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ABSTRACT
Distributional semantics and frame semantics are two representative
views on language understanding in the statistical world and the lin-
guistic world, respectively. In this paper, we combine the best of
two worlds to automatically induce the semantic slots for spoken di-
alogue systems. Given a collection of unlabeled audio files, we ex-
ploit continuous-valued word embeddings to augment a probabilistic
frame-semantic parser that identifies key semantic slots in an unsu-
pervised fashion. In experiments, our results on a real-world spo-
ken dialogue dataset show that the distributional word representa-
tions significantly improve the adaptation of FrameNet-style parses
of ASR decodings to the target semantic space; that comparing to a
state-of-the-art baseline, a 13% relative average precision improve-
ment is achieved by leveraging word vectors trained on two 100-
billion words datasets; and that the proposed technology can be used
to reduce the costs for designing task-oriented spoken dialogue sys-
tems.

Index Terms— Unsupervised slot induction, distributional se-
mantics, frame semantics.

1. INTRODUCTION

The distributional view of semantics hypothesizes that words oc-
curring in the same contexts may have similar meanings [1]. As
the foundation for modern statistical semantics [2], an early success
that implements this distributional theory is Latent Semantic Analy-
sis [3]. Recently, with the advance of deep learning techniques, the
continuous representations as word embeddings have further boosted
the state-of-the-art results in many applications, such as sentiment
analysis [4], language modeling [5], sentence completion [6], and
relation detection [7].

Frame semantics, on the other hand, is a linguistic theory that
defines meaning as a coherent structure of related concepts [8]. Al-
though there has been some successful applications in natural lan-
guage processing (NLP) [9, 10, 11], this linguistically principled
theory has not been explored in the speech community until recently:
Chen et al. showed that it was possible to use probabilistic frame-
semantic parsing to automatically induce and adapt the semantic
ontology for designing spoken dialogue systems (SDS) in an un-
supervised fashion [12], alleviating some of the challenging prob-
lems for developing and maintaining spoken language understaning
(SLU)-based interactive systems [13]. Comparing to the traditional
approach where domain experts and developers manually define the
semantic ontology for SDS, the unsupervised semantic induction ap-
proach proposed by Chen et al. has the advantages to reduce the
costs of annotation, avoid human induced bias, and lower the main-
tenance costs [12].

In this paper, we further improve the state-of-the-art results by
leveraging the continuous variant of distributional word embeddings
to identify key semantic slots for designing the SLU component in
SDS. Given a collection of unlabeled raw audio files, we investigate
an unsupervised approach for automatic induction of semantic slots.
To do this, we use a state-of-the-art probabilistic frame-semantic
parsing approach [14], and perform an unsupervised approach to
adapt, rerank, and map the generic FrameNet1-style semantic parses
to the target semantic space that is suitable for the domain-specific
conversation settings [15]. We utilize continuous word embeddings
trained on very large external corpora (e.g. Google News and Free-
base) to improve the adaptation process. To evaluate the perfor-
mance of our approach, we compare the automatically induced se-
mantic slots with the reference slots created by domain experts. Em-
pirical experiments show that the slot creation results generated by
our approach align well with those of domain experts. Our main
contributions of this paper are three-fold:

• We exploit continuous-valued word embeddings for unsuper-
vised spoken language understanding (SLU);

• We propose the first approach of combining distributional and
frame semantics for inducing semantic slots from unlabeled
speech data;

• We show that this synergized method yields the state-of-the-
art performance.

2. RELATED WORK

The idea of leveraging external semantic resources for unsupervised
SLU was popularized by the work of Heck and Hakkani-Tür , and
Tür et al. [16, 17]. The former exploited Semantic Web for the in-
tent detection problem in SLU, and showed that the results obtained
from the unsupervised training process align well with the perfor-
mance of traditional supervised learning [16]. The latter used search
queries and obtained promising results on the slot filling task in the
movie domain [17]. Following the success of the above applications,
recent studies have also obtained interesting results on the tasks of
relation detection [18], entity extraction [19], and extending domain
coverage [20]. The major difference between our work and previous
studies is that, instead of leveraging the discrete representations of
Bing search queries or Semantic Web, we build our model on top
of the recent success of deep learning—we utilize the continuous-
valued word embeddings trained on Google News and Freebase to
induce semantic ontology for task-oriented SDS.

Our approach is clearly relevant to recent studies on deep learn-
ing for SLU. Tür et al. have shown that deep convex networks are

1http://framenet.icsi.berkeley.edu
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Fig. 1. An example of probabilistic frame-semantic parsing on ASR
output. FT: frame target. FE: frame element. LU: lexical unit.

effective for building better semantic utterance classification sys-
tems [21]. Following their success, Deng et al. have further demon-
strated the effectiveness of applying the kernel trick to build better
deep convex networks for SLU [22]. To the best of our knowledge,
our work is the first study that combines the distributional view of
meaning from the deep learning community, and the linguistically
principled frame semantic view for improved SLU.

3. THE PROPOSED APPROACH

We build our approach on top of the recent success of an unsu-
pervised frame-semantic parsing approach [12]. The main moti-
vation is to use a FrameNet-trained statistical probabilistic seman-
tic parser to generate initial frame-semantic parses from automatic
speech recognition (ASR) decodings of the raw audio conversation
files. Then adapt the FrameNet-style frame-semantic parses to the
semantic slots in the target semantic space, so that they can be used
practically in the SDSs. Chen et al. formulated the semantic map-
ping and adaptation problem as a ranking problem, and proposed the
use of unsupervised clustering methods to differentiate the generic
semantic concepts from target semantic space for task-oriented di-
alogue systems [12]. However, their clustering approach only per-
forms on the small in-domain training data, which may not be ro-
bust enough. Therefore, this paper proposes a radical extension of
the previous approach: we aim at improving the semantic adapta-
tion process by leveraging distributed word representations that are
trained on very large external datasets [23, 24].

3.1. Probabilistic Semantic Parsing

FrameNet is a linguistically-principled semantic resource that offers
annotations of predicate-argument semantics, and associated lexical
units for English [15]. FrameNet is developed based on semantic
theory, Frame Semantics [25]. The theory holds that the meaning of
most words can be expressed on the basis of semantic frames, which
encompass three major components: frame (F), frame elements
(FE), and lexical units (LU). For example, the frame “food” con-
tains words referring to items of food. A descriptor frame element
within the food frame indicates the characteristic of the food. For
example, the phrase “low fat milk” should be analyzed with “milk”
evoking the food frame and “low fat” filling the descriptor FE of that
frame.

In our approach, we parse all ASR-decoded utterances in our
corpus using SEMAFOR2, a state-of-the-art semantic parser for
frame-semantic parsing [14, 26], and extract all frames from se-
mantic parsing results as slot candidates, where the LUs that cor-
respond to the frames are extracted for slot filling. For example,
Figure 1 shows an example of an ASR-decoded text output parsed
by SEMAFOR. SEMAFOR generates three frames (capability,

2http://www.ark.cs.cmu.edu/SEMAFOR/

expensiveness, and locale by use) for the utterance, which we
consider as slot candidates. Note that for each slot candidate, SE-
MAFOR also includes the corresponding lexical unit (can i, cheap,
and restaurant), which we consider as possible slot-fillers.

Since SEMAFOR was trained on FrameNet annotation, which
has a more generic frame-semantic context, not all the frames from
the parsing results can be used as the actual slots in the domain-
specific dialogue systems. For instance, in Figure 1, we see that the
frames “expensiveness” and “locale by use” are essentially the
key slots for the purpose of understanding in the restaurant query
domain, whereas the “capability” frame does not convey particular
valuable information for SLU. In order to fix this issue, we compute
the prominence of these slot candidates, use a slot ranking model
to rank the most important slots, and then generate a list of induced
slots for use in domain-specific dialogue systems.

3.2. Continuous Space Word Representations

In NLP, the Brown et al. [27] clustering algorithm is an early hier-
archical clustering algorithm that extracts word clusters from large
corpora, which has been used successfully in many NLP applica-
tions [28]. Comparing to traditional bag-of-words (BoWs) and n-
gram language models, in recent years, continuous word embed-
dings (a.k.a. word representations, or neural language models) are
shown to be the state-of-the-art in many NLP tasks, due to its rich
continuous representations (e.g. vectors, or sometimes matrices, and
tensors) that capture the context of the target semantic unit [29, 30].

Considering that this distributional semantic theory may ben-
efit our SLU task, we leverage word representations trained from
large external data to differentiate semantic concepts. The rationale
behind applying the distributional semantic theory to our task is
straight-forward: because spoken language is a very distinct genre
comparing to the written language on which FrameNet is con-
structed, it is necessary to borrow external word representations to
help bridge these two data sources for the unsupervised adaptation
process.

More specifically, to better adapt the FrameNet-style parses to
the target task-oriented SDS domain, we make use of continuous
word vectors derived from a recurrent neural network architec-
ture [31]. The recurrent neural network language models use the
context history to include long-distance information. Interestingly,
the vector-space word representations learned from the language
models were shown to capture syntactic and semantic regulari-
ties [23, 24]. The word relationships are characterized by vector
offsets, where in the embedded space, all pairs of words sharing a
particular relation are related by the same constant offset.

3.3. Slot Ranking Model

The purpose of the ranking model is to distinguish between generic
semantic concepts and domain-specific concepts that are relevant to
an SDS. To induce meaningful slots for the purpose of SDS, we com-
pute the prominence of the slot candidates using a slot ranking model
described below.

With the semantic parses from SEMAFOR, the model ranks the
slot candidates by integrating two scores [12]: (1) the normalized
frequency of each slot candidate in the corpus, since slots with higher
frequency may be more important. (2) the coherence of slot-fillers
corresponding to the slot. Assuming that domain-specific concepts
focus on fewer topics, the coherence of the corresponding slot-fillers
can help measure the prominence of the slots because they are simi-



lar to each other.

w(s) = (1− α) · log f(s) + α · log h(s), (1)

where w(s) is the ranking weight for the slot candidate s, f(s) is its
normalized frequency from semantic parsing, h(s) is its coherence
measure, and α is the weighting parameter within the interval [0, 1].

For each slot s, we have the set of corresponding slot-fillers,
V (s), constructed from the utterances including the slot s in the
parsing results. The coherence measure of the slot s, h(s), is com-
puted as the average pair-wise similarity of slot-fillers to evaluate if
slot s corresponds to centralized or scattered topics.

h(s) =

∑
xa,xb∈V (s) Sim(xa, xb)

|V (s)|2 , (2)

where V (s) is the set of slot-fillers corresponding slot s, |V (s)| is
the size of the set, and Sim(xa, xb) is the similarity between the slot-
filler pair xa and xb. The slot s with higher h(s) usually focuses on
fewer topics, which is more specific and more likely to be a slot for
the dialogue system.

We leverage distributed word representations introduced in Sec-
tion 3.2 to involve distributional semantics of slot-fillers xa and xb
for deriving Sim(xa, xb). Here, we propose two similarity mea-
sures: the representation-derived similarity and the neighbor-derived
similarity as Sim(xa, xb) in (2) below.

3.3.1. Representation-Derived Similarity

Given that distributional semantics can be captured by continuous
space word representations [23], we transform each token x into its
embedding vector x by pre-trained distributed word representations,
and then the similarity between a pair of slot-fillers xa and xb can
be computed as

RepSim(xa, xb) =
xa · xb

‖xa‖‖xb‖
. (3)

We assume that words occurring in similar domains have similar
word representations, and thus RepSim(xa, xb) will be larger when
xa and xb are semantically related. The representation-derived sim-
ilarity relies on the performance of pre-trained word representations,
and higher dimensionality of embedding words results in more ac-
curate performance but greater complexity.

3.3.2. Neighbor-Derived Similarity

With embedding vector x corresponding token x in the continuous
space, we build a vector rx = [rx(1), ..., rx(t), ..., rx(T )] for each
x, where T is the vocabulary size, and the t-th element of rx is
defined as

rx(t) =


x·yt
‖x‖‖yt‖ , if yt is the word whose embedding

vector has top N greatest similarity
to x.

0 , otherwise.

(4)

The t-th element of vector rx is the cosine similarity between the
embedding vector of slot-filler x and the t-th embedding vector yt
of pre-trained word representations (t-th token in the vocabulary of
external larger dataset), and we only remain the elements with topN
greatest values to form a sparse vector for space reduction (from T to
N ). rx can be viewed as a vector indicating theN nearest neighbors
of token x obtained from continuous word representations. Then the

similarity between a pair of slot-fillers xa and xb, Sim(xa, xb) in
(2), can be computed as

NeiSim(xa, xb) =
rxa · rxb

‖rxa‖‖rxb‖
. (5)

The idea of NeiSim(xa, xb) is very similar as RepSim(xa, xb),
where we assume that words with similar concepts should have sim-
ilar representations and share similar neighbors. Hence, the value
of NeiSim(xa, xb) is larger when xa and xb have more overlapped
neighbors in the continuous space. Also, the complexity can be re-
duced by setting the number of neighbors considered.

3.4. Late Fusion

With multiple ranked lists of induced slots, where h(s) in (1) can be
derived from representation-derived similarity or neighbor-derived
similarity, and the word embeddings can be trained on different re-
sources, we can fuse multiple results by a simple voting method to
combine multiple lists. Here we define the ranking score of slot s in
the ranked list l as

Rl(s) = k, (6)

where k is the position where the slot s is ranked. Then given mul-
tiple ranked lists L = {l}, the fused ranking score of slot s is com-
puted as its average position from all lists.

RL(s) =
1

|L|
∑
l∈L

Rl(s) (7)

For example, a slot is ranked at t-th, u-th, and v-th positions by
three approaches, and its average position from these three lists is
1
3
(t+u+ v). Finally we can obtain fused ranked list by ranking the

slots via RL(s). Note that the slots with smaller scores are ranked
higher, because the smaller scores imply that the slots are ranked
higher by multiple methods.

4. EXPERIMENTS

To evaluate the effectiveness of our approach, we performed two
evaluations. First, we examine the slot induction accuracy by com-
paring the reranked list of frame-semantic parsing induced slots with
the reference slots created by system developers [32]. Secondly, us-
ing the reranked list of induced slots and their associated slot-fillers,
we compare against the human annotation. For the experiments, we
evaluate both on ASR transcripts of the raw audio, and on the manual
transcripts.

4.1. Experimental Setup

In this experiment, we used the Cambridge University SLU corpus,
previously used on several other SLU tasks [33, 34]. The domain of
the corpus is about restaurant recommendation in Cambridge; sub-
jects were asked to interact with multiple SDSs in an in-car setting.
The corpus contains a total number of 2,166 dialogues, including
11,288 utterances with semantic slots. The data is gender-balanced,
with slightly more native than non-native speakers. The vocabulary
size is 1868. An ASR system was used to transcribe the speech; the
word error rate was reported as 37%. There are 10 slots created by
domain experts: addr, area, food, name, phone, postcode, price
range, signature, task, and type. The parameter α in (1) can be
empirically set; we use α = 0.2, N = 100 for all experiments.



To include distributional semantics information, we use two lists
of pre-trained distributed vectors described as below3.
• Word and Phrase Vectors from Google News

The word vectors are trained on 109 words from Google
News. Training was performed using the continuous bag of
words architecture, which predicts the current word based on
the context. The resulting vectors have dimensionality 300,
vocabulary size is 3 × 106; the entities contain both words
and automatically derived phrases.

• Entity Vectors with Freebase Naming
The entity vectors are trained on 109 words from Google
News with naming from Freebase4. The training was per-
formed using the continuous skip gram architecture, which
predicts surrounding words given the current word. The re-
sulting vectors have dimensionality 1000, vocabulary size is
1.4×106, and the entities contain the deprecated /en/ nam-
ing from Freebase.

The first dataset provides a larger vocabulary and better coverage;
the second has more precise vectors, using knowledge from Free-
base.

4.2. Evaluation Metrics

4.2.1. Slot Induction

To evaluate the accuracy of the induced slots, we measure their qual-
ity as the proximity between induced slots and reference slots. Fig-
ure 2 shows the mappings that indicate semantically related induced
slots and reference slots [12]. For example, “expensiveness →
price”, “food → food”, and “direction → area” show that these
induced slots can be mapped into the reference slots defined by ex-
perts and carry important semantics in the target domain for devel-
oping the task-oriented SDS. Note that two slots, name and signa-
ture, do not have proper mappings, because they are too specific on
restaurant-related domain, where name records the name of restau-
rant and signature refers to signature dishes. This means that the
80% recall is achieved by our approach because we consider all out-
putted frames as slot candidates.

Since we define the adaptation task as a ranking problem, with
a ranked list of induced slots, we can use the standard average preci-
sion (AP) as our metric, where the induced slot is counted as correct
when it has a mapping to a reference slot. For a ranked list of in-
duced slots l = s1, ..., sk, ..., where the sk is the induced slot ranked
at k-th position, the average precision is

AP(l) =
∑n

k=1 P (k)× 1[sk has a mapping to a reference slot]
number of induced slots with mapping

,

(8)
where P (k) is the precision at cut-off k in the list and 1 is an indica-
tor function equaling 1 if ranked k-th induced slot sk has a mapping
to a reference slot, 0 otherwise. Since the slots generated by our
method cover only 80% of the referenced slots, the oracle recall is
80%. Therefore, average precision is a proper way to measure the
slot ranking problem, which is also an approximation of the area
under the precision-recall curve (AUC-PR) [35].

4.2.2. Slot Induction and Filling

While semantic slot induction is essential for providing semantic cat-
egories and imposing semantic constraints, we are also interested in

3https://code.google.com/p/word2vec/
4http://www.freebase.com/
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Fig. 2. The mappings from induced slots (within blocks) to reference
slots (right sides of arrows).

understanding the performance of our induced slot-fillers. For each
matched mapping between the induced slot and the reference slot,
we can compute an F-measure by comparing the lists of extracted
slot-fillers corresponding to the induced slots, and the slot-fillers in
the reference list. Since slot-fillers may contain multiple words, we
use hard and soft matching to define whether two slot-fillers match
each other, where “hard” requires that the two slot-fillers should be
exactly the same; “soft” means that two slot-fillers match if they
share at least one overlapping word. We weight the average precision
with corresponding F-measure as AP-F to evaluate the performance
of slot induction and slot filling tasks together [12].

AP-F(l) =
∑n

k=1 P (k)× F (k)

number of induced slots with mapping
, (9)

where we replace rel(k) in (8) with F (k), which is the F-measure
of slot-fillers corresponding sk if it has mapping to reference slot, 0
otherwise. The metric scores the ranking result higher if an induced
slot with more accurate slot-fillers.

4.3. Evaluation Results

Table 1 shows the results. Rows (a)-(c) are the baselines without
leveraging distributional word representations trained on external
data, where row (a) is the baseline only using frequency for rank-
ing, and rows (b) and (c) are the results of clustering-based ranking
models in the prior work [12]. Rows (d)-(j) show performance after
leveraging distributional semantics. Rows (d) and (e) are the results
using representation- and neighbor-derived similarity from Google
News data respectively, while row (f) and row (g) are the results
from Freebase naming data. Rows (h)-(j) are performance of late
fusion, where we combine the results of two data considering cov-
erage of Google data and precision of Freebase data by the method
described in Section 3.4. We find almost all results are improved by
including distributed word information.

4.3.1. Comparison between Google News and Freebase Data

For ASR results, the performance from Google News and Freebase
is similar. However, for manual transcripts, Google News performs
better than Freebase (rows (d)-(e) v.s. rows (f)-(g)), probably be-
cause manual transcripts include more correct words, which can ben-
efit from useful word representations trained on the larger vocabu-
lary in Google News. Rows (h) and (i) fuse the two systems. For
ASR, AP scores are slightly improved by integrating coverage of
Google News and accuracy from Freebase (from about 72% to 74%),
but AP-F scores do not increase. This may be because some correct
slots are ranked higher after combining the two sources of evidence,



Table 1. The performance of induced slots and corresponding slot-fillers (%)

Approach
ASR Transcripts Manual Transcripts

AP AP-F (Hard) AP-F (Soft) AP AP-F (Hard) AP-F (Soft)

Frame Semantics
(a) Baseline: Frequency 67.31 26.96 27.29 59.41 27.29 28.68
(b) K-Means 67.38 27.38 27.99 59.48 27.67 28.83
(c) Spectral Clustering 68.06 30.52 28.40 59.77 30.85 29.22
(d)

Google News
RepSim 72.71 31.14 31.44 66.42 32.10 33.06

(e) NeiSim 73.35 31.44 31.81 68.87 37.85 38.54
Frame Semantics (f)

Freebase
RepSim 71.48 29.81 30.37 65.35 34.00 35.04

+ (g) NeiSim 73.02 30.89 30.72 64.87 31.05 31.86
Dist. Semantics (h) (d) + (f) 74.60 29.82 30.31 66.91 34.84 35.90

(i) (e) + (g) 74.34 31.01 31.28 68.95 33.73 34.28
(j) (d) + (e) + (f) + (g) 76.22 30.17 30.53 66.78 32.85 33.44

Maximum Relative Improvement (%) +13.2 +16.6 +16.6 +16.1 +38.7 +34.4

but their slot-fillers do not perform well enough to increase AP-F
scores. For manual transcripts, all results of combining two data do
not show significant improvement. For manual transcripts, Google
News may provide good enough word representations for computing
coherence in our ranking model; combining with Freebase will not
help in this case.

4.3.2. Comparing Different Similarity Measures

We evaluate two approaches of computing distributional seman-
tic similarity: representation-derived (RepSim) and neighbor-
derived similarity (NeiSim). For both ASR and manual transcripts,
neighbor-derived similarity performs better on Google News data
(row (d) v.s. row (e)). The reason may be that neighbor-derived
similarity considers more semantically-related words to measure
similarity (instead of only two tokens), while representation-derived
similarity is directly based on trained word vectors, which may
degrade with recognition errors. In terms of Freebase data, rows
(f) and (g) do not have significant difference, probably because en-
tities in Freebase are more precise and their word representations
have higher accuracy. Hence, considering additional neighbors in
the continuous vector space does not obtain improvement, and fu-
sion of results from two sources (rows (h) and (i)) does not show
the difference between two similarity measures. However, note that
neighbor-derived similarity requires less space for the computational
procedure and sometimes produces results the same or better as the
representation-derived similarity.

4.3.3. Overall Results

For slot induction task, combining all results of two corpora and
differently derived similarities achieves the best average precision of
76.22% on ASR output (row (j)), while the best average precision
on manual transcripts is 68.95% performed by combing the results
of neihbor-derived similarity on two data (row (i)). The reason about
better AP scores of ASR may be that users tend to speak keywords
clearer than generic words, higher word error rate of generic words
makes these slot candidates ranked lower due to lower frequency
and coherence. For slot filling task, the best results performance on
both ASR and manual transcripts is from neighbor-derived similarity
using word vectors trained on Google News, because considering
more semantically-related words helps recovering slot-fillers. Note
that for evaluation of slot filling, some slot-fillers cannot match to
reference slot-fillers due to recognition errors, which accounts for

the reason that the results of manual transcripts is better than ASR
performance.

We see that all combinations that leverage distributional seman-
tics outperform only using frame semantics; this demonstrates the
effectiveness of applying distributional information to slot induction.
The 76% of AP indicates that our proposed approach can generate
good coverage for domain-specific slots in a real-world SDS. While
we present results in the SLU domain, it should be possible to apply
our approach to text-based natural language understanding and slot
filling tasks, reducing labor cost.

5. CONCLUSION

We propose the first unsupervised approach unifying distributional
and frame semantics for the automatic induction and filling of slots.
Our work makes use of a state-of-the-art semantic parser, and adapts
the generic linguistically-principled FrameNet representation to a se-
mantic space characteristic of a domain-specific SDS. With the in-
corporation of distributional word representations, we show that our
automatically induced semantic slots align well with reference slots,
yielding the state-of-the-art performance. Also, we demonstrate the
feasibility of automatically induced slots from this approach for ben-
efiting SLU tasks.
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