

≻Idea:

- Important utterances are topically similar to Ο each other
- **Utterances similar to important speakers** Ο should be more important

> Approach for extractive summary

- Construct a two-layer graph to represent
- 1) the utterance nodes in utterance-layer
- 2) the speaker nodes in speaker-layer
- Mutually propagate importance scores via within-layer edges and between-layer edges
- Basic Idea: high importance means
 - Utterances with higher original score \bigcirc
 - Utterances topically/lexically similar to the 2 indicative utterances
 - **Utterances similar important speakers'** 3 utterances
- Similarity Matrix
- Luu: utterance-to-utterance relation (topical/lexical similarity)
- L_{SS}: speaker-to-speaker relation (TF-IDF cosine similarity)
- L_{US}: utterance-to-speaker relation (TF-IDF cosine similarity)
- L_{SU}: speaker-to-utterance relation (TF-IDF cosine similarity)

Two-Layer Mutually Reinforced Random Walk for Improved Multi-Party Meeting Summarization Yun-Nung (Vivian) Chen and Florian Metze

ROUGE-L (Manual)

(TopicSim)

(LexSim)

(TopicSim)

Two-Layer

(LexSim) (TopicSim)

MRRW-BP MRRW-WBP MRRW-WBP

- Two-layer approaches involving speaker information can get further improvement
- \rightarrow better for ASR transcripts
- Lexical similarity is more accurate when absence of errors \rightarrow better for manual transcripts
- Our proposed approaches achieve more than 7% relative improvement compared to the baseline

- Topical similarity is more robust to recognition errors