The 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2022)

Hello:)

National Taiwan University 國立臺灣大學

陳縕儂 Yun-Nung (Vivian) Chen

September 7th, 2022

Bon Jour :)

Robustness, Scalability & Practicality of Conversational AI

² Task-Oriented Dialogue Systems (Young, 2000)

Robustness

Task-Oriented Dialogue Systems (Young, 2000)

Task-Oriented Dialogue Systems (Young, 2000)

Recent Advances in NLP

Pre-trained models
ELMo, BERT, RoBERTa, XLM, GPT, etc.

Lift all light to Morocco List all flights tomorrow

Matt, what can I assist you with?

1.1

Mismatch between Written and Spoken Languages

Goal: ASR-Robust Embeddings

8

- learning spoken embeddings
- better performance on *spoken* language understanding tasks

Solution: LatticeLM (Huang & Chen, ACL 2020)

https://github.com/MiuLab/LatticeLM

Chao-Wei Huang and Yun-Nung Chen, "Learning Spoken Language Representations with Neural Lattice Language Modeling," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

Markov ASR Lattices for Preserving Uncertainty

Idea: lattices may include correct words

Chao-Wei Huang and Yun-Nung Chen, "Learning Spoken Language Representations with Neural Lattice Language Modeling," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

LatticeLM: Efficient Two-Stage Pre-Training

Chao-Wei Huang and Yun-Nung Chen, "Learning Spoken Language Representations with Neural Lattice Language Modeling," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

¹² – Spoken Language Understanding Results

- Intent Prediction
 - Word Error Rate: 45.6% (SNIPS); 15.6% (ATIS)

¹³ – Spoken Language Understanding Results

- Intent Prediction
 - Word Error Rate: 45.6% (SNIPS); 15.6% (ATIS)

100

— Spoken Language Understanding Results

- Intent Prediction
 - Word Error Rate: 45.6% (SNIPS); 15.6% (ATIS)

100

Spoken Language Understanding Results

- Dialogue Act Prediction
 - Word Error Rate: 32.0% (MRDA); 28.4% (SWDA)

What if we only have texts from ASR?

Solution: Contrastive Learning for ASR-Robust Embeddings

(Chang & Chen, INTERSPEECH 2022)

https://github.com/MiuLab/SpokenCSE

Improving ASR Robustness of Embeddings

Idea: adapt embeddings robust to errors with only textual information

Improving ASR Robustness of Embeddings

Idea: adapt embeddings robust to errors with only textual information

Contrastive Pre-Training

Idea: ASR outputs have similar embeddings as their clean texts

prevent catastrophic forgetting

²¹ – Spoken Language Understanding Results

- SLU data
 - Synthesized TREC6 (WER=29%) & ATIS (WER=32%)
 - SLURP: Spoken Language Understanding Resources Package (WER=25%)

Dataset	#Class	Avg. Length	Train	Test
TREC6	6	8.89	5,452	500
ATIS	22	11.14	4,978	893
SLURP	18 * 46	8.89	50,628	10,992

²² – Spoken Language Understanding Results

96

²³ – Spoken Language Understanding Results

Improving ASR Robustness of Embeddings

Idea: adapting embeddings robust to misrecognitions

²⁵ – Supervised Contrastive Learning

Idea: data with the same label should be close to each other

²⁶ – Self-Distillation

Issue: misrecognitions may lead to wrong or vague intents

• Objective:
$$\mathcal{L}_d = \sum_i KL(p_i^{t-1} \| p_i^t)$$

Supervised Contrastive with Self-Distillation 27

Issue: noisy labels also affect \mathcal{L}_{hard}

$$\mathcal{L}_{soft} = -\sum_{i} \sum_{j \neq i} (p_i^{t-1} \cdot p_j^{t-1}) \log \frac{e^{sim(h_i, h_j)/\tau_{sc}}}{\sum_{k \neq i} e^{sim(h_i, h_k)/\tau_{sc}}}$$

Fine-tuning objective: $\mathcal{L}_{ft} = \mathcal{L}_{ce} + \lambda_d \mathcal{L}_d + \lambda_{hard} \mathcal{L}_{hard} + \lambda_{soft} \mathcal{L}_{soft}$

Prediction Distribution

Spoken Language Understanding Results

²⁹ – Spoken Language Understanding Results

Robustness

- ✓ LatticeLM for preserving uncertainty
- ✓ Contrastive learning with only textual information

 Contrastive Pre-training learns error-invariant sentence embeddings

 Supervised CL with Self Distillation improves robustness to noises from ASR and labels

Scalability

Practicality

Scalability

³² Task-Oriented Dialogue Systems (Young, 2000)

Poster: Today 1pm (National Robotarium)

Solution: Data Augmentation (Lai et al., SIGDIAL 2022)

https://github.com/MiuLab/CUDA

Chun-Mao Lai, Ming-Hao Hsu, Chao-Wei Huang, and Yun-Nung Chen, "Controllable User Dialogue Act Augmentation for Dialogue State Tracking," in *Proceedings of The 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)*, 2022.

Just Diverse User Dialogue Acts in States

Chun-Mao Lai, Ming-Hao Hsu, Chao-Wei Huang, and Yun-Nung Chen, "Controllable User Dialogue Act Augmentation for Dialogue State Tracking," in *Proceedings of The 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)*, 2022.

³⁵ User Dialogue Act Generation

³⁶ User Utterance Generation

System Utterance I recommend Pho Bistro in the center. What time do you plan to book the table?

- CUDA: Controllable User Dialogue Act

37

Chun-Mao Lai, Ming-Hao Hsu, Chao-Wei Huang, and Yun-Nung Chen, "Controllable User Dialogue Act Augmentation for Dialogue State Tracking," in *Proceedings of The 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)*, 2022.

DST Performance

MultiWOZ 2.1	TripPy	TRADE
Original	57.72	44.08
Value Substitution	59.48	43.76
CoCo (Li et al., 2021)	60.46	43.53
CUDA	62.93 [♦]	44.86 *

CUDA improves many trackers and achieves SOTA in MultiWOZ 2.1

CoCo+ (rare)	TripPy	TRADE
Original	28.38	16.65
Value Substitution	39.42	16.42
CUDA	48.83 *	17.79*

CUDA shows better robustness for rare state combinations

Robustness

- ✓ LatticeLM for preserving uncertainty
- Contrastive learning with only textual information

Practicality

Salesperson: Discover Business Potential

• Human salesperson is capable of

41

- mining business-related intentions from customers via chatting
- smoothly promoting the related product through conversations

⁴² Two Types of Dialogue Systems

Open-Domain Chatting

Task-Oriented

How may I help you? Are you interested in listening some songs?

Solution: SalesBot: Transitioning from Open-Domain to Task-Oriented Dialogues

(Chiu et al., ACL 2022)

https://github.com/MiuLab/SalesBot

43

- SalesBot: Social to Task-Oriented

Simulated User

44

Simulated Salesperson

I'm looking for a movie to watch. A regular showing would be fine.

Where are you located?

Open-Domair

Task-Oriented

I'm in San Francisco, please look for movies there.

There are [COUNT] movies you can watch. What do you think of [MOVIE_NAME]?

Such data can allow us to train a conversational agent with a salesperson's capability

– SalesBot: Social to Task-Oriented

Motivation: no existing data with the property

45

Approach: simulate the scenarios to generate unlimited data

SalesBot: Social to Task-Oriented

• Challenges

46

When to switch to the task-oriented dialogue system?

→ Task-Oriented (Implicit) Intent Detection

② How to smoothly switch from chit-chat to task-oriented dialogues?
→ Transition Turn Generation

Task-Oriented (Implicit) Intent Detector

Goal: identify if the user is likely to have task-related intents

Issue: no data with annotated implicit intents

Idea: leverage QA system's capability

intent description: find attractions to visit

Intent-associated questions are naively generated from their descriptions

-SalesBot: Social to Task-Oriented

• Challenges

49

When to switch to the task-oriented dialogue system?

→ Task-Oriented (Implicit) Intent Detection

② How to smoothly switch from chit-chat to task-oriented dialogues?
→ Transition Turn Generation

Transition Turn Generation

Generative-based Generation:

• Training data: OTTers (Source Topic \rightarrow Transition \rightarrow Target Topic)

Entity Path: outside - <u>garden</u> – flower

User A **Source Topic:** I spend a lot of time **outside**. (Source Topic)

User B **Transition:** I like the outdoors as well, especially <u>gardening</u>. It destresses me. **Target Topic:** I enjoy relaxing and getting **flowers**.

User A

User B

Entity Path: seafood - Swedish fish - candy

User A Source Topic: I like seafood a lot.

User B **Transition:** Since you like seafood, is <u>Swedish fish</u> a candy that you might enjoy? **Target Topic:** I have no self control when it comes to **candy**.

Entity Path: engagement - marriage - child

- User A Source Topic: I think I am getting engaged soon.
- User B **Transition:** I have two children from a previous <u>marriage</u> **Target Topic:** My children are my life.

- SalesBot Simulation Framework

51

Contribution: simulate unlimited dialogues transitioning from chit-chat to task-oriented

Quality?

52 Human Evaluation

Overall dialogue quality

- **Q1 Relevance:** How relevant is the recommended service to the conversation context?
- **Q2 Aggressiveness:** How aggressive is the salesperson's communication strategy?
- Q3 Overall: Do you think the conversation is overall a good example of making a sales recommendation?

Robustness

- ✓ LatticeLM for preserving uncertainty
- Contrastive learning with only textual information

Robustness

- ✓ LatticeLM for preserving uncertainty
- Contrastive learning with only textual information

- Yun-Nung (Vivian) Chen
- Associate Professor, National Taiwan University
- <u>y.v.chen@ieee.org</u> / <u>http://vivianchen.idv.tw</u>

Appendix

Joint Lattice Language Modeling

- LatticeLSTM encodes nodes of a lattice
- The goal is to predict the outgoing transitions (words) given a node's representation
- The one-hypothesis lattice reduces to normal language modeling

Issue: LatticeLSTM runs prohibitively slow

Chao-Wei Huang and Yun-Nung Chen, "Learning Spoken Language Representations with Neural Lattice Language Modeling," in *Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.

Ablation Study

$$\mathcal{L}_{pt} = \mathcal{L}_c + \lambda_{mlm} \cdot \mathcal{L}_{mlm}$$
$$\mathcal{L}_{ft} = \mathcal{L}_{ce} + \lambda_d \mathcal{L}_d + \lambda_{hard} \mathcal{L}_{hard} + \lambda_{soft} \mathcal{L}_{soft}$$

Pre-Training	Fine-Tuning	SLURP	ATIS	TREC6
Full	Full	85.26	95.10	86.36
No \mathcal{L}_{mlm}	Full	84.83	93.75	85.32
No \mathcal{L}_c	Full	85.15	95.00	85.53
Full	No $\mathcal{L}_{hard} + \mathcal{L}_{soft}$	85.14	94.83	86.08
Full	No $\mathcal{L}_d + \mathcal{L}_{soft}$	84.77	94.75	85.60
Full	No \mathcal{L}_{soft}	84.81	94.65	86.20

All parts in the proposed approach are necessary to achieve better SLU performance.

Improvement of Different WER

59

		SLURP WER Interval				
Pre-Training	Fine-Tuning	Clean =0	Low (0, 0.16]	Medium (0.16, 0.40]	High >0.4	All
RoBERTa	Direct	95.69	92.41	85.89	56.71	83.97
Phoneme-BERT	Direct	94.97	92.34	85.87	57.20	83.78
SimCSE	Direct	95.55	93.47	86.82	57.59	84.47
Proposed	Direct	95.54	93.86	86.68	57.72	84.51
RoBERTa	Proposed	96.59	94.27	86.70	57.24	84.87
Phoneme-BERT	Proposed	95.61	93.42	86.87	57.50	84.48
SimCSE	Proposed	96.57	94.54	87.39	58.01	85.25
Proposed	Proposed	96.08	94.41	87.63	58.72	85.26

Proposed approach is more effective when WER is higher

Proposed fine-tuning can generalize to diverse pre-training strategies for better SLU results

Task-Oriented Dialogue Generation

- Task-Oriented Simulation
 - Two BlenderBot simulators are additionally trained on
 - user turns to simulate users
 - agent turns to simulate salespersons
 - These turns are taken from task-oriented dialogues.

Transition Turn Generation

Template-based Generation:

reaction

• Use a template sentence to trigger the corresponding task-oriented user

	Template-based generation	
User:	I like to read a lot. I also like to go to the	
	movies. What about yourself? - FindMovies	Detected Intent
Sales:	Do you want to find movies by genre and op-	
	tionally director?	Template Transition
User:	I'm looking for a movie to watch. A regular	
	showing would be fine.	

Generative-based Generation:

Re-generate the transition turn for better *fluency* and *diversity*

	Generative-based Re-generation	
User:	I like to read a lot. I also like to go to the	
	movies. What about yourself?	
Sales:	Are you interested in watching any movie?	Generated Transition
User:	I'm looking for a movie to watch. A regular	
	showing would be fine.	

Human Evaluation

Transition turn quality

- **Q1 Timing:** Is it a good timing to make the transition?
- Q2 Relevance: Is the transition relevant to the conversation context?
- **Q3 Aggressiveness:** Is the transition aggressive?
- **Q4 Overall:** Do you think it is overall a good transition?

Average scores over 3 workers (4000 dialogues)

All scores above 3 (neutral) demonstrates reasonable quality of the generated data