

Carnegie Mellon

1. The Task

- > Motivations
 - A typical SDS needs a predefined task domain that supports specific functionality; it is not able to dynamically support functions provided by newly installed or not yet installed apps.
 - Structured knowledge resources are available (e.g. Freebase, Wikipedia, FrameNet) and may Ο provide semantic information that allows new functionality to be linked into the domain.
 - Neural word embeddings can provide semantic knowledge via unsupervised training. Ο
 - > In an open domain, with spoken queries, how can we dynamically and effectively provide the corresponding functions to fulfill users' requests?
- > Approaches
 - 1. Generating semantic seeds by using knowledge resources
 - 2. Enriching the semantics with neural word embeddings
 - 3. Retrieving relevant applications or dynamically suggesting users install the applications that support new domain functionality.
- ➢ Results
 - Compared to original queries, using the Freebase knowledge resource (sufficient information Ο about **named entities**) to extract slot types for enriching semantics of queries achieves 25% and 18% relative improvement of MAP and P@5 respectively.

4. Semantics Enrichment

- Main idea: Use distributed word embeddings to obtain the semantically related knowledge for each word.
- 1) Model word embeddings by using application vender descriptions.
- 2) Extract the most related words by trained word embeddings for each semantic seed. "text" \rightarrow "message", "msg"

> Words with higher similarity suggest that they often occur with common contexts in the embedding training data.

5. Retrieval Process

- Main idea: retrieve the applications that are more likely to support users' requests via vender descriptions
- Query Reformulation (Q')
 - Embedding-Enriched Query: integrates similar words to all words in Q
 - Type-Embedding-Enriched Query: additionally adds similar words to semantic seeds S(Q)
- Ranking Model

$$P(Q \mid A) =$$

probability that user speaks Q to make the request for launching the application A

probability that word x from Q' occurs in the application A

2. video

 \succ The application with higher P(Q | A) is more likely to be able to support the user desired functions.

|Q'|

DYNAMICALLY SUPPORTING UNEXPLORED DOMAINS IN CONVERSATIONAL INTERACTIONS BY ENRICHING SEMANTICS WITH NEURAL WORD EMBEDDINGS

Yun-Nung (Vivian) Chen and Alexander I. Rudnicky

Approach		
		MAP
Original Query		25.50
Embedding-Enriched		30.42
Type- Embed Enriched	Frame	30.12
	Wikipedia	30.74
	Freebase	32.02
	Hand-Craft	34.92

effectively and efficiently expand domain-specific knowledge by types of slots from Freebase.

Hand-crafted mapping shows that the correct types of slots offer better understanding and tells the room of improvement.

	•	We propose an unsupervised approach for acquiring open domain knowledge based on a user's verbal request.
	•	We use structured knowledge to
		extract slot types as semantic
P@5		seeds to obtain domain-related
34.97		information, and retrieve more the
10.72		most relevant applications without
39.59		supervision.
10.82		We enable the system to properly

yvchen@cs.cmu.edu S vivian.ynchen