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ABSTRACT

This paper proposes an improved approach of summarization
for spoken multi-party interaction, in which a two-layer graph
with utterance-to-utterance, speaker-to-speaker, and speaker-
to-utterance relations is constructed. Each utterance and each
speaker are represented as a node in the utterance-layer and
speaker-layer of the graph respectively, and the edge between
two nodes is weighted by the similarity between the two utter-
ances, the two speakers, or the utterance and the speaker. The
relation between utterances is evaluated by lexical similar-
ity via word overlap or topical similarity via probabilistic la-
tent semantic analysis (PLSA). By within- and between-layer
propagation in the graph, the scores from different layers can
be mutually reinforced so that utterances can automatically
share the scores with the utterances from the same speaker
and similar utterances. For both ASR output and manual
transcripts, experiments confirmed the efficacy of involving
speaker information in the two-layer graph for summariza-
tion.

Index Terms— Summarization, multi-party meeting,
mutual reinforcement, random walk

1. INTRODUCTION

Speech summarization is important [1] for spoken or even
multimedia documents, which are more difficult to browse
than text, and has therefore been investigated in the past.
While most work focused primarily on news content, recent
effort has been increasingly directed towards new domains
such as lectures [2, 3] and multi-party interaction [4, 5, 6]. In
this work, we perform extractive summarization on the out-
put of automatic speech recognition (ASR) and corresponding
manual transcripts [7] of multi-party “meeting” recordings.

Many approaches to text summarization focus on graph-
based methods to compute lexical centrality of each utterance,
in order to extract summaries [8, 9]. Speech summarization
carries intrinsic difficulties due to the presence of recognition
errors, spontaneous speech effects, and lack of segmentation.
A general approach has been found to be very successful [10],
in which each utterance in the document d, U = t1t2...ti...tn,

represented as a sequence of terms ti, is given an importance
score

I(U, d) =
1

n

n∑
i=1

[λ1s(ti, d) + λ2l(ti) (1)

+ λ3c(ti) + λ4g(ti)] + λ5b(U),

where s(ti, d), l(ti), c(ti), and g(ti) respectively are some
statistical measure (such as TF-IDF), some linguistic mea-
sure (e.g., different part-of-speech tags are given different
weights), a confidence score, and an N-gram score for the
term ti; b(U) is calculated from the grammatical structure
of the utterance U , and λ1, λ2, λ3, λ4 and λ5 are weighting
parameters. For each document, the utterances to be used in
the summary are then selected based on this score.

In recent work, we proposed a graphical structure to
rescore I(U, d) in (1) above, which can model the topical
coherence between utterances using a random walk process
within documents [3, 5]. Unlike lecture and news summariza-
tion, meeting recordings contain spoken multi-party interac-
tions, so that the speaker “importance” scores can be added to
the estimation of the importance of individual utterance [11].
Thus, this paper proposes to use two-layer mutually rein-
forced random walk to compute the speaker importance and
to increase the scores of utterances similar to the utterances
from important speakers. It models intra- and inter-speaker
topics together in the two-layer graph by automatically prop-
agating scores to the utterances from the same speaker or
similar utterances to improve meeting summarization [9, 12].

Section 2 describes the construction of two-layer graph
and the algorithms about computing the importance of ut-
terances, which includes between-layer propagation and inte-
gration of within- and between-layer propagation. Section 3
shows the results of applying proposed approaches, and dis-
cusses the difference between two algorithms and the differ-
ence between topical and lexical similarity for both ASR and
manual transcripts. Section 4 concludes.



2. PROPOSED APPROACH

In this paper, we use ASR and manual transcripts and make
both types of text similar. We first preprocess the utterances
in all meetings by applying word stemming1 and noise utter-
ance filtering, where the utterances with word counts smaller
than 3 are removed. For extractive summarization, we set a
cut-off ratio to retain only the most important utterances to
form the summary of each document based on the “impor-
tance” of each utterance. Thus, we formulate the utterance
selection problem as computing the importance of each utter-
ance. Then we construct a two-layer graph to compute the im-
portance for all utterances and speakers in speaker-layer and
utterance-layer respectively. In the two-layer directed graph,
each utterance is a node in utterance-layer and the edges be-
tween these are weighted by topical or lexical similarity de-
scribed in Section 2.3. Each speaker in the meeting is a node
in speaker-layer and the edges between them are weighted
by speaker-to-speaker relation. The edges between different
layers are weighted by the relation between speakers and ut-
terances.

The basic idea is that an utterance similar to more im-
portant utterances should be more important [3, 13], so the
importance of each utterance considers the scores propagated
from other utterances according to the similarity between
them. In this approach, the propagated scores are not only
based on utterance-to-utterance relation. Instead, the scores
integrate three types of relations (utterance-to-utterance,
speaker-to-speaker, and utterance-to-speaker) to automati-
cally consider speaker information in the graph. Figure 1
shows a simplified example for such a two-layer graph, in
which there are speaker-layer and utterance-layer containing
speaker nodes and utterance nodes respectively.

2.1. Parameters from Topic Model

Probabilistic latent semantic analysis (PLSA) [14] has been
widely used to analyze the semantics of documents based on
a set of latent topics. Given a set of documents {dj , j =
1, 2, ..., J} and all terms {ti, i = 1, 2, ...,M} they in-
clude, PLSA uses a set of latent topic variables, {Tk, k =
1, 2, ...,K}, to characterize the “term-document” co-occurrence
relationships. The PLSA model can be optimized using the
EM algorithm, by maximizing a likelihood function [14]. We
utilize two parameters from PLSA, latent topic significance
(LTS) and latent topic entropy (LTE) [15]. The parameters
can also be computed by other topic models, such as latent
dirichilet allocation (LDA) [16] in a similar way.

Latent topic significance (LTS) for a given term ti with
respect to a topic Tk can be defined as

LTSti(Tk) =

∑
dj∈D n(ti, dj)P (Tk | dj)∑

dj∈D n(ti, dj)[1− P (Tk | dj)]
, (2)

1http://www.tartarus.org/˜martin/PorterStemmer
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Fig. 1. A simplified example of the two-layer graph con-
sidered, where a speaker Si is represented as a node in
speaker-layer and an utterance Uj is represented as a node
in utterance-layer of the two-layer graph. There are three
different types of edges corresponding to different relations
(utterance-to-utterance, speaker-to-speaker, and utterance-
to-speaker). Note that each utterance node has edges con-
nected to all speaker nodes not only the sourcing speaker
node.

where n(ti, dj) is the occurrence count of term ti in a docu-
ment dj . Thus, a higher LTSti(Tk) indicates that the term ti
is more significant for the latent topic Tk.

Latent topic entropy (LTE) for a given term ti can be cal-
culated from the topic distribution P (Tk | ti),

LTE(ti) = −
K∑

k=1

P (Tk | ti) logP (Tk | ti), (3)

where the topic distribution P (Tk | ti) can be estimated from
PLSA. LTE(ti) is a measure of how the term ti is focused on
a few topics, so a lower latent topic entropy implies the term
carries more topical information.

2.2. Statistical Measures of a Term

The statistical measure of a term ti, s(ti, d) in (1) measures
the importance of ti such as TF-IDF. In this work, it can be
defined based on LTE(ti) in (3) as

s(ti, d) =
γ · n(ti, d)
LTE(ti)

, (4)

where γ is a scaling factor such that s(ti, d) lies within the
interval [0, 1], so the score s(ti, d) is inversely proportion to
the latent topic entropy LTE(ti). This measure outperformed
the very successful “significance score” [15, 10] in speech
summarization, so we use the LTE-based statistical measure,
s(ti, d), as our baseline.



2.3. Similarity between Utterances

We compute two different types of similarity between utter-
ances based on topical and lexical distribution.

2.3.1. Topical Similarity via PLSA

Within a document d, we can first compute the probability
that the topic Tk is addressed by an utterance Ui,

P (Tk | Ui) =

∑
t∈Ui

n(t, Ui)P (Tk | t)∑
t∈Ui

n(t, Ui)
. (5)

Then an asymmetric topical similarity TopicSim(Ui, Uj) for
utterances Ui to Uj (with direction Ui → Uj) can be defined
by accumulating LTSt(Tk) in (2) weighted by P (Tk | Ui) for
all terms t in Uj over all latent topics,

TopicSim(Ui, Uj) =
∑
t∈Uj

K∑
k=1

LTSt(Tk)P (Tk | Ui), (6)

where the idea is similar to generative probability in informa-
tion retrieval. We call it generative significance of Ui given
Uj .

2.3.2. Lexical Similarity via Word Overlap

Within a document d, the lexical similarity is the measure of
word overlap between the utterance Ui and Uj . We compute
LexSim(Ui, Uj) as the cosine similarity between two TF-IDF
vectors from Ui and Uj like well-known LexRank [8]. Note
that LexSim(Ui, Uj) = LexSim(Uj , Ui).

2.4. Two-Layer Mutually Reinforced Random Walk

For each document d, we construct a linked two-layer graph
G containing utterance set and speaker set to compute the im-
portance of each utterance. G = 〈VU , VS , EUU , ESS , EUS〉,
where VU = {Ui ∈ d}, VS = {Si ∈ d}, EUU = {eij |
Ui, Uj ∈ VU}, ESS = {eij | Si, Sj ∈ VS}, and EUS =
{eij | Ui ∈ VU , Sj ∈ VS}. EUU , ESS , and EUS corre-
spond the relation between utterances, the relation between
speakers, and the relation between utterances and speakers
respectively [9].

We compute LUU = [wUi,Uj
]|VU |×|VU |, where wUi,Uj

is either from TopicSim(Ui, Uj) or LexSim(Ui, Uj). Word
overlap between utterances may be sparse due to recog-
nition errors, so it’s possible that topical similarity via
PLSA can capture more information than lexical similarity.
LSS = [wSi,Sj

]|VS |×|VS |, where wSi,Sj
is the cosine similar-

ity between the TF-IDF vectors containing all utterances from
speaker Si and Sj , which means a speaker node in the graph
is represented by all utterances from the speaker. Similarly,
LUS = [wUi,Sj ]|VU |×|VS | and LSU = [wUj ,Si ]|VS |×|VU |,
where wUi,Sj

is the TF-IDF cosine similarity between ut-
terance vector and speaker vector. Note that it is possible

that wUi,Sj
> 0 when Ui /∈ Sj because they both may have

the same terms. Row-normalization are performed for LUU ,
LSS , LUS , LSU [17]. They can be viewed as utterance-to-
utterance, speaker-to-speaker, and utterance-to-speaker affin-
ity metrics. Note that LUS is different from LT

SU because of
row-normalization.

Traditional random walk integrates the original scores
and the scores propagated from other utterance nodes [3, 11,
18]. Here the proposed approach additionally considers the
speaker information and integrates importance propagated
from speaker nodes to model intra- and inter-speaker rela-
tion automatically. We propose two algorithms, one using
scores only from between-layer propagation and another us-
ing scores both from within- and between-layer propagation,
which are described in Section 2.4.1 and 2.4.2.

2.4.1. Between-Layer Propagation

Here we use two-layer mutually reinforced random walk to
propagate the scores based on external mutual reinforcement
between different layers through the edges EUS .{

F
(t+1)
U = (1− α)F (0)

U + α · LUSF
(t)
S

F
(t+1)
S = (1− α)F (0)

S + α · LSUF
(t)
U

(7)

F
(t)
U and F (t)

S denote the importance scores of the utterance
set VU and speaker set VS in t-th iteration respectively. In the
algorithm, they are the interpolations of two scores, the initial
importance (F (0)

U and F (0)
S ) and the scores propagated from

another layer (speaker-layer and utterance-layer).
For utterance set, each utterance combines initial impor-

tance and the scores propagated from speaker-layer weighted
by utterance-to-speaker similarity. Similarly, nodes of speaker-
layer also include the scores propagated from utterance-layer.
Then F (t+1)

U and F (t+1)
S can be mutually updated by the latter

parts in (7) iteratively.
The algorithm will converge and then (8) can be satis-

fied [9]. {
F ∗U = (1− α)F (0)

U + α · LUSF
∗
S

F ∗S = (1− α)F (0)
S + α · LSUF

∗
U

(8)

We can solve F ∗U as below.

F ∗U = (1− α)F (0)
U (9)

+ α · LUS

(
(1− α)F (0)

S + α · LSUF
∗
U

)
= (1− α)F (0)

U + α(1− α)LUSF
(0)
S

+ α2LUSLSUF
∗
U

=
(
(1− α)F (0)

U eT + α(1− α)LUSF
(0)
S eT

+ α2LUSLSU

)
F ∗U

= M1F
∗
U ,



where the e = [1, 1, ..., 1]T . It has been shown that the
closed-form solution F ∗U of (9) is the dominant eigenvector
of M1 [19], or the eigenvector corresponding to the largest
absolute eigenvalue of M1. The solution of F ∗U denotes the
updated importance scores for all utterances. Similar to the
PageRank algorithm [20], the solution can also be obtained
by iteratively updating F (t)

U and F (t)
S .

2.4.2. Integrating Within- and Between-Layer Propagation

Here we use a two-layer mutually reinforced random walk to
propagate the scores based on internal importance propaga-
tion within the same layer and external mutual reinforcement
between different layers.{

F
(t+1)
U = (1− α)F (0)

U + α · LT
UULUSF

(t)
S

F
(t+1)
S = (1− α)F (0)

S + α · LT
SSLSUF

(t)
U

(10)

Here F (t)
U and F (t)

S integrates the initial importance and the
score including within- and between-layer propagation.

For utterance set, LUSF
(t)
S is the score from speaker

set weighted by utterance-to-speaker similarity, and then
the scores are propagated based on utterance-to-utterance
similarity LUU . Compared to Section 2.4.1, the algorithm
additionally considers the within-layer relation through LUU

and LSS . Then F (t+1)
U can be updated by the latter part in

(10), and F (t+1)
S as well. Similarly, the algorithm converges

satisfying (11).{
F ∗U = (1− α)F (0)

U + α · LT
UULUSF

∗
S

F ∗S = (1− α)F (0)
S + α · LT

SSLSUF
∗
U

(11)

F ∗U = (1− α)F (0)
U (12)

+ α · LT
UULUS

(
(1− α)F (0)

S + α · LT
SSLSUF

∗
U

)
= (1− α)F (0)

U + α(1− α)LT
UULUSF

(0)
S

+ α2LT
UULUSL

T
SSLSUF

∗
U

=
(
(1− α)F (0)

U eT + α(1− α)LT
UULUSF

(0)
S eT

+ α2LT
UULUSL

T
SSLSU

)
F ∗U

= M2F
∗
U .

Similarly, the closed-form solution F ∗U of (9) is the dominant
eigenvector of M2 [19].

For both algorithms, we setF (0)
U is the baseline score from

I(U, d) in (1) after normalization such that the scores sum to
1 and F (0)

S = eT /|VS |, which means we assume all speakers
in the document have the equal importance.

3. EXPERIMENTS

3.1. Corpus

The corpus used in this research is a sequences of natural
meetings, which features largely overlapping participant sets
and topics of discussion. For each meeting, SmartNotes [4]
was used to record both the audio from each participant, as
well as his notes. The meetings were transcribed both man-
ually and using a speech recognizer; the word error rate is
around 44%. In this paper we use 10 meetings held from
April to June of 2006. On average, each meeting had about
28 minutes of speech. Across these 10 meetings, there were 6
unique participants; each meeting featured between 2 and 4 of
these participants (average: 3.7). Total number of utterances
is 9837 across 10 meetings. In this paper, we empirically set
α = 0.9 for all unsupervised experiments because (1 − 0.9)
is a proper damping factor [20, 18].

The reference summaries are given by the set of “notewor-
thy utterances”: two annotators manually labelled the degree
(three levels) of “noteworthiness” for each utterance, and we
extract the utterances with the highest level of “noteworthi-
ness” to form the summary of each meeting. In the following
experiments, for each meeting, we extract about 30% of the
number of terms as the summary.

3.2. Evaluation Metrics

Our automated evaluation utilizes the standard DUC (Docu-
ment Understanding Conference) evaluation metric, ROUGE [21],
which represents recall over various n-grams statistics from
a system-generated summary against a set of human gener-
ated summaries. F-measures for ROUGE-1 (unigram) and
ROUGE-L (longest common subsequence) can be evaluated
in exactly the same way.

3.3. Results

Table 1 shows the performance achieved from all proposed
approaches. Row (a) is the baseline, which uses an LTE-based
statistical measure to compute the importance of utterances
I(U, d). Row (b) is the result after applying well-known
LexRank approach [8]. Row (c) is the result after apply-
ing random walk using topical similarity for utterance-to-
utterance affinity metric. Row (d) is the result of proposed
two-layer mutually reinforced random walk (MRRW) using
between-layer propagation (BP)2. Row (e) is the result of
proposed model using within- and between-layer propagation
(WBP), which uses lexical similarity to measure utterance-
to-utterance relation. Row (f) is the same as row (e) except it
uses topical similarity for utterance-to-utterance metric.

Note that the performance of ASR is better than man-
ual transcripts. Because a higher percentage of errors is on

2MRRW-BP doesn’t use the similarity between utterances.



Table 1. The results of all proposed approaches and maximum relative improvement with respect to the baseline (%).

F-measure ASR Transcripts Manual Transcripts
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

(a) Baseline: LTE 46.82 46.26 44.99 44.16
(b) LexRank 48.63 48.20 46.44 45.72
(c) Random Walk (TopicSim) 49.02 48.38 45.84 44.94
(d) Two-Layer MRRW-BP 50.08 49.43 48.28 47.36
(e) Two-Layer MRRW-WBP (LexSim) 49.32 48.65 48.68 47.81
(f) Two-Layer MRRW-WBP (TopicSim) 50.21 49.62 46.82 46.19
(g) Random Walk (TopicSim + Inter-Speaker + Intra-Speaker) 49.64 48.87 48.09 47.36

Max Relative Improvement +7.239 +7.279 +8.211 +8.260

MRRW-BP: mutually reinforced random walk using between-layer propagation
MRRW-WBP: mutually reinforced random walk using within- and between-layer propagation

“unimportant” words, the utterances with incorrectly rec-
ognized words are harder to obtain high scores due to less
similar to other utterances. Therfore, utterances with more
errors tend to get excluded from the summarization results.
Other recent work also shows better performance for ASR
than manual transcripts [3, 5].

3.3.1. Comparing Baseline and Single-Layer Graph Ap-
proaches

We can see the performance after basic graph-based re-
computation (row (b) and row (c)) is significantly better
than baseline (row (a)) for both ASR and manual transcripts.
The improvement for ASR is larger than for manual tran-
scripts, because ASR output contains recognition errors,
which makes determination of original scores inaccurate, and
graph approach is used to propagate importance based on
similarity between utterances, which can effectively com-
pensate recognition errors. Thus, sharing importance with
similar utterances can significantly improve the performance
for both using lexical (row (b)) and topical similarity (row
(c)).

3.3.2. Comparing Single- and Two-Layer Graph Approaches

Two-layer graph approaches (row (d) - row (f)) utilize the
speaker information by automatically modeling intra- and
inter-speaker relation in the graph. We find that two-layer ap-
proaches involving speaker information perform better than
single-layer approaches (compared to row (b) and row (c)),
which means the utterances from the speakers who speak
more important utterances tend to be more important [11].
Thus, propagating the importance scores between the utter-
ances from the same speaker can improve the results. The
experiment shows two-layer mutually reinforced random
walk can help include the important utterances, giving better
performance than traditional single-layer random walk for
both ASR and manual transcripts.

3.3.3. Effectiveness of Within-Layer Propagation

Row (d) only uses between-layer propagation, while row (e)
and row (f) integrate within- and between-layer propagation.
For ASR transcripts, additionally considering within-layer
propagation by topical similarity (row (f)) performs better
than only using between-layer propagation (row (d)). For
manual transcripts, within-layer propagation using lexical
similarity (row (e)) improves the results from the approach
via between-layer propagation (row (d)). Therefore, within-
layer propagation is useful for both ASR and manual tran-
scripts. The reason may be that two-layer mutually reinforced
random walk only using between-layer propagation doesn’t
utilize the relation between utterances coming from different
speakers. Therefore, integrating different types of relations
performs better.

3.3.4. Comparing Lexical and Topical Similarity

We analyze the difference between using lexical and topi-
cal similarity for both single-layer and two-layer graph ap-
proaches. Comparing traditional LexRank and random walk
with topical similarity (row (b) and row (c)), we find that
ASR and manual transcripts have different results, where top-
ical similarity performs better for ASR transcripts but worse
for manual transcripts. Due to recognition errors from the
recognizer, lexical similarity from word overlap may have
some noises and lose some information; thus, topical simi-
larity is better for measuring the relation between utterances
from ASR output. Also, since in the absence of recognition
errors lexical similarity can model the relations accurately.
For two-layer graph approaches (row (e) and row (f)), they
have similar condition as single-layer approaches. In con-
clusion, topic model helps modeling similarity between ut-
terances from imperfect ASR transcripts for all graph-based
approaches.



3.3.5. Comparison to Other Approaches

Row (g) shows the result from the approach integrating intra-
speaker and inter-speaker topic modeling into a single-layer
graph [11], where there are more than three parameters
for controlling intra-speaker and inter-speaker topic shar-
ing weights. However, our proposed approaches can auto-
matically model importance of speakers and utterances by
mutually propagating scores from different layers. There’s
only one parameter α in our unsupervised approaches. Ta-
ble 1 shows our proposed approaches perform better, because
they consider utterance-to-utterance, speaker-to-speaker, and
speaker-to-utterance relation together by a data-driven ap-
proach. Proposed approaches achieve 7.2% and 8.2% relative
improvement compared to the LTE baseline for ASR and
manual transcripts respectively.

On the same corpus, Banerjee and Rudnicky [4] used su-
pervised learning to detect noteworthy utterances in the same
corpus, achievieng ROUGE-1 scores of 43% (ASR) and 47%
(manual). In comparison, our unsupervised approach give
significant improvement, especially for ASR transcripts.

4. CONCLUSIONS AND FUTURE WORK

Extensive experiments and evaluation with ROUGE met-
rics showed that two-layer mutually reinforced random walk
can model importance of speakers and utterances in a sin-
gle graph. The speaker information can be automatically
included in importance of utterances by between-layer prop-
agation. Integrating within- and between-layer propagation
can model three types of relation together, achieving about
7.2% and 8.2% relative improvement compared to the LTE
baseline for ASR and manual transcripts respectively. In
the future, we plan to model speakers’ topic across different
documents and to integrate them into a single graph.
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