
DYNAMICALLY SUPPORTING UNEXPLORED DOMAINS IN CONVERSATIONAL
INTERACTIONS BY ENRICHING SEMANTICS WITH NEURAL WORD EMBEDDINGS

Yun-Nung Chen and Alexander I. Rudnicky

School of Computer Science, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213-3891, USA

{yvchen, air}@cs.cmu.edu

ABSTRACT

Spoken language interfaces are being incorporated into various de-
vices (e.g. smart-phones, smart TVs, etc). However, current technol-
ogy typically limits conversational interactions to a few narrow pre-
defined domains/topics. For example, dialogue systems for smart-
phone operation fail to respond when users ask for functions not
supported by currently installed applications. We propose to dynam-
ically add application-based domains according to users’ requests by
using descriptions of applications as a retrieval cue to find relevant
applications. The approach uses structured knowledge resources
(e.g. Freebase, Wikipedia, FrameNet) to induce types of slots for
generating semantic seeds, and enriches the semantics of spoken
queries with neural word embeddings, where semantically related
concepts can be additionally included for acquiring knowledge that
does not exist in the predefined domains. The system can then re-
trieve relevant applications or dynamically suggest users install ap-
plications that support unexplored domains. We find that vendor de-
scriptions provide a reliable source of information for this purpose.

Index Terms— spoken language understanding (SLU), spoken
dialogue system (SDS), distributional semantics, word embeddings.

1. INTRODUCTION

Spoken dialogue systems (SDS) are appearing on smart-phones and
allow users to launch applications via spontaneous speech. Typi-
cally, an SDS needs predefined task domains to support the corre-
sponding functions, such as “setting an alert clock” and “query some
words via a browser”. However, the SDS is unable to dynamically
support functions provided by newly installed or not yet installed ap-
plications. We address the following question: with an open domain
spoken query, how can we dynamically and effectively provide the
corresponding functions to fulfill users’ requests? In this paper we
present an approach to understanding a user’s query and identifying
the applications that can support such open domain requests.

Spoken language understanding (SLU) is important for building
a good SDS, and slot filling and semantic parsing can be used to
detect concepts for better understanding users’ utterances. In recent
work, Chen et al. explored a linguistically principled theory for spo-
ken language, and demonstrated that frame-semantic parsing can be
applied to slot induction in an unsupervised fashion, potentially al-
leviating labor cost of designing an SDS [1, 2]. However, some slots
corresponding to domain-specific named entities cannot be covered
by the generic semantic parser, while these slots may carry important
semantics of the utterances. Hence, structured knowledge has been
applied to capture domain-specific information and improved many
applications in natural language processing [3, 4, 5]. Recently re-

ported work has described approaches that leverage external seman-
tic resources for unsupervised SLU for SDS [6, 7, 8, 9]. The knowl-
edge graph was used to train models for intent detection in SLU, and
results obtained from an unsupervised training process aligned well
with the performance of traditional supervised learning [6]. Tur et al.
also showed that search engine logs and entity types from the knowl-
edge graph can infer implicit semantics and help improve the slot-
filling performance in a movie domain [7, 10]. Such knowledge can
be applied to domain expansion in SDSs [8]. On the other hand, the
distributional view of semantics hypothesizes that words occurring
in the same contexts may have similar meanings [11, 12]. With the
recent advance of deep learning techniques, the continuous-valued
word embeddings have further boosted the state-of-the-art results in
many applications [13, 14, 15, 16].

This paper presents an approach that leverages the recent success
of deep learning—we use the continuous-valued word embeddings
to involve semantic representations in task-oriented SDSs. Here we
use frame-semantic parsing and entity linking methods based on
structured knowledge resources, which are to locate the slot fillers
in a given query, and then the types of identified fillers are extracted
as semantic seeds of the query. In order to understand users’ re-
quests, the semantic seeds are used to obtain semantically related
knowledge via neural word embeddings. This enables an SDS to dy-
namically support non-predefined domains based on the semantics-
enriched query. We evaluate the performance by examining whether
retrieved applications can fulfill users’ requests. Preliminary results
show that our approach can allow an SDS to provide better responses
when processing requests referring to non-predefined domains.

2. PROPOSED FRAMEWORK

Under the application-oriented SDS, the main idea is to predict
users’ intents, and then dynamically support functions correspond-
ing to their requests, which do not need to focus on predefined
domains. Therefore, it can be improved by providing more flexi-
ble communication after overcoming domain restrictions. Here we
formulate the task as a ranking problem: given an user’s spoken
utterance, how can the system retrieve the relevant applications for
supporting user’s desired function in an unsupervised way?

This paper proposes to first identify the slot-fillers and enrich
the semantics with mined domain knowledge. The whole system
framework is shown in Fig. 1. In the first stage, we perform frame-
semantic parsing and entity linking of structured knowledge ele-
ments, Wikipedia pages and Freebase nodes, and extract types of
slots as semantic seeds [17, 4], which is introduced in Section 3.
The second stage enriches the semantics using neural word embed-
dings to expand domain knowledge, where the detail is presented

“play lady gaga’s bad romance”

1. Semantic Seed Generation

The Semantic Seeds

(Slot Types)

2. Semantics Enrichment

Frame-Semantic Parsing

Entity Linking

Wikipedia

Freebase

Structured Knowledge

Word Embeddings

Enrichment Process

3. Retrieval Process

Ranking Model

Ranked Applications

Pandora
singer

songwriter
song
music

:

Application Data

Query Utterance

Fig. 1. Proposed framework.

compose an email to alex

Frame: text creation
FT LU: compose FE LU: an email

Frame: contacting
FT LU: email

Fig. 2. An example of frame-semantic parsing on a query. FT: frame
target. FE: frame element. LU: lexical unit.

in Section 4. By leveraging the semantic resources, we reformulate
the query to retrieve domain-related information, and our retrieval
model is performed to provide the ranking list of applications for
users, which is described in Section 5.

3. SEMANTIC SEED GENERATION

Considering that types of slots may imply semantic meaning of the
utterance, such information is mined to form the semantic seeds for
expanding domain knowledge. Below we introduce two generation
approaches, where one uses semantic parsing to identify semanti-
cally important concepts from outputted frames, and another uses
entity linking of structured knowledge elements to mine entity types.

3.1. Frame Type of Semantic Parsing

FrameNet is a linguistically-principled semantic resource that in-
cludes considerable annotations about predicate-argument seman-
tics, and its associated lexical units in English [18], developed based
on Frame Semantics [19]. The theory believes that the meaning
of most words can be expressed on the basis of semantic frames,
represented as three major components: frame (F), frame elements
(FE), and lexical units (LU). SEMAFOR1 is a state-of-the-art se-
mantic parser trained on FrameNet [17]. Fig 2 is an example of
an ASR-decoded utterance parsed by SEMAFOR. The outputted
frames carry important semantic concepts and can be viewed as slots
of SDS [1].

In our approach, we parse all utterances using SEMAFOR, and
extract all outputted frames. The words corresponding to outputted
frames can be viewed as slot-fillers, which may contain important
domain concepts of the utterances. To support open domain requests,
the types of slots are extracted as semantic seeds to expand domain
knowledge. For instance, we assume that the system does not cover
the email writing domain and an user makes a request “compose an

1https://code.google.com/p/semafor-semantic-parser/

email to alex” to the system. Then the utterance can be parsed into
two frames shown in Fig. 2, (text creation and contacting), and the
outputted slot-fillers (“compose” and “email”) corresponds to parsed
frame targets. The types of slots “text creation” and “contacting”
can be viewed as domain knowledge of the query, and then we use
them as semantic seeds to expand domain-related information for
better understanding. Given a query Q = x1, ..., xi, ..., x|Q|, where
xi is the i-th word in the query, we define a set of semantic seeds
Sfrm(Q) = {s | the frame labelled as s has the slot filler xi ∈ Q},
where a semantic seed s ∈ Sfrm(Q) refers to a slot type outputted
by SEMAFOR. The above example generates the semantic seeds,
s1 = “text creation” and s2 = “contacting”.

3.2. Entity Type from Linked Structured Knowledge

Considering that semantic parsing cannot recognize domain-specific
named entities, some slot fillers would be missing and then some
important domain knowledge cannot be included by Sfrm(Q). For
instance, the utterance “play lady gaga’s bad romance” asks for
the applications with functionality about music playing, but frame-
semantic parsing cannot accurately identify the slot about music
based on the utterance. Hence, we first detect all entity mention
candidates in the given utterance, which may serve as keywords
inside the application, and use entity linking to mine entity types
as semantic seeds. In the example above, the slot fillers include
the singer “lady gaga” and her song “bad romance”. The types of
the slots, “singer” and “song”, also viewed as entity types, provide
domain-related cues and may effectively retrieve the applications
about music playing. Below we propose to utilize external struc-
tured knowledge resources to mine entity types.

To identify the entities, we first parse the utterances by Stan-
ford Parser2 and capitalize all words in noun phrases. Then entity
mention candidates are formed by the consecutive capitalized word
chucks, and we use regular expressions to match the longest surface
forms for refining them, considering that entities sometimes overlap
with each other [13, 4]. The formed entity mention candidates may
include longer pattern such as “the trailer of iron man three”.

Given a query utterance Q = x1, ..., x|Q| with entity mention
candidates M(Q) = {m1, ...,mN}, where mi is a word segment
including consecutive words in Q, we propose to generate a sets of
linked elements L(Q) = {l1, ..., lN} and an associated semantic
seed set S(Q) = {s1, ..., sN} by two knowledge resources. The
linked elements are Wikipedia pages and Freebase node lists pre-
sented in Section 3.2.1 and Section 3.2.2 respectively.

2http://nlp.stanford.edu/software/

3.2.1. Wikipedia Page Linking

With the entity mention set for the query Q, M(Q), we output
Lwk(Q) = {l1, ..., lN} as a set of linked Wikipedia pages (L(Q)
described above) with corresponding linking weights. Here the
procedure is implemented by Illinois Wikifier3 using an Integer Lin-
ear Programming (ILP) formulation to generate the mapping from
mentions to Wikipedia pages [3, 4]. Then the associated semantic
seed set, Swk(Q) = {s1, ..., sN}, is formed, where a semantic seed
si ∈ Swk(Q) is extracted from its linked Wikipedia page li and
refers to the type of the mention mi.

We observe that the first sentences in the Wikipedia pages usu-
ally define the entities; for example, the first sentence of linked
Wikipedia page about the entity “lady gaga” is “Stefani Joanne An-
gelina Germanotta, better known by her stage name Lady Gaga, is
an American singer and songwriter.” This includes the entity types,
“American singer” and “songwriter”. Hence, the first sentence in
the Wikipedia page li is used to extract the semantic seed si for the
mention mi, where si includes all words parsed into adjectives or
nouns in the noun phrase just following the part-of-speech pattern
(VBZ) (DT) such as “is a/an/the”. The semantic seed extracted from
the sentence defining the entity “lady gaga” would be “American
singer and songwriter”. The generated semantic seed set Swk(Q) is
refined by filtering out the function words, and si is set to be empty
if the linking weight is lower than a threshold in order to eliminate
unreliable semantics.

3.2.2. Freebase List Linking

Similarly, we propose to extract the semantic seeds that indicate
entity types from another well-structured knowledge resource, Free-
base4. Each mention mi ∈ M(Q) can link to a ranked list of
Freebase nodes by Freebase API5, and we define Lfb(Q) = {li |
liis a ranked list of Freebase nodes corresponding to mi}. We ex-
tract the top K notable types for each li as the semantic seed si to
form Sfb(Q).

4. SEMANTICS ENRICHMENT

Considering to include open domain knowledge based on the user’s
utterance, with the semantic seeds generated from the first stage,
we utilize distributed word representations to capture syntactic and
semantic relationship for expanding the domain knowledge [20].

The word representations are learned from a recurrent neural
network language model [21], which uses the history to include the
long distance related information. The word relationships are present
as vector offsets, where all pairs of words sharing a particular rela-
tion are related by the same constant offset in the embedded space.
To involve distributional semantics, we transform each token x into
its embedding vector x by pretrained word embeddings. Then the
similarity between a pair of tokens xa, xb, Sim(xa, xb), can be com-
puted as their cosine similarity in the continuous vector space [20].
With embedding vector x corresponding to the token x, we build a
vector rx = [rx(1), ..., rx(t), ..., rx(T)] to indicate semantically re-
lated words, where T is the vocabulary size of embedding training
data. There are two proposed methods of computing rx, where we
use notations r1x and r2x referring to rx derived from two methods
below.

3http://cogcomp.cs.illinois.edu/page/software_view/
Wikifier

4https://www.freebase.com
5https://developers.google.com/freebase/

• K Nearest Neighbors (KNN)

r1x(t) =

 1 , if yt is the word whose embedding vector
has top K greatest similarity to x.

0 , otherwise.
(1)

• Threshold Filtering

r2x(t) =

{
1 , if Sim(yt,x) ≥ δ.
0 , otherwise. (2)

The t-th element of vector rx is decided based on the similarity be-
tween the embeddings of the token x and the token yt (t-th token
from the vocabulary). rx can be viewed as a vector indicating the
nearest neighbors of the token x in the continuous vector space by
restricting the number of neighbors (K) or the smallest similarity
(δ). Note that rx(t) = 1 when x = yt, which implies that the near-
est neighbors of the token x include itself.

This procedure is to obtain the semantically related knowledge
for improving the query. For example, “compose an email to alex”
focuses on email writing domain, and the generated semantic seeds
may include the tokens “text” and “contacting”. Then word embed-
dings can help provide additional words with similar concepts. For
example, the nearest vectors of “text” include “message”, “msg”, etc.
in the continuous space. Section 5 describes how to leverage the in-
formation by reformulating the query to involve conceptually related
knowledge during retrieval process, so that the system can provide
proper applications for supporting open domain requests.

5. RETRIEVAL PROCESS

5.1. Query Reformulation

Given a spoken query Q, we build a corresponding query vector
q = [q(1), ..., q(t), ..., q(T)] and q(t) is equal to the frequency of
the token yt (t-th token of vocabulary) in Q. Then we propose two
methods to construct the updated query vector q′:

• Embedding-Enriched Query

q′ =
∑
x∈Q

rx, (3)

which can be viewed as integration of the tokens that are se-
mantically similar to any of words in the original query.

• Type-Embedding-Enriched Query

q′ =
∑

x∈Q∪S(Q)

rx, (4)

which uses the generated semantic seeds S(Q) from Sec-
tion 3 to additionally include domain-related knowledge.

With updated query vector q′, we can have corresponding word
query Q′ and estimate its query likelihood in Section 5.2.

5.2. Ranking Model

As a task of ranking applications based on the user’s spoken query,
we use a language modeling approach for query likelihood estima-
tion [22], and the applications are ranked by

P (Q | A) = 1

|Q′|
∑
x∈Q′

logP (x | A), (5)

whereQ′ is the queryQ after reformulation,A is a considered appli-
cation, x represents the token in the query, and P (Q | A) represents
the probability that user speaks Q to make the request for launch-
ing the application A. For example, in order to use the application
“Gmail”, an user is more likely to say “compose an email to alex”,
while the same utterance should correspond to a lower probability
when launching the application “Maps”. To estimate the likelihood
by the language modeling approach, we define A as the description
content of an application with assumption that it carries semanti-
cally related information. For example, the description of “Gmail”
includes the text segment “read and respond to your conversations”,
and “Maps” includes texts “navigating” and “spots” in its descrip-
tion.

With the reformulated query, we rank applications in an unsu-
pervised way. The target of ranking model is to help the SDS obtain
the knowledge that may not be in defined domains. Assuming that
the original system does not cover email writing domain, we hope to
retrieve email-related applications for dynamically and effectively
supporting the unexplored domain. From a practical perspective,
systems can properly interact with users to fulfill their open domain
requests, eliminating domain restriction.

6. EXPERIMENTAL SETUP

6.1. Domain Definition

Considering to expand useful domains of SDS, we extract the most
popular applications from mobile app stores to define important do-
mains users tend to access frequently, and the defined domains are
used to design the experiments for the task. Fig. 3 shows total 13
domains we define for the experiments. The speech corpus used in
this experiment is collected from 5 non-native subjects (1 female
and 4 males). They are only provided with pictures referring to
domain-specific tasks in a random order, and for each picture/task
a subject is asked to use 3 different ways to make requests for ful-
filling the task implied by the displayed picture. Thus 39 utterances
(total 13 tasks and 3 ways for each) are collected from each sub-
ject. Fig. 3 shows provided pictures and implied tasks, and some
recording examples are shown in Table 1. The corpus contains 195
utterances. An automatic speech recognition (ASR) system was used
to transcribe speech into text, and the word error rate is reported as
19.8%. Here we use Google Speech API to perform better recog-
nition results because it covers more named entities, which may be
out-of-vocabulary words for most recognizers. The average number
of words in an utterance is 6.8 for ASR outputs and 7.2 for manual
transcripts, which implies the challenge of retrieving relevant appli-
cations with limited information in a query.

Table 1. The recording examples collected from some subjects.

Task ID Transcript of the utterance

3
please dial a phone call to alex
can i have a telcon with alex

10
how can i go from my home to cmu
i’d like navigation instruction from my home to cmu

6.2. Application Data Collection

The data for retrieval archive was collected from Google Play6 in
November 2012. Each Android app in Google Play has its own de-

6http://play.google.com

Lady Gaga
Bad Romance

Trailer of Iron Man 3

Alex

Alex

Alex

Alex
“I can
meet”

…

“I graduated”

…

…

?
CMU

?

CMU

English: university

Chinese: ?

1. music listening

2. video watching 7. post to social websites

4. video chat

5. send an email

8. share the photo

6. text

9. share the video

3. make a phone call

10. navigation

11. address request

12. translation

13. read the book

Fig. 3. Total 13 tasks in the corpus (only pictures are shown to sub-
jects for making requests).

0.20

0.24

0.28

0.32

0.36

0 50 100 150 200

MAP

#word / query

Baseline
Type-Embedding-Enriched: Freebase (K)
Type-Embedding-Enriched: Freebase (T)

Fig. 4. MAP of results using entity types extracted from Freebase on
ASR outputs (K: KNN, T: threshold filtering).

scription page, and the extracted metadata we use includes its name,
number of downloads7, and content description. The total number
of considered applications is 140,8548. For evaluation, subjects are
asked to manually annotate applications from Google Play that can
support the corresponding tasks. Then we use the subject-labelled
applications as our ground truth for evaluating our returned applica-
tions, where we use standard metrics of information retrieval, mean
average precision (MAP) and precision at 5 (P@5).

6.3. Word Embeddings Model

To include the distributional semantics view for SLU,we use descrip-
tion content of all applications to train word embeddings using bag-
of-words architecture [23], which predicts the current word based
on the context9. The resulting vectors have dimensionality 300, and
vocabulary size is 8× 105.

7Google does not provide the absolute number of downloads. Instead, it
discretizes this number into several ranges.

8Google defines two major categories for the programs, “game” and “ap-
plication”. This paper only uses apps with category “application”.

9https://code.google.com/p/word2vec/

0.22

0.26

0.30

0.34

0.38

0 25 50 75 100 125 150 175 200

MAP

#word / query

Baseline Embedding-Enriched (T) Type-Embedding-Enriched: Frame (T)

Type-Embedding-Enriched: Wikipedia (T) Type-Embedding-Enriched: Freebase (T) Type-Embedding-Enriched: Hand-crafted (T)

0.25

0.31

0.37

0.43

0.49

0 25 50 75 100 125 150 175 200

P@5

#word / query

Fig. 5. MAP and P@5 of all results with Google Play word embeddings on ASR outputs (T: threshold filtering).

6.4. Retrieval Setup

Lemur toolkit10 is used to perform our ranking model. For retrieval
setting, word stemming11 and stopword removal12 are applied, and
we assign equal weight to each term in the query to eliminate the
influence of weighting [22]. To consider popularity of applications,
for each returned list, we rerank the “popular” applications to the top
of list, where “popular” means the applications with more than ten
million downloads, because we assume that users are more willing
to use/install popular applications, and also our ground truth is based
on subjects’ annotation, where most reference applications belong to
the set of popular applications we define.

7. RESULTS AND DISCUSSIONS

Fig. 5 shows the results of our approach. Below we first compare the
results between using KNN and threshold filtering, analyze the ef-
fectiveness of proposed approaches derived from different semantic
seeds, and discuss overall results. Here the baseline uses the original
query to retrieve relevant applications, and we show it in the figure
as a reference.

7.1. Comparison between KNN and Threshold Filtering

With KNN or threshold filtering, we can increase K (number of
neighbors) or decrease δ (threshold) to involve more domain-related
knowledge. Since all results from two methods have similar trends,
we only show the MAP of Type-Embedding-Enriched using Free-
base with increasing average word counts per query from ASR out-
puts in Fig. 4 to analyze the difference. It is obvious that thresh-
old filtering performs better than KNN, probably because threshold
filtering method selects neighbors in the continuous space more pre-
cisely, while KNN may contain some words that are not semantically
related, resulting in more noisy words in the reformulated query and
decreasing the performance. Also, the threshold filtering method
boosts the performance more efficiently compared to KNN, since
the extracted information is more reliable.

7.2. Effectiveness of Semantics Enrichment

Fig. 5 shows the performance of proposed approaches using thresh-
old filtering (threshold filtering performs better than KNN) with in-
creasing average word counts per query from ASR outputs in terms

10http://www.lemurproject.org/
11http://tartarus.org/martin/PorterStemmer/
12http://www.lextek.com/manuals/onix/stopwords1.html

of MAP and P@5. To validate whether the types of slots can help in-
volve domain-specific knowledge, we use hand-crafted entity types
in the experiments to show the upper bound of the performance. For
example, we manually create the entity-type mappings from “the
trailer of iron man three” to “video” in task 2, and from “alex” to
“contact” in task 3-6.

In the beginning of semantics enrichment, the results of all ap-
proaches other than using hand-crafted mapping are worse than the
baseline, but they are boosted very fast (large slope) when expanding
more domain-related knowledge, and further beat the baseline. This
means that the generated semantic seeds correctly expand domain-
related words, and then the likelihood of relevant applications can be
measured larger, resulting in better performance efficiently.

The embedding-enriched method (blue line marked with crosses)
outperforms the baseline (dashed line without marks as a reference)
even though it does not use any generated semantic seeds, showing
that word embeddings can effectively enrich semantics only based
on the original query. Among three structured knowledge resources
in type-embedding-enriched methods, Freebase (green line marked
with squares) performs best, because entities in Freebase have more
precise types and then the semantic seeds can accurately obtain
domain-related knowledge for improving performance. Also, the
results of Freebase are better than the embedding-enriched method
when query length is longer than about 50, especially for P@5,
which means that we can effectively and efficiently expand domain-
specific knowledge by using types of slots from Freebase, offering
better responses in the uncovered domains. However, the method
using Wikipedia (orange line marked with circles) relies on the
fixed structure, which may not mine the correct and precise types
of slots for obtaining domain knowledge. Also, the results using
frame types as semantic seeds perform worst (purple line marked
with triangles), which implies that for the application domain, users
usually use many entities in their query that cannot be covered by
the generic semantic parser, so that only including generic concepts
is not enough to well understand users’ requests. In the figure,
hand-crafted mapping (red line marked with diamonds) significantly
outperforms the baseline in the beginning and becomes better when
applying semantic enrichment, showing that the correct types of
slots can offer better understanding for retrieving relevant applica-
tions and also telling the room of improvement.

7.3. Overall Results

Table 2 shows the performance of all results with threshold filtering
(δ = 0.35) for ASR and manual transcripts. We find that applying
neural word embeddings significantly improves performance for

Table 2. The performance with threshold filtering δ = 0.35 (%).

Approach
ASR Manual

MAP P@5 MAP P@5
Baseline: Original Query 25.50 34.97 26.76 35.90

Pr
op

os
ed

Embedding-Enriched 30.42 40.72 31.01 42.15
Frame 30.11 39.59 31.05 41.03

Type- Wikipedia 30.74 40.82 31.59 42.77
Embed. Freebase 32.02 41.23 32.40 42.36

Hand-Crafted 34.91 45.03 35.81 47.08
Max Relative Improvement (%) +25.5 +17.9 +21.1 +19.1

both ASR and manual transcripts. The type-embedding-enriched
method with Freebase performs best for most results, achieving
about 25% and 18% relative improvement for MAP and P@5 on
ASR outputs respectively. The performance of type-embedding-
enriched methods with hand-crafted mapping shows that there’s a
large room of improvement. In sum, this paper shows that word
embeddings trained on vendor descriptions can effectively include
semantically related information for retrieving relevant applications
when considering types of slots as semantic seeds. Finally, the ex-
periments demonstrate the possibility of supporting an open domain
SDS in an unsupervised fashion.

8. CONCLUSION

This paper proposes an unsupervised approach for acquiring open
domain knowledge based on the user utterances. Our work uses
structured knowledge resources to extract types of slots as semantic
seeds, and then leverages distributed word representations to obtain
domain-related information. By using description of applications as
a retrieval cue and reformulating the query with generated seman-
tic seeds, which are related to uncovered domains, the system can
retrieve more relevant applications in an unsupervised way. Hence,
the proposed approach enables the system to properly react to users’
queries, such as providing relevant applications or suggesting users
install applications that support uncovered domains, to fulfill their
open domain requests, providing more natural interactions and bet-
ter user experiences in SDSs.

9. REFERENCES

[1] Yun-Nung Chen, William Yang Wang, and Alexander I Rud-
nicky, “Unsupervised induction and filling of semantic slots
for spoken dialogue systems using frame-semantic parsing,” in
Proceedings of ASRU, 2013.

[2] Yun-Nung Chen, William Yang Wang, and Alexander I Rud-
nicky, “Leveraging frame semantics and distributional seman-
tics for unsupervised semantic slot induction in spoken dia-
logue systems,” in Proceedings of SLT, 2014.

[3] L. Ratinov, D. Roth, D. Downey, and M. Anderson, “Local and
global algorithms for disambiguation to wikipedia,” in Pro-
ceedings of ACL, 2011.

[4] X. Cheng and D. Roth, “Relational inference for wikification,”
in EMNLP, 2013.

[5] Ming-Wei Chang, Bo-June Hsu, Hao Ma, Ricky Loynd, and
Kuansan Wang, “E2E: An end-to-end entity linking system for
short and noisy text,” Making Sense of Microposts, 2014.

[6] Larry Heck and Dilek Hakkani-Tür, “Exploiting the seman-
tic web for unsupervised spoken language understanding,” in
Proceedings of SLT, 2012.

[7] Gokhan Tur, Minwoo Jeong, Ye-Yi Wang, Dilek Hakkani-Tür,
and Larry P Heck, “Exploiting the semantic web for unsuper-
vised natural language semantic parsing,” in Proceedings of
INTERSPEECH, 2012.

[8] Ali El-Kahky, Derek Liu, Ruhi Sarikaya, Gokhan Tur, Dilek
Hakkani-Tür, and Larry Heck, “Extending domain coverage
of language understanding systems via intent transfer between
domains using knowledge graphs and search query click logs,”
in Proceedings of ICASSP, 2014.

[9] Yun-Nung Chen, Dilek Hakkani-Tür, and Gokhan Tur, “De-
riving local relational surface forms from dependency-based
entity embeddings for unsupervised spoken language under-
standing,” in Proceedings of SLT, 2014.

[10] Dilek Hakkani-Tür, Asli Celikyilmaz, Larry Heck, Gokhan
Tur, and Geoff Zweig, “Probabilistic enrichment of knowl-
edge graph entities for relation detection in conversational un-
derstanding,” in Preceedings of INTERSPEECH, 2014.

[11] Zellig S Harris, “Distributional structure,” Word, 1954.

[12] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman, “Indexing by
latent semantic analysis,” JASIS, vol. 41, no. 6, pp. 391–407,
1990.

[13] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher Potts,
“Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of EMNLP, 2013.

[14] Tomáš Mikolov, Statistical language models based on neural
networks, Ph.D. thesis, Brno University of Technology, 2012.

[15] Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean,
“Efficient estimation of word representations in vector space,”
in Proceedings of ICLR, 2013.

[16] Wen-tau Yih, Xiaodong He, and Christopher Meek, “Semantic
parsing for single-relation question answering,” in Proceedings
of ACL, 2014.

[17] Dipanjan Das, Desai Chen, André F. T. Martins, Nathan
Schneider, and Noah A. Smith, “Frame-semantic parsing,”
Computational Linguistics, 2013.

[18] Collin F Baker, Charles J Fillmore, and John B Lowe, “The
Berkeley FrameNet project,” in Proceedings of COLING,
1998.

[19] Charles J Fillmore, “Frame semantics and the nature of lan-
guage,” Annals of the NYAS, vol. 280, no. 1, pp. 20–32, 1976.

[20] Tomáš Mikolov, Wen-Tau Yih, and Geoffrey Zwieg, “Linguis-
tic regularities in continuous space word representations,” in
Proceedings of NAACL-HLT, 2013.

[21] Tomáš Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model,” in Proceedings of INTERSPEECH, 2010.

[22] Jay M Ponte and W Bruce Croft, “A language modeling ap-
proach to information retrieval,” in Proceedings of the 21st
annual international ACM SIGIR conference on Research and
development in information retrieval, 1998.

[23] Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean, “Distributed representations of words and
phrases and their compositionality,” in Proceedings of NIPS,
2013.

