1. Summary

- **Idea:**
 - Important utterances are topically similar to each other.
 - Utterances similar to important speakers should be more important.
- **Approach for extractive summary**
 - Construct a two-layer graph to represent
 1) the utterance nodes in utterance-layer
 2) the speaker nodes in speaker-layer
 - Mutually propagate importance scores via within-layer edges and between-layer edges.

2. Graph Construction

- **Speaker-Layer**
 - Node: speakers in a document combine all utterances from the same speaker as the speaker node.
 - Edge weight (red, green): TF-IDF cosine similarity.
- **Utterance-Layer**
 - Node: utterances in a document.
 - Edge weight (blue): topical/lexical similarity.

3. Two-Layer Mutually Reinforced Random Walk

- **Basic Idea:** high importance means
 - Utterances with higher original score
 - Utterances topically/lexically similar to the indicative utterances
 - Utterances similar important speakers’ utterances
- **Similarity Matrix**
 - \(L_{uu} \): utterance-to-utterance relation (topical/lexical similarity)
 - \(L_{ss} \): speaker-to-speaker relation (TF-IDF cosine similarity)
 - \(L_{us} \): utterance-to-speaker relation (TF-IDF cosine similarity)
 - \(L_{su} \): speaker-to-utterance relation (TF-IDF cosine similarity)

- **Two-Layer MRRW-BP (Between-Layer Propagation)**
 - Utterance node \(U \) can get higher score when
 1) Higher original importance
 2) More speaker nodes similar to utterance \(U \)
 - Scores propagated from speaker-layer then propagated within utterance-layer.

- **Two-Layer MRRW-WBP (Within- and Between-Layer Propagation)**
 - Utterance node \(U \) can get higher score when
 1) Higher original importance
 2) More speaker nodes similar to utterance \(U \)
 3) More important utterances similar to utterance \(U \)
 - Scores propagated from utterance-layer then propagated within speaker-layer.

4. Experiments

- **Dataset:** 10 meetings from CMU Speech Group, #Speaker: 6 (total), 2-4 (each), WER = 44%
- **Parameter setting:** \(\alpha = 0.9 \), summary ratio = 30%

5. Conclusions

- **Graph-based approaches** can improve speech summarization performance.
- Two-layer approaches involving speaker information can get further improvement.
- Topical similarity is more robust to recognition errors.
- Better for ASR transcripts.
- Lexical similarity is more accurate when absence of errors.
- Better for manual transcripts.
- Our proposed approaches achieve more than 7% relative improvement compared to the baseline.