

元画像 -赤髪+金髪 -赤目+青目 +制服+セーラー +笑顔+口開き +青背景

ー番左のキャラクターが元画像で、 右に行くほど長髪化ベクトルを強く足している

http://qiita.com/mattya/items/e5bfe5e04b9d2f0bbd47

282

- Small images of 792 Pokémon's
 - Can machine learn to create new Pokémons?

Don't catch them! Create them!

 Source of image: http://bulbapedia.bulbagarden.net/wiki/List_of_Pok%C3%A9 mon_by_base_stats_(Generation_VI)

Original image is 40 x 40

Making them into 20 x 20

Each pixel is represented by 3 numbers (corresponding to RGB)

R=50, G=150, B=100

Each pixel is represented by a 1-of-N encoding feature

Never seen

by machine!

Cover 50%

Cover 75%

Pokémon CreationDrawing from scratch
Need some randomness

Pokémon Creation - Data

- Original image (40 x 40): http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML 2016/Pokemon creation/image.rar
- Pixels (20 x 20):

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Pokemon_creation/pixel_color.txt

- Each line corresponds to an image, and each number corresponds to a pixel
 - http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Pokemon_creation/colormap.txt

Outline

- Semi-Supervised Learning
- Transfer Learning
- Unsupervised Learning
 - 化繁為簡 Representation Learning
 - ■無中生有 Generative Model
- Reinforcement Learning

Reinforcement Learning

291

Reinforcement Learning

Agent learns to take actions to maximize expected reward.

Supervised v.s. Reinforcement

Scenario of Reinforcement Learning

Agent learns to take actions to maximize expected reward.

Supervised v.s. Reinforcement

- Supervised Learning
 - Training based on supervisor/label/annotatio
 n
 - Feedback is instantaneous
 - Time does not matter

- Reinforcement Learning
 - Training only based on reward signal
 - Feedback is delayed
 - Time matters
 - Agent actions affect subsequent data

AlphaGo uses supervised learning + reinforcement learning

Reinforcement Learning

296

- RL is a general purpose framework for decision making
 - RL is for an *agent* with the capacity to *act*
 - Each action influences the agent's future state
 - Success is measured by a scalar *reward* signal
 - Goal: select actions to maximize future reward

RL Difficulty

- Goal: select actions to maximize total future reward
 - Actions may have long-term consequences
 - Reward may be delayed
 - It may be better to sacrifice immediate reward to gain more long-term reward

Deep Reinforcement Learning

Major Components in an RL Agent

- □ An RL agent may include one or more of these components
 - Policy: agent's behavior function
 - Value function: how good is each state and/or action
 - **Model**: agent's representation of the environment

Maze Example

300

- □ Rewards: -1 per time-step
- □ Actions: N, E, S, W
- States: agent's location

Maze Example: Policy

- Rewards: -1 per time-step
- □ Actions: N, E, S, W
- States: agent's location

Arrows represent policy $\pi(s)$ for each state s

Maze Example: Value Function

		-14	-13	-12	-11	-10	-9		
Start	-16	-15			-12		-8		
		-16	-17			-6	-7		
			-18	-19		-5			
		-24		-20		-4	-3		
		-23	-22	-21	-22		-2	-1	Goal
	_		-	-	-	_	-	_	

302

Rewards: -1 per time-step

- Actions: N, E, S, W
- States: agent's location

Numbers represent value $Q_{\pi}(s)$ of each state s

E2E RL Task-Completion Bot

Simulated User

- Generate interactions based on a predefined fake goal
- Automatically learn strategy by training on the simulated data

User goal: Two tickets for "the witch" tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM

User: Can I get 2 tickets for the witch? Agent: Which theater do you want? User: Regal meridian 16 Agent: What time would you like to see it? User: 9:30 pm Agent: What date would you like to see it? User: Tomorrow! Agent: How many people are you? User: Just two adults. Agent: What is your location? User: Seattle! Agent: What kind of video format do you like? User: Oh, any kind is okay. Agent: Do you have any price constraint? User: No, I don't care. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thank you. Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM

User: Can I get 2 tickets for the witch? Agent: What date would you like to see it? User: Tomorrow Agent: Which theater do you prefer? User: Regal meridian 16 Agent: What is your location? User: Seattle Agent: What time would you like to see it? User: 9:30 pm. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thanks. Agent: Thanks!

More applications

- AlphaGo, Playing Video Games, Dialogue
- Flying Helicopter
 - https://www.youtube.com/watch?v=0JL04JJjocc
- Driving
 - https://www.youtube.com/watch?v=0xo1Ldx3L5Q
- Google Cuts Its Giant Electricity Bill With DeepMind-Powered Al
 - http://www.bloomberg.com/news/articles/2016-07-19/google-cutsits-giant-electricity-bill-with-deepmind-powered-ai

Concluding Remarks

- Semi-Supervised Learning
- Transfer Learning
- Unsupervised Learning
 - 化繁為簡 Representation Learning
 - ■無中生有 Generative Model
- Reinforcement Learning

如何成為武林高手

- □ 内外兼修
 - □內功充沛,恃強克弱
 - ■招數精妙,以快打慢
- I Machine Learning & Deep Learning 也需要內外兼修
 - ■內力:運算資源
 - ■招數:各種技巧
- □ 內力充沛,平常的招式也有可能發會巨大的威力