

10/02/2014 Sphinx Lunch

DERIVING LOCAL RELATIONAL SURFACE FORMS FROM DEPENDENCY-BASED ENTITY EMBEDDINGS FOR UNSUPERVISED SPOKEN LANGUAGE UNDERSTANDING

YUN-NUNG (VIVIAN) CHEN

DILEK HAKKANI-TÜR & GOKHAN TUR

Outline

Introduction

- Main Idea
- Semantic Knowledge Graph
- Semantic Interpretation via Relation

Proposed Approach

- Relation Inference from Gazetteers
- Relational Surface Form Derivation
- Probabilistic Enrichment
- Boostrapping

Experiments

Conclusions

Main Idea Relation Detection for Unsupervised SLU

Spoken Language Understanding (SLU): convert automatic speech recognition (ASR) outputs into pre-defined semantic output format

"when was james cameron's avatar released"

Intent: FIND_RELEASE_DATE
Slot-Val: MOVIE_NAME="avatar", DIRECTOR_NAME="james cameron"

Relation: semantic interpretation of input utterances

movie.release_date, movie.name, movie.directed_by, director.name

Unsupervised SLU: utilize external knowledge to help relation detection without labelled data

Semantic Knowledge Graph Priors for SLU

What are knowledge graphs?

- Graphs with
 - strongly typed and uniquely identified entities (nodes)
 - facts/literals connected by relations (edge)

Examples:

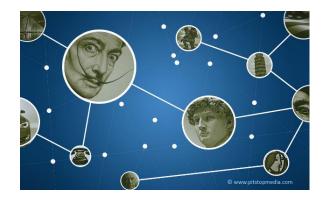
 Satori, Google KG, Facebook Open Graph, Freebase

How large?

> 500M entities, >1.5B relations, > 5B facts

How broad?

- $\,\circ\,$ Wikipedia-breadth: "American Football" $\leftarrow\!\!\!\rightarrow$ "Zoos"
- Slides of Larry Heck, Dilek Hakkani-Tur, and Gokhan Tur, <u>Leveraging Knowledge Graphs for Web-Scale Unsupervised</u> <u>Semantic Parsing</u>, in *Proceedings of Interspeech*, 2013.



Semantic Interpretation via Relations

Two Examples

• differentiate two examples by including the originating node types in the relation

User Utterance:

find movies produced by james cameron

SPARQL Query (simplified):

SELECT ?movie {?movie. ?movie.produced_by?producer. ?producer.name"James Cameron".}

Logical Form:

 $\lambda x. \exists y. movie.produced_by(x, y) \land person.name(y, z) \land z="James Cameron"$

Relation:

movie.produced_by producer.name

User Utterance:

who produced avatar

SPARQL Query (simplified):

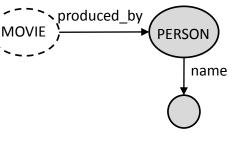
SELECT ?producer {?movie.name"Avatar". ?movie.produced_by?producer.}

Logical Form:

 λ y. ∃x. movie.produced_by(x, y) Λ movie.name(x, z) Λ z="Avatar"

Relation:

movie.name movie.produced_by

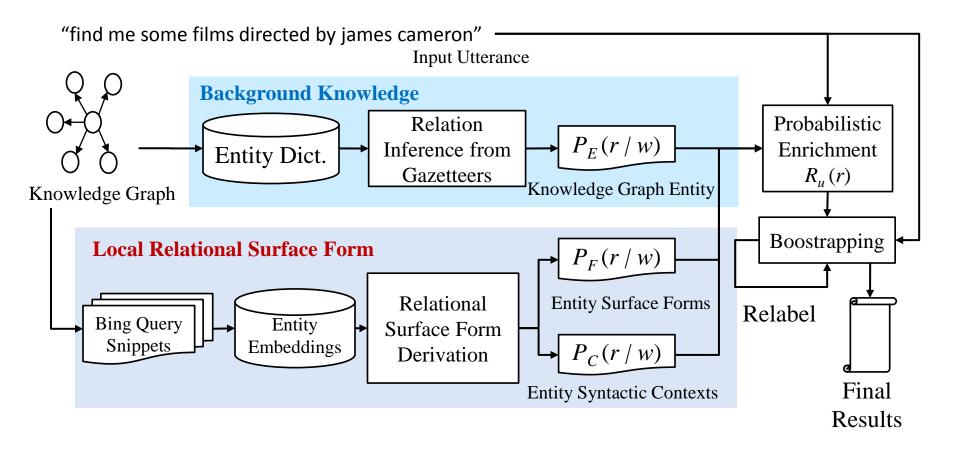


produced by

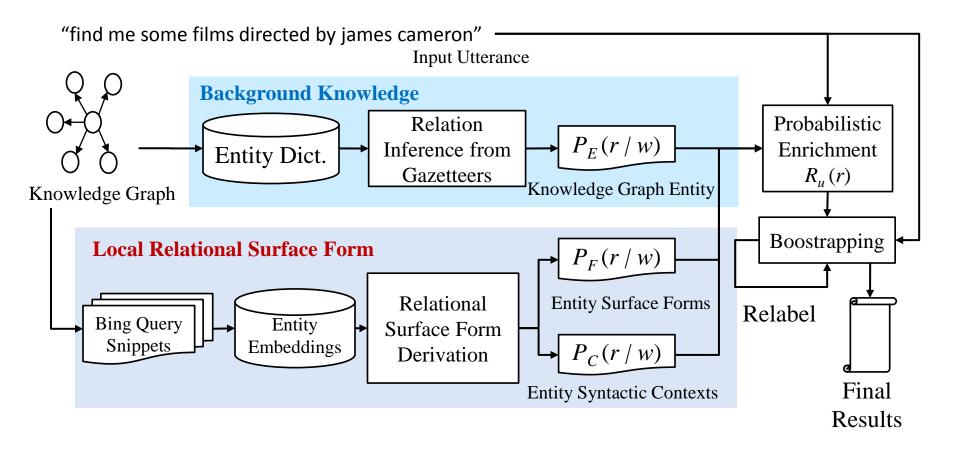
MOVIE

name

Proposed Framework

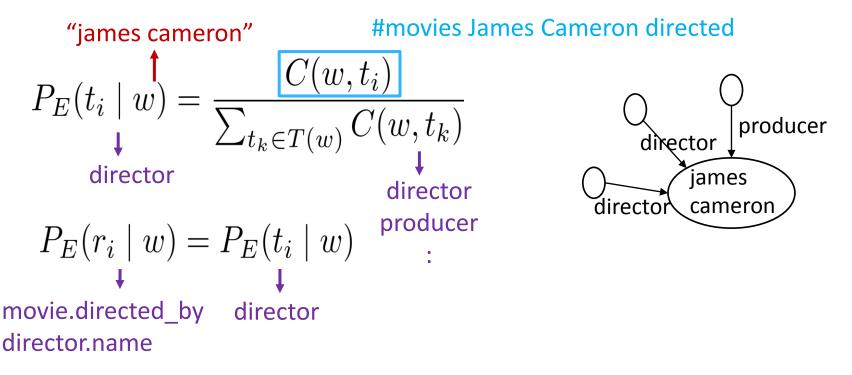


Proposed Framework



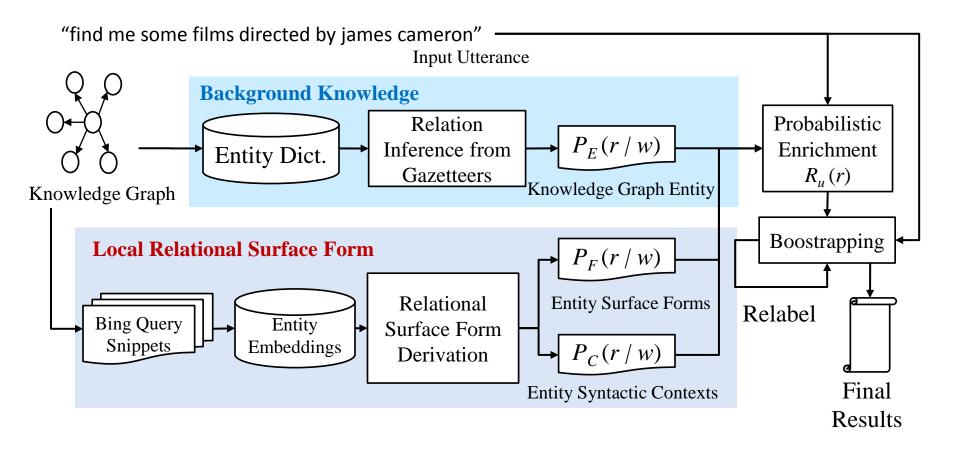
Relation Inference from Gazetteers

Gazetteers (entity lists)



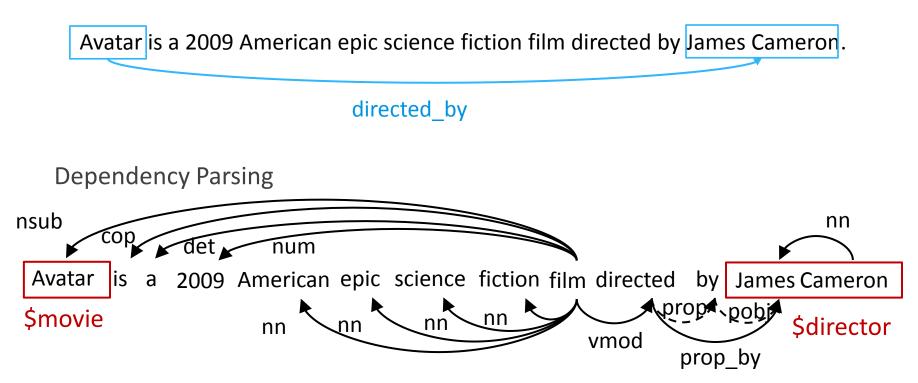
• Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding, in *Proceedings of Interspeech*, 2014.

Proposed Framework



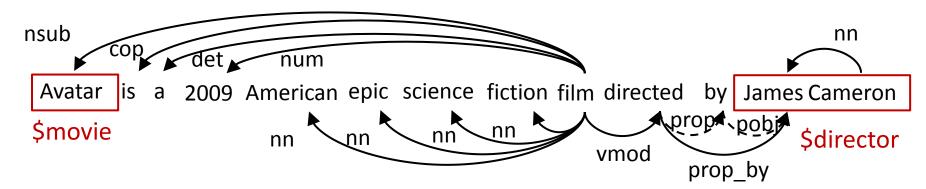
Relational Surface Form Derivation Web Resource Mining

Bing query snippets including entity pairs connected with specific relations in KG



Relational Surface Form Derivation Dependency-Based Entity Embeddings

1) Word & Context Extraction



Word	Contexts	Word	Contexts				
\$movie	film/nsub ⁻¹		film/nsub, is/cop, a/det,				
is	film/cop ⁻¹	film	2009/num, american/nn, epic/nn, science/nn,				
а	film/det ⁻¹		fiction/nn, directed/vmod				
2009	film/num ⁻¹	directed	\$director/prep_by				
american, epic, science, fiction	film/nn ⁻¹	\$director	directed/prep_by ⁻¹				

Relational Surface Form Derivation Dependency-Based Entity Embeddings

2) Training Process

- Each word w is associated with a vector v_w and each context c is represented as a vector v_c
- Learn vector representations for both words and contexts such that the dot product $v_w \cdot v_c$ associated with good word-context pairs belonging to the training data D is maximized

• Objective function:
$$\arg \max_{v_w, v_c} \sum_{(w,c) \in D} \log \frac{1}{1 + \exp(-v_c \cdot v_w)}$$

Word	Contexts	Word	Contexts
\$movie	film/nsub ⁻¹		film/nsub, is/cop, a/det,
is	film/cop ⁻¹	film	2009/num, american/nn, epic/nn, science/nn,
а	film/det ⁻¹		fiction/nn, directed/vmod
2009	film/num ⁻¹	directed	\$director/prep_by
american, epic, science, fiction	film/nn ⁻¹	\$director	directed/prep_by ⁻¹

Relational Surface Form Derivation

Entity Surface Forms

 S_i^F

• learn the surface forms corresponding to entities

\$char, \$director, etc.

$$(w_j) = \underbrace{\frac{\operatorname{sim}(w_j, e_i)}{\sum_{e_k \in E} \operatorname{sim}(w_j, e_k)}}_{e_k \in E}$$

\$char: "character", "role", "who"
\$director: "director", "filmmaker"
\$genre: "action", "fiction"

 \rightarrow with similar contexts

based on word vector v_w

Entity Syntactic Contexts

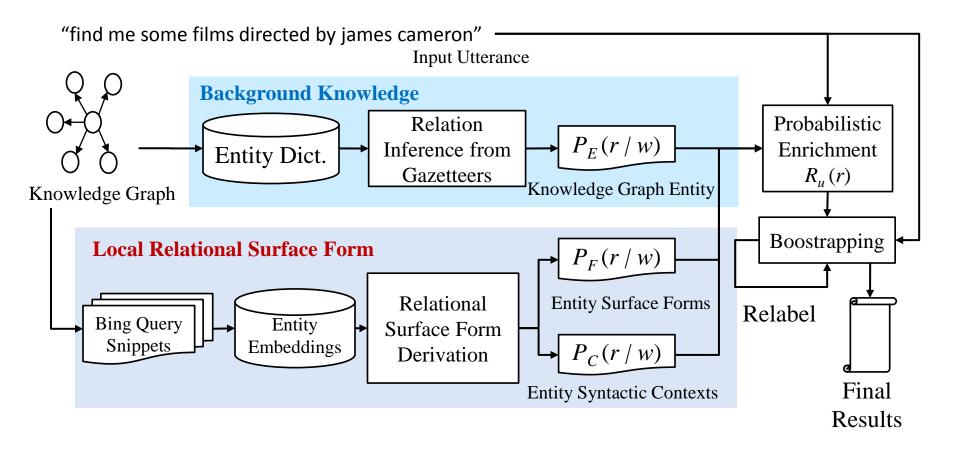
learn the <u>important contexts</u> of entities

$$S_{i}^{C}(w_{j}) = \underbrace{\frac{\sin(\hat{w}_{j}, e_{i})}{\sum_{e_{k} \in E} \sin(\hat{w}_{j}, e_{k})}}_{\text{based on context vector } v_{e_{k}}}$$

\$char: "played"
\$director: "directed"

ightarrow frequently occurring together

Proposed Framework



Probabilistic Enrichment

Integrate relations from

- \circ Prior knowledge $P_E(r \mid w)$
- Entity surface forms $P_F(r \mid w)$
- $\circ\,$ Entity syntactic contexts $P_C(r\mid w)$

Integrated Relations for Words by

r	actor	produced_by	location
$P_E(r \mid w)$	0.7	0.3	0
$P_F(r \mid w)$	0.4	0	0.6
$P_C(r \mid w)$	0	0	0
Unweighted $R_w(r)$	1	1	1
Weighted $R_w(r)$	0.7	0.3	0.6
Highest Weighted $R_w(r)$	0.7	0	0.6

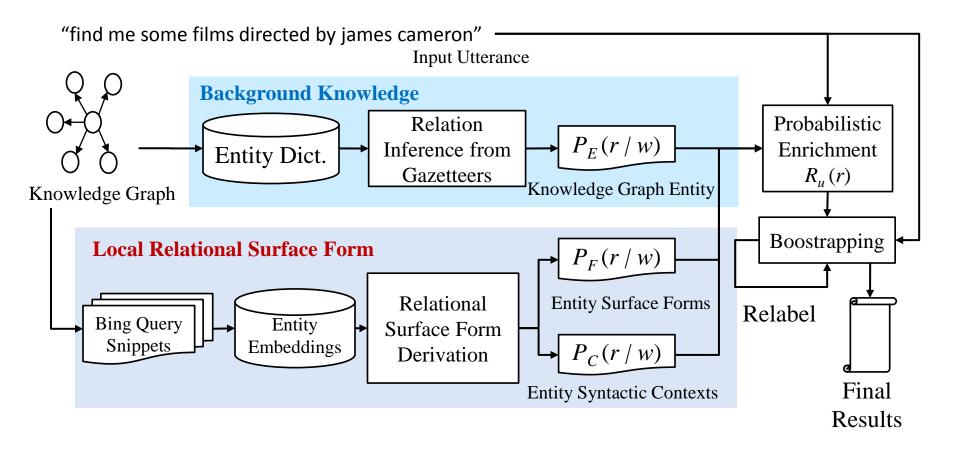
- Unweighted: combine all relations with binary values
- Weighted: combine all relations and keep the highest weights of relations
- Highest Weighted: combine the most possible relation of each word

Integrated Relations for Utterances by

$$R_u(r_i) = \max_{w \in u} R_w(r_i)$$

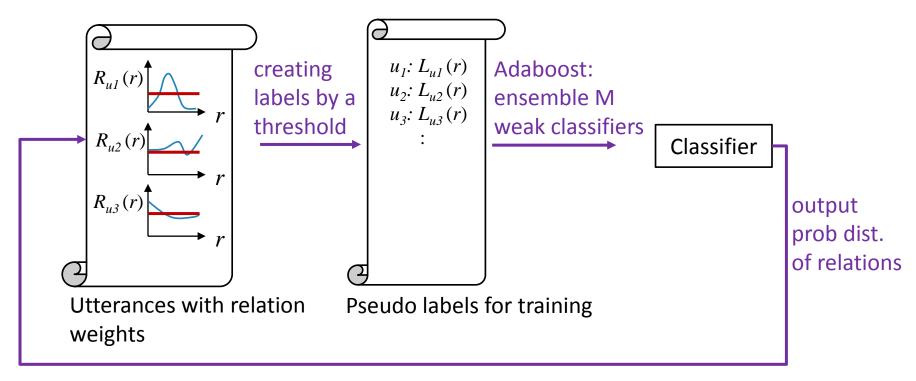
• Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding, in *Proceedings of Interspeech*, 2014.

Proposed Framework



Boostrapping Unsupervised Self-Training

Training a multi-label multi-class classifier estimating relations given an utterance



Experiments of Relation Detection Dataset

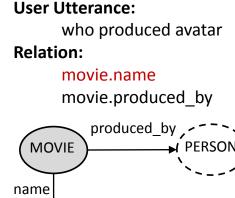
Knowledge Base: Freebase

- 670K entities
- 78 entity types (movie names, actors, etc)

Relation Detection Data

- Crowd-sourced utterances
- Manually annotated with SPARQL queries \rightarrow relations

Query Statistics	Dev	Test
% entity only	8.9%	10.7%
% rel only w/ specified movie names	<u>27.1%</u>	<u>27.5%</u>
% rel only w/ specified other names	39.8%	39.6%
% more complicated relations	15.4%	14.7%
% not covered	8.8%	7.6%
#utterances	3338	1084



Evaluation Metric: micro F-measure (%)

	Annrash	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
ſ	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
Baseline	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16

Evaluation Metric: micro F-measure (%)

	Approach	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
ſ	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
Baseline	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74

Words derived by dependency embeddings can successfully capture the surface forms of entity tags, while words derived by regular embeddings cannot.

Evaluation Metric: micro F-measure (%)

	Approach	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
ſ	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
Baseline	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04

Words derived from entity contexts slightly improve performance.

Evaluation Metric: micro F-measure (%)

	Annuach	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
Baseline	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
Proposed 4	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

Combining all approaches performs best, while the major improvement is from derived entity surface forms.

Evaluation Metric: micro F-measure (%)

	Annuach	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
Baseline	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
Proposed	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

With the same information, learning surface forms from dependencybased embedding performs better, because there's mismatch between written and spoken language.

Evaluation Metric: micro F-measure (%)

	Americash	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
ſ	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
Baseline	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
ſ	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
Proposed -	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

Weighted methods perform better when less features, and highest weighted methods perform better when more features.

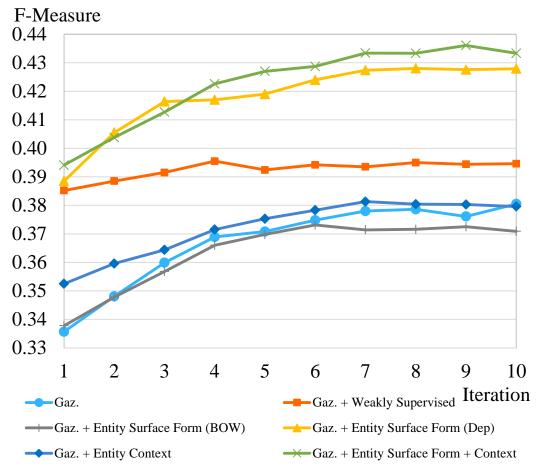
Experiments of Relation Detection

Entity Surface Forms Derived from Dependency Embeddings

The functional similarity carried by dependency-based entity embeddings effectively benefits relation detection task.

Entity Tag	Derived Word
\$character	character, role, who, girl, she, he, officier
\$director	director, dir, filmmaker
\$genre	comedy, drama, fantasy, cartoon, horror, sci
\$language	language, spanish, english, german
\$producer	producer, filmmaker, screenwriter

Experiments of Relation Detection Effectiveness of Boosting



- The best result is the combination of all approaches, because probabilities came from different resources can complement each other.
- Only adding entity surface forms performs similarly, showing that the major improvement comes from relational entity surface forms.
- Boosting significantly improves most performance

Conclusions

We propose an unsupervised approach to capture the relational surface forms including entity surface forms and entity contexts based on dependency-based entity embeddings.

The detected relations viewed as local observations can be integrated with background knowledge by probabilistic enrichment methods.

Experiments show that involving derived relational surface forms as local cues together with prior knowledge can significantly improve the relation detection task and help open domain SLU.

Q&A ③

THANKS FOR YOUR ATTENTIONS!!

2014 MSR SUMMER INTERNSHIP