Automatic Key Term Extraction from Spoken Course Lectures Using Branching Entropy and Prosodic/Semantic Features

Yun-Nung (**Vivian**) Chen, Yu Huang, Sheng-Yi Kong, Lin-Shan Lee

National Taiwan University, Taiwan

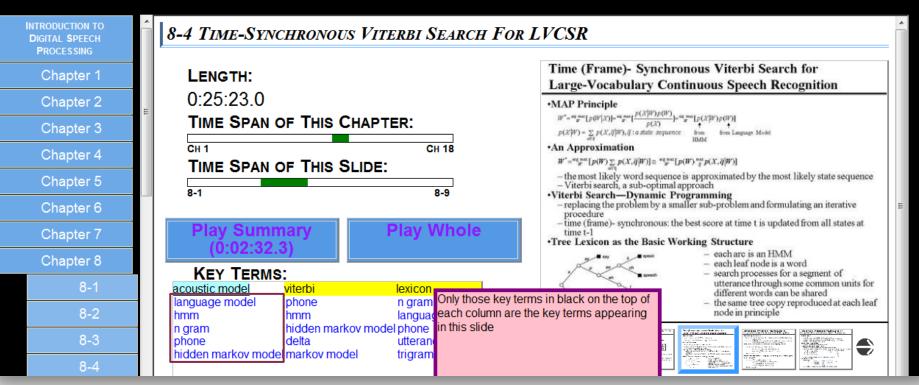
Introduction

Definition

- Key Term
 - Higher term frequency
 - Core content
- Two types
 - Keyword
 - Key phrase
- Advantage
 - Indexing and retrieval
 - The relations between key terms and segments of documents

Lecture Search:

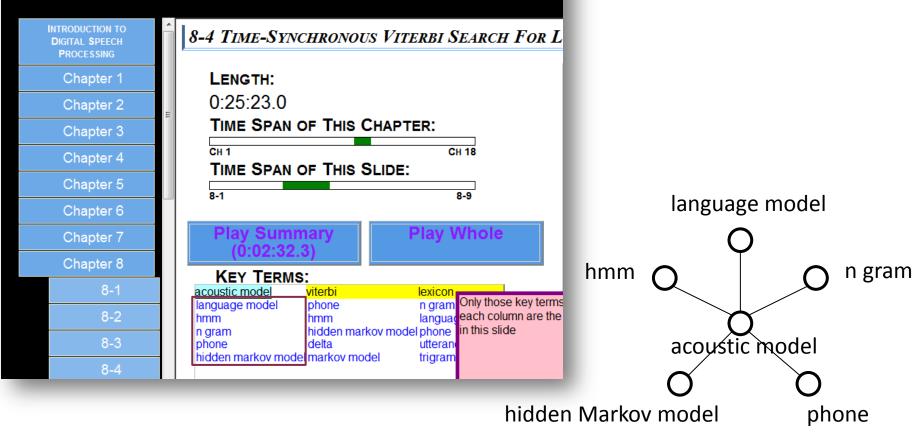
Introduction



SEARCH

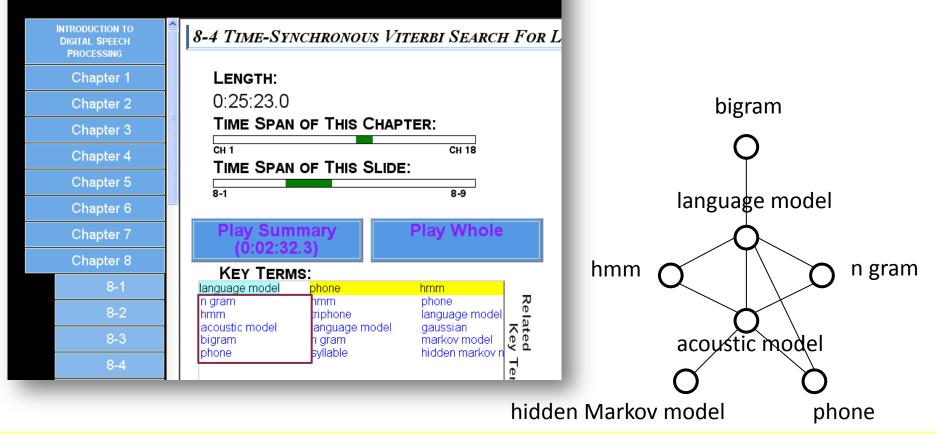
Introduction

NTU VIRTUAL INSTRUCTOR



Introduction

NTU VIRTUAL INSTRUCTOR

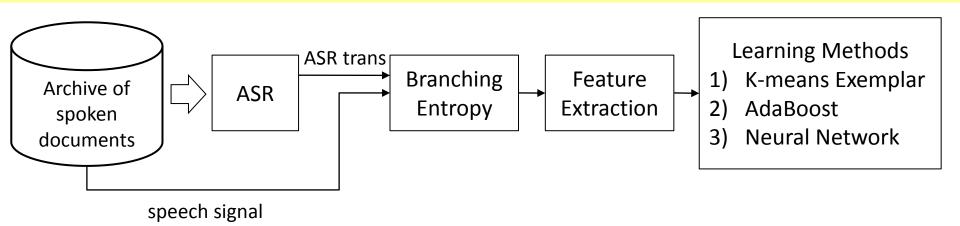


Target: extract key terms from course lectures

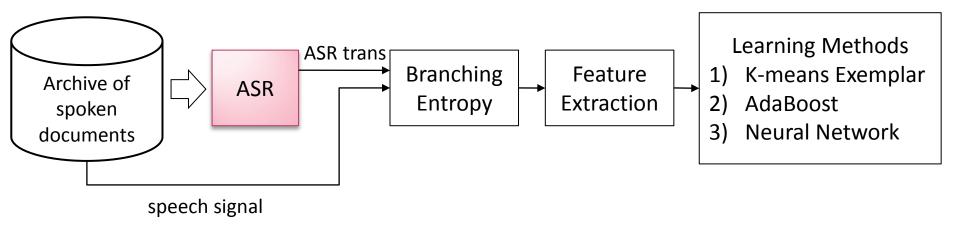
Proposed Approach

Automatic Key Term Extraction

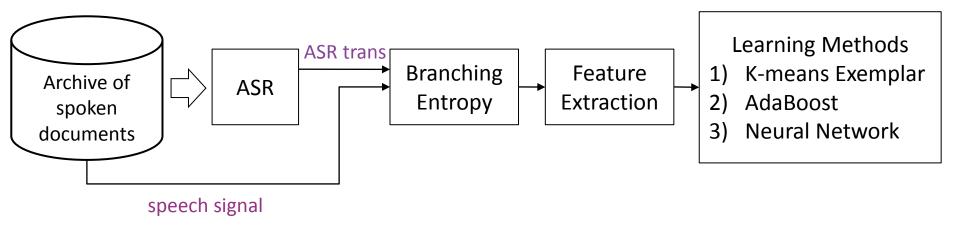
▼ Original spoken documents



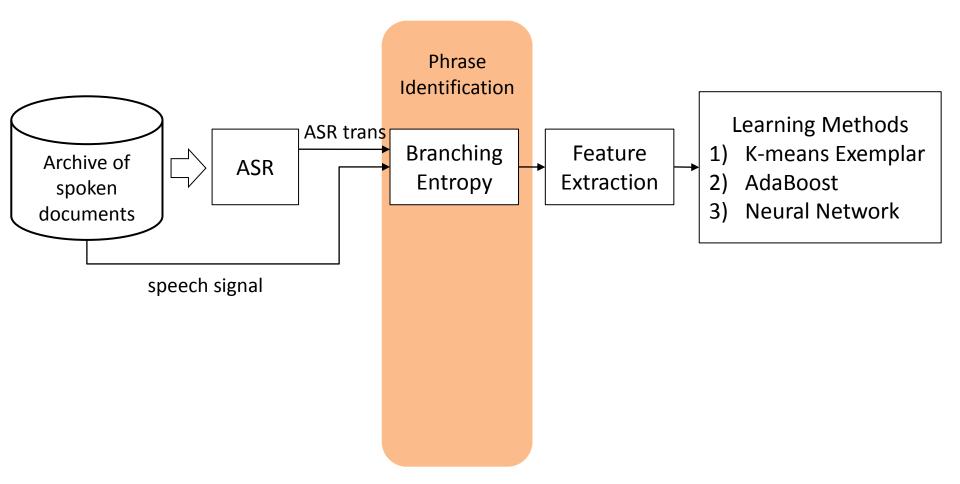
Automatic Key Term Extraction



Automatic Key Term Extraction

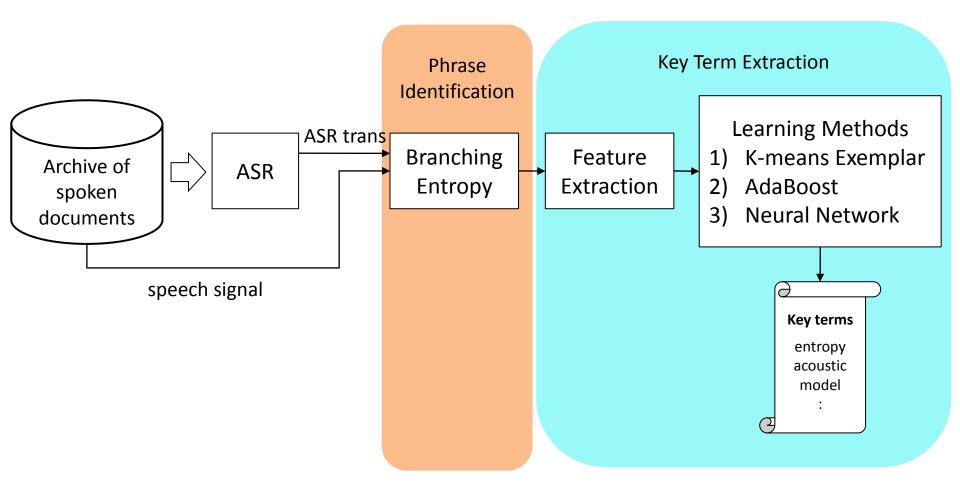


Automatic Key Term Extraction



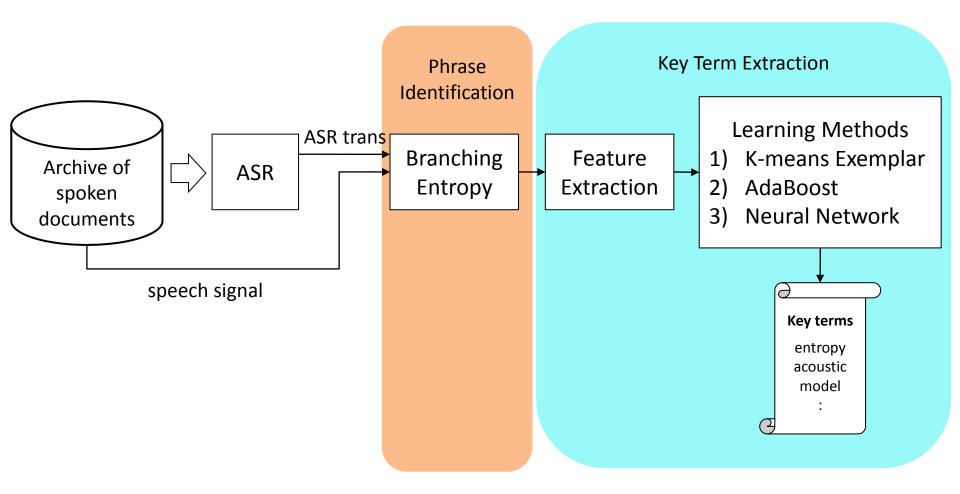
First using branching entropy to identify phrases

Automatic Key Term Extraction



Then using learning methods to extract key terms by some features

Automatic Key Term Extraction



How to decide the boundary of a phrase?

Key Term Extraction, National Taiwan University

"hidden" is almost always followed by the same word

How to decide the boundary of a phrase?

Key Term Extraction, National Taiwan University

- "hidden" is almost always followed by the same word
- "hidden Markov" is almost always followed by the same word

How to decide the boundary of a phrase?

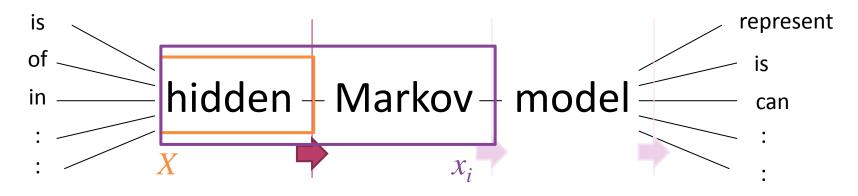
boundary

- "hidden" is almost always followed by the same word
- "hidden Markov" is almost always followed by the same word
- "hidden Markov model" is followed by many different words

Define branching entropy to decide possible boundary

Branching Entropy How to decide

How to decide the boundary of a phrase?



- Definition of Right Branching Entropy
 - Probability of children x_i for X

$$p(x_i) = \frac{f_{x_i}}{f_X} \begin{array}{l} X: w_1 \dots w_k \\ x_i: w_1 \dots w_k w_{(k+1)}^i \end{array}$$

• Right branching entropy for X

$$H_r(X) = -\sum_{i=1}^n p(x_i) \log_2 p(x_i)$$

Branching Entropy How to decide the boundary of a phrase?

- Decision of Right Boundary
 - Find the right boundary located between X and x_i where

 $H_r(X)$ > average $H_r(X)$

Branching Entropy

- Decision of Left Boundary
 - Find the left boundary located between \overline{X} and x_i where

$$H_{l}(\bar{X}) = -\sum_{i=1}^{n} p(x_{i}) \log_{2} p(x_{i}) \overline{X} \mod Markov \text{ hidden}$$

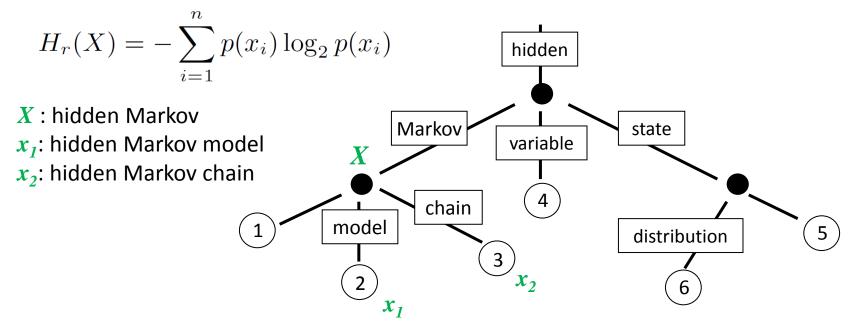
$$H_{l}(\bar{X}) > \text{average } H_{l}(\bar{X})$$

How to decide the boundary of a phrase?

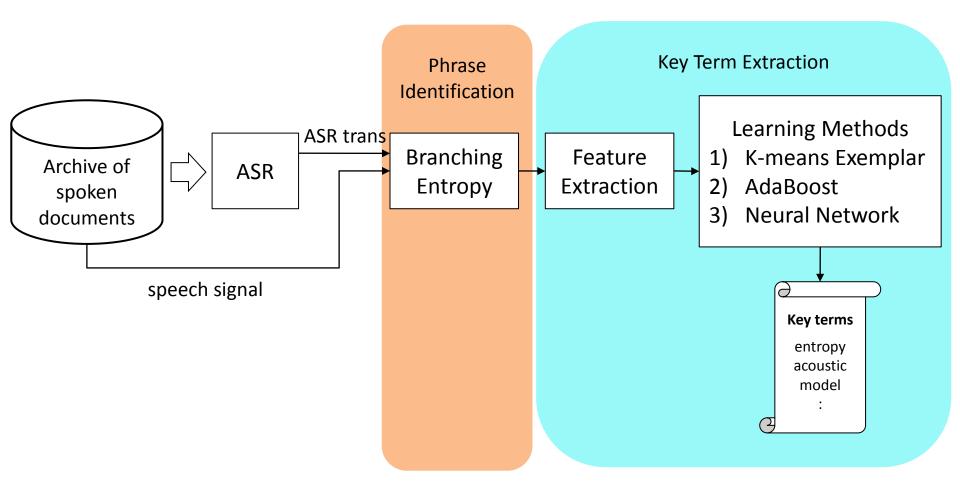
- Implementation in the PAT tree
 - Probability of children x_i for X

$$p(x_i) = \frac{f_{x_i}}{f_X} \quad \begin{array}{l} X: w_1 \dots w_k \\ x_i: w_1 \dots w_k w_{(k+1)}^i \end{array}$$

• Right branching entropy for X



Automatic Key Term Extraction

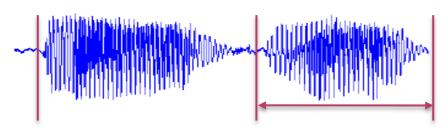


Extract prosodic, lexical, and semantic features for each candidate term

Prosodic features

Speaker tends to use longer duration to emphasize key terms

For each candidate term appearing at the first time



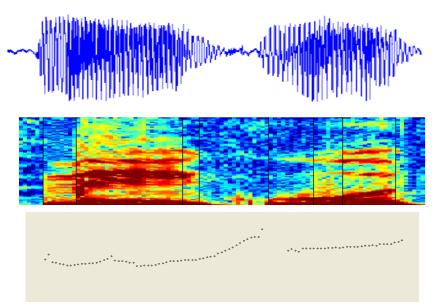
duration of phone "a" normalized by avg duration of phone "a"

Feature Name	Feature Description
Duration (I – IV)	normalized duration
(1 - 10)	(max, min, mean, range)

using 4 values for duration of the term

Prosodic features

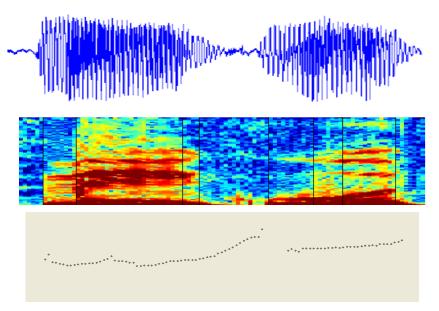
Higher pitch may represent significant information



Feature Name	Feature Description
Duration	normalized duration
(I – IV)	(max, min, mean, range)

Prosodic features

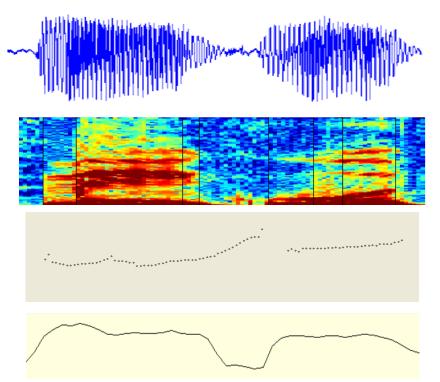
Higher pitch may represent significant information



Feature Name	Feature Description
Duration	normalized duration
(I – IV)	(max, min, mean, range)
Pitch	F0
(I - IV)	(max, min, mean, range)

Prosodic features

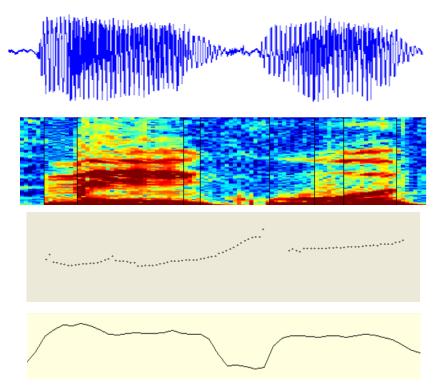
Higher energy emphasizes important information



Feature Name	Feature Description
Duration	normalized duration
(I – IV)	(max, min, mean, range)
Pitch	F0
(I - IV)	(max, min, mean, range)

Prosodic features

Higher energy emphasizes important information



Feature Name	Feature Description
Duration	normalized duration
(I – IV)	(max, min, mean, range)
Pitch	F0
(I - IV)	(max, min, mean, range)
Energy	energy
(I - IV)	(max, min, mean, range)

Lexical features

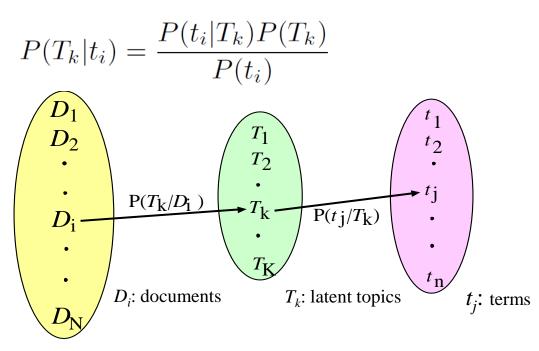
Feature Name	Feature Description
TF	term frequency
IDF	inverse document frequency
TFIDF	tf * idf
PoS	the PoS tag

Using some well-known lexical features for each candidate term

Semantic features

Key terms tend to focus on limited topics

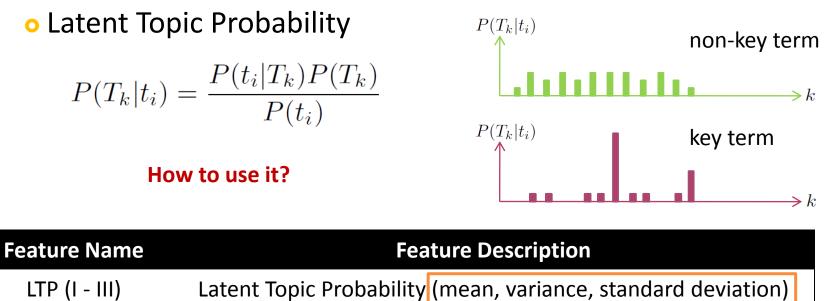
- Probabilistic Latent Semantic Analysis (PLSA)
 - Latent Topic Probability



Semantic features

Key terms tend to focus on limited topics

Probabilistic Latent Semantic Analysis (PLSA)

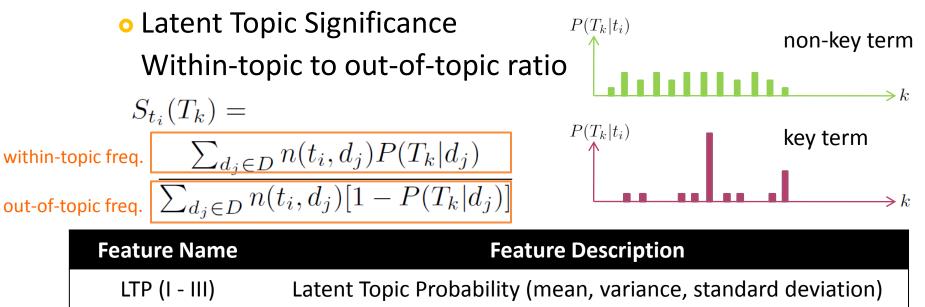


describe a probability distribution

Semantic features

Key terms tend to focus on limited topics

Probabilistic Latent Semantic Analysis (PLSA)



 $P(T_k|t_i)$

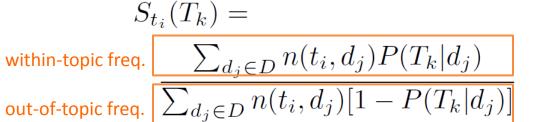
Feature Extraction

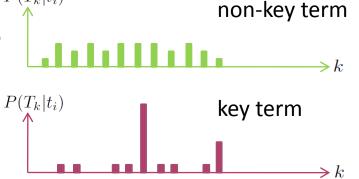
Semantic features

Key terms tend to focus on limited topics

- Probabilistic Latent Semantic Analysis (PLSA)
 - Latent Topic Significance

Within-topic to out-of-topic ratio





Feature Name	Feature Description
LTP (I - III)	Latent Topic Probability (mean, variance, standard deviation)
LTS (I - III)	Latent Topic Significance (mean, variance, standard deviation)

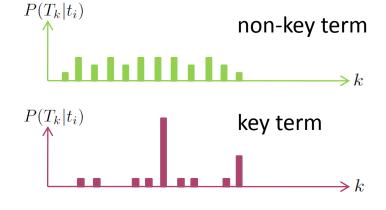
Semantic features

Key terms tend to focus on limited topics

- Probabilistic Latent Semantic Analysis (PLSA)
 - Latent Topic Entropy

$$EN(t_i) =$$

$$-\sum_{k=1}^{K} P(T_k|t_i) \log P(T_k|t_i)$$



Feature Name	Feature Description
LTP (I - III)	Latent Topic Probability (mean, variance, standard deviation)
LTS (I - III)	Latent Topic Significance (mean, variance, standard deviation)

Semantic features

Key terms tend to focus on limited topics

- Probabilistic Latent Semantic Analysis (PLSA)
 - Latent Topic Entropy

$$EN(t_i) =$$

K

k=1

$$F(t_i) = Higher LTE$$

$$-\sum_{k=1}^{K} P(T_k|t_i) \log P(T_k|t_i)$$

$$P(T_k|t_i) \quad key term$$

$$Lower LTE$$

 $P(T_k|t_i)$

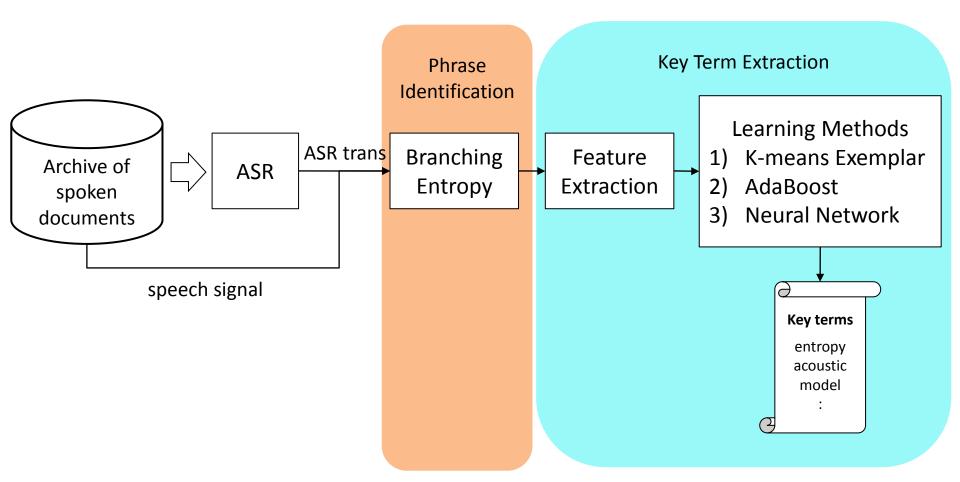
Feature Name	Feature Description
LTP (I - III)	Latent Topic Probability (mean, variance, standard deviation)
LTS (I - III)	Latent Topic Significance (mean, variance, standard deviation)
LTE	term entropy for latent topic

non-key term

 $\rightarrow k$

> k

Automatic Key Term Extraction

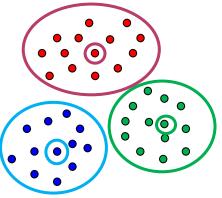


Using unsupervised and supervised approaches to extract key terms

Learning Methods

- Unsupervised learning
 - K-means Exemplar
 - Transform a term into a vector in LTS (Latent Topic Significance) space

$$v_i = (S_{t_i}(T_1), S_{t_i}(T_2), ..., S_{t_i}(T_K))$$



o Run K-means

The terms in the same cluster focus on a single topic

• Find the centroid of each cluster to be the key term

The candidate term in the same group are related to the key term The key term can represent this topic

Learning Methods

- Supervised learning
 - Adaptive Boosting
 - Neural Network

Automatically adjust the weights of features to produce a classifier

Experiments & Evaluation

Experiments

Corpus

NTU lecture corpus

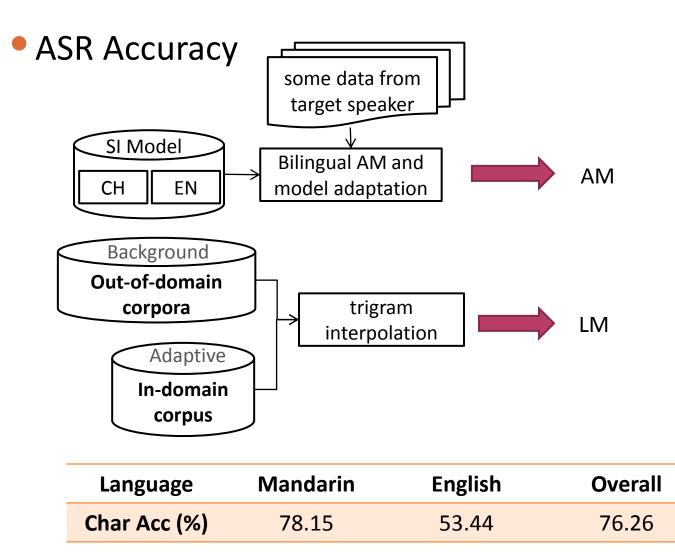
Mandarin Chinese embedded by English words

我們的solution是viterbi algorithm (Our solution is viterbi algorithm)

Single speaker

o 45.2 hours

Experiments



Experiments

Reference Key Terms

- Annotations from 61 students who have taken the course
 - If the k-th annotator labeled N_k key terms, he gave each of them a score of $\frac{1}{N_k}$, but 0 to others
 - Rank the terms by the sum of all scores given by all annotators for each term
 - Choose the top \overline{N} terms form the list (\overline{N} is average N_k)
- \overline{N} = 154 key terms
 - o 59 key phrases and 95 keywords

Experiments

Evaluation

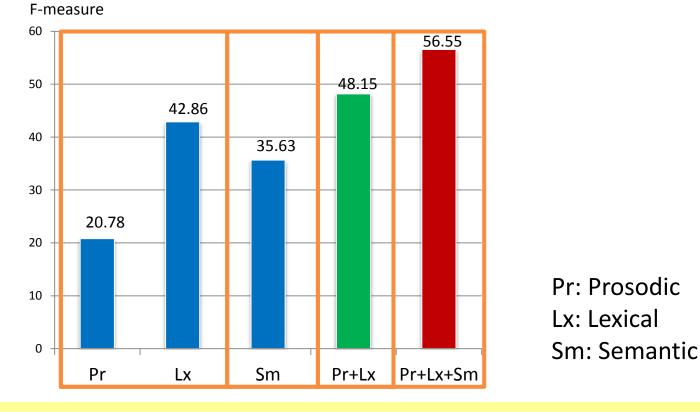
- Unsupervised learning
 - ullet Set the number of key terms to be \overline{N}
- Supervised learning
 - 3-fold cross validation

45

Experiments

Feature Effectiveness

Neural network for keywords from ASR transcriptions



Three sets of features are all useful

Experiments

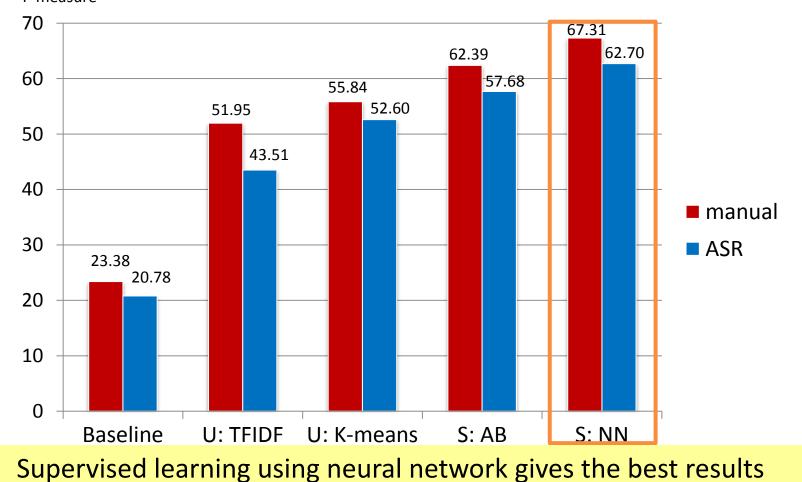
AB: AdaBoost **Overall Performance NN: Neural Network F**-measure 70 67.31 62.39 60 Conventional TF DF scores w/o branching entropy 50 ✓ stc p word rem oval ✓ Po S filtering 40 manual 30 23.38 20 10 0 U: TFIDF S: AB **Baseline** U: K-means S: NN

Supervised approaches are better than unsupervised approaches

Experiments

Overall Performance

AB: AdaBoost NN: Neural Network



Conclusion

Conclusion

- We propose the new approach to extract key terms
- The performance can be improved by
 - Identifying phrases by branching entropy
 - Prosodic, lexical, and semantic features together
- The results are encouraging

Key Term Extraction, National Taiwan University

Thanks for your attention! © Q&A

Thank reviewers for valuable comments

NTU Virtual Instructor: http://speech.ee.ntu.edu.tw/~RA/lecture