

Unsupervised Spoken Language Understanding in Dialogue Systems

YUN-NUNG (VIVIAN) CHEN 陳溫儂 CARNEGIE MELLON UNIVERSITY

HTTP://VIVIANCHEN.IDV.TW

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Unsupervised Task Prediction [Chen and Rudnicky, SLT'14]

Conclusions & Future Work

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Unsupervised Task Prediction [Chen and Rudnicky, SLT'14]

Conclusions & Future Work

Spoken Language Understanding (SLU)

SLU in dialogue systems

• SLU maps natural language inputs to semantic forms

"I would like to go to NTU Wednesday."

location: NTU date: Wednesday

- Semantic frames, slots, and values
 - often manually defined by domain experts or developers.

What are the problems?

Problems with Predefined Information

- **Generalization:** may not generalize to real-world users.
- **Bias propagation:** can bias subsequent data collection and annotation.
- **Maintenance:** when new data comes in, developers need to start a new round of annotation to analyze the data and update the grammar.
- Efficiency: time consuming, and high costs.

Can we automatically induce semantic information w/o annotations?

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Unsupervised Task Prediction [Chen and Rudnicky, SLT'14]

Conclusions & Future Work

Unsupervised Slot Induction

Motivation

- Spoken dialogue systems (SDS) require predefined semantic slots to parse users' input into semantic representations
- *Frame semantics theory* provides generic semantics
- *Distributional semantics* capture contextual latent semantics

Probabilistic Frame-Semantic Parsing

FrameNet [Baker et al., 1998]

- a linguistically-principled semantic resource, based on the frame-semantics theory.
- "low fat milk" \rightarrow "milk" evokes the "food" frame;
 - "low fat" fills the descriptor frame element
 - Frame (food): contains words referring to items of food.
 - Frame Element: a descriptor indicates the characteristic of food.
- **SEMAFOR** [Das et al., 2010; 2013]
 - a state-of-the-art frame-semantics parser, trained on manually annotated FrameNet sentences

Step 1: Frame-Semantic Parsing for ASR outputs *Good! Good! Good! Good! Good! Good! Good! Good! Good! Frame: capability* Frame: capability FT LU: cheap *Frame: locale by use FT/FE LU: restaurant*

Task: adapting *generic* frames to *task-specific* settings for SDSs

Main Idea

 Ranking domain-specific concepts higher than generic semantic concepts

Rank the slot candidates by integrating two scores

$$w(s_i) = (1 - \alpha) \log f(s_i) + \alpha \cdot \log h(s_i)$$

the frequency of the slot candidate in the SEMAFOR-parsed corpus

slots with higher frequency may be more important

the coherence of slot fillers

domain-specific concepts should focus on fewer topics and be similar to each other

Measure coherence by pair-wised similarity of slot fillers

 $^\circ$ For each slot candidate $\,S_i$

$$V(s_i) = \{x_a, x_b, ...\}$$
slot candidate: expensiveness corresponding slot filler:
"cheap", "not expensive"

$$b(s_i) = \frac{\sum_{x_a, x_b \in V(s_i), x_a \neq x_b} \operatorname{Sim}(x_a, x_b)}{\sum_{x_a, x_b \in V(s_i), x_a \neq x_b} \operatorname{Sim}(x_a, x_b)}$$

$$|V(s_i)|^2$$

The slot with higher $h(s_i)$ usually focuses on fewer topics, which are more specific, which is preferable for slots of SDS.

How to define the vector for each slot filler?

- Run clustering and then build vectors based on clustering results
 - K-means, spectral clustering, etc.
- Use distributional semantics to transfer words into vectors
 - LSA, PLSA, neural word embeddings (word2vec)

Dataset

- Cambridge University SLU corpus [Henderson, 2012]
 - Restaurant recommendation in an in-car setting in Cambridge
 - WER = 37%
 - vocabulary size = 1868
 - 2,166 dialogues
 - 15,453 utterances
 - dialogue slot: addr, area, food, name, phone, postcode, price range, task, type

The mapping table between induced and reference slots

- Slot Induction Evaluation: MAP of the slot ranking model to measure the quality of induced slots via the mapping table
- Slot Filling Evaluation: MAP-F-H/S: weight the MAP score with F-measure of two slot filler lists

	^	nnroach		ASR		
	Approach				MAP-F-H	MAP-F-S
	(a)	Frequenc	су	67.61	26.96	27.29
Frame Sem	(b)	K-Means	S	67.38	27.38	27.99
	(c)	Spectral Clustering		68.06	30.52	28.40
	(d)	Google News	RepSim	72.71	31.14	31.44
Frame Sem	(e)		NeiSim	73.35	31.44	31.81
+	(f)	Freebase	RepSim	71.48	29.81	30.37
Dist Sem	(g)		NeiSim	73.02	30.89	30.72
	(h)	(d) + (e) + (f)	+ (g)	76.22	30.17	30.53

	Δ		ASR			
	A	pproach	MAP	MAP-F-H	MAP-F-S	
	(a)	Frequenc	су	67.61	26.96	27.29
Frame Sem	(b)	K-Means	K-Means		27.38	27.99
	(c)	Spectral Clustering		68.06	30.52	28.40
	(d)	Google News	RepSim	72.71	31.14	31.44
Frame Sem	(e)		NeiSim	73.35	31.44	31.81
+	(f)	Freebase	RepSim	71.48	29.81	30.37
Dist Sem	(g)		NeiSim	73.02	30.89	30.72
	(h)	(d) + (e) + (f)	+ (g)	76.22	30.17	30.53

Adding distributional information outperforms our baselines

	Δ	nn roach	ASR			
Approach				MAP	MAP-F-H	MAP-F-S
	(a)	Frequenc	су	67.61	26.96	27.29
Frame Sem	(b)	K-Means	K-Means		27.38	27.99
	(c)	Spectral Clustering		68.06	30.52	28.40
	(d)	Google News	RepSim	72.71	31.14	31.44
Frame Sem	(e)		NeiSim	73.35	31.44	31.81
+	(f)	Freebase	RepSim	71.48	29.81	30.37
Dist Sem	(g)		NeiSim	73.02	30.89	30.72
	(h)	(d) + (e) + (f)	+ (g)	76.22	30.17	30.53

Combining two datasets to integrate the coverage of Google and precision of Freebase can rank correct slots higher and performs the best MAP scores

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Unsupervised Task Prediction [Chen and Rudnicky, SLT'14]

Conclusions & Future Work

Unsupervised Relation Detection

Spoken Language Understanding (SLU): convert ASR outputs into predefined semantic output format

"when was james cameron's avatar released"

Intent: FIND_RELEASE_DATE
Slot-Val: MOVIE_NAME="avatar", DIRECTOR_NAME="james cameron"

Relation: semantic interpretation of input utterances

movie.release_date, movie.name, movie.directed_by, director.name

Unsupervised SLU: utilize external knowledge to help relation detection without labelled data

Semantic Knowledge Graph Priors for SLU

What are knowledge graphs?

- Graphs with
 - strongly typed and uniquely identified entities (nodes)
 - facts/literals connected by relations (edge)

Examples:

 Satori, Google KG, Facebook Open Graph, Freebase

How large?

> 500M entities, >1.5B relations, > 5B facts

How broad?

- Slides of Larry Heck, Dilek Hakkani-Tur, and Gokhan Tur, <u>Leveraging Knowledge Graphs for Web-Scale Unsupervised</u> <u>Semantic Parsing</u>, in *Proceedings of Interspeech*, 2013.

produced by

PERSON

name

MOVIE

MOVIE

Semantic Interpretation via Relations

Two Examples

• differentiate two examples by including the originating node types in the relation

User Utterance:

find movies produced by james cameron

SPARQL Query (simplified):

SELECT **?movie** {?movie. ?movie.produced_by?producer. ?producer.name"James Cameron".}

Logical Form:

 $\lambda x. \exists y. movie.produced_by(x, y) \land person.name(y, z) \land z="James Cameron"$

Relation:

movie.produced_by producer.name

User Utterance:

who produced avatar

SPARQL Query (simplified):

SELECT ?producer {?movie.name"Avatar". ?movie.produced_by?producer.}

Logical Form:

λy. ∃x. movie.produced_by(x, y) ∧ movie.name(x, z) ∧ z="Avatar"

Relation:

movie.name movie.produced_by

produced by

Proposed Framework

Proposed Framework

Relation Inference from Gazetteers

Gazetteers (entity lists)

• Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding, in *Proceedings of Interspeech*, 2014.

Proposed Framework

Relational Surface Form Derivation Web Resource Mining

Bing query snippets including entity pairs connected with specific relations in KG

Relational Surface Form Derivation Dependency-Based Entity Embeddings

1) Word & Context Extraction

Relational Surface Form Derivation Dependency-Based Entity Embeddings

2) Training Process

- Each word w is associated with a vector v_w and each context c is represented as a vector v_c
- Learn vector representations for both words and contexts such that the dot product $v_w \cdot v_c$ associated with good word-context pairs belonging to the training data D is maximized

 Objective function: 	
---	--

org mov	\sum	log	1
arg max		10g	1 /)
v_w, v_c			$1 + \exp(-v_c \cdot v_w)$

			$(w,c)\in D$	
	Word	Contexts	Word	Contexts
	\$movie	film/nsub ⁻¹		film/nsub, is/cop, a/det,
	is	film/cop ⁻¹	film	2009/num, american/nn,
	а	film/det ⁻¹		fiction/nn, directed/vmod
	2009	film/num ⁻¹	directed	\$director/prep_by
	american, epic,	film/nn ⁻¹	\$director	directed/prep_by ⁻¹
science. fiction				

Relational Surface Form Derivation

Entity Surface Forms

• learn the surface forms corresponding to entities

\$char, \$director, etc.

$$S_i^F(w_j) = P^F(r_i \mid w_j)$$

 $\underbrace{\sum_{e_k \in E} \sin(w_j, e_k)}_{\text{based on word vector } v_w}$

 $sim(w_j, e_i)$

\$char: "character", "role", "who"
\$director: "director", "filmmaker"
\$genre: "action", "fiction"

 \rightarrow with similar contexts

Entity Syntactic Contexts

• learn the important contexts of entities

$$S_{i}^{C}(w_{j}) = \underbrace{\frac{\sin(\hat{w}_{j}, e_{i})}{\sum_{e_{k} \in E} \sin(\hat{w}_{j}, e_{k})}}_{\text{Be}^{C}(r_{i} \mid w_{j})}$$

\$char: "played" \$director: "directed"

ightarrow frequently occurring together

Proposed Framework

Probabilistic Enrichment

Integrate relations from

- \circ Prior knowledge $P_E(r \mid w)$
- $\,\circ\,$ Entity surface forms $P_F(r\mid w)$
- $\,\circ\,$ Entity syntactic contexts $P_C(r \mid w)$

Integrated Relations for Words by

r	actor	produced_by	location
$P_E(r \mid w)$	0.7	0.3	0
$P_F(r \mid w)$	0.4	0	0.6
$P_C(r \mid w)$	0	0	0
Unweighted $R_w(r)$	1	1	1
Weighted $R_w(r)$	0.7	0.3	0.6
Highest Weighted $R_w(r)$	0.7	0	0.6

- **Unweighted**: combine all relations with binary values
- Weighted: combine all relations and keep the highest weights of relations
- Highest Weighted: combine the most possible relation of each word

Integrated Relations for Utterances by

$$R_u(r_i) = \max_{w \in u} R_w(r_i)$$

• Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding, in *Proceedings of Interspeech*, 2014.

Boostrapping Unsupervised Self-Training

Training a multi-label multi-class classifier estimating relations given an utterance

Experiments of Relation Detection Dataset

Knowledge Base: Freebase

- 670K entities
- 78 entity types (movie names, actors, etc)

Relation Detection Data

- Crowd-sourced utterances
- $\,\circ\,$ Manually annotated with SPARQL queries \rightarrow relations

Query Statistics	Dev	Test
% entity only	8.9%	10.7%
% rel only w/ specified movie names	<u>27.1%</u>	<u>27.5%</u>
% rel only w/ specified other names	39.8%	39.6%
% more complicated relations	15.4%	14.7%
% not covered	8.8%	7.6%
#utterances	3338	1084

Evaluation Metric: micro F-measure (%)

	Approach		Unweighted		Weighted		Highest Weighted	
	Gazetteer	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap	
seline	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89	
	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98	
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16	

Ba

Evaluation Metric: micro F-measure (%)

	Approach	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
ſ	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
Baseline	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74

Words derived by dependency embeddings can successfully capture the surface forms of entity tags, while words derived by regular embeddings cannot.

Evaluation Metric: micro F-measure (%)

	Approach	Unweighted		Weighted		Highest Weighted	
		Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
ſ	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
Baseline	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
l	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04

Words derived from entity contexts slightly improve performance.

Evaluation Metric: micro F-measure (%)

	Annrach	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
Baseline	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
Proposed -	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

Combining all approaches performs best, while the major improvement is from derived entity surface forms.

Evaluation Metric: micro F-measure (%)

	Annuash	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
Baseline	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
Proposed	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

With the same information, learning surface forms from dependencybased embedding performs better, because there's mismatch between written and spoken language.

Evaluation Metric: micro F-measure (%)

	A mm ro o ch	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
Baseline	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
Proposed	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

Weighted methods perform better when less features, and highest weighted methods perform better when more features.

Experiments of Relation Detection

Entity Surface Forms Derived from Dependency Embeddings

The functional similarity carried by dependency-based entity embeddings effectively benefits relation detection task.

Entity Tag	Derived Word
\$character	character, role, who, girl, she, he, officier
\$director	director, dir, filmmaker
\$genre	comedy, drama, fantasy, cartoon, horror, sci
\$language	language, spanish, english, german
\$producer	producer, filmmaker, screenwriter

Experiments of Relation Detection Effectiveness of Boosting

- The best result is the combination of all approaches, because probabilities came from different resources can complement each other.
- Only adding entity surface forms performs similarly, showing that the major improvement comes from relational entity surface forms.
- Boosting significantly improves most performance

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Unsupervised Task Prediction [Chen and Rudnicky, SLT'14]

Conclusions & Future Work

Task Prediction

Target: given conversation interaction with SDS, predicting which application the user wants to launch

Approach:

- Step 1: enriching the semantics using word embeddings
- Step 2: using the descriptions of applications as a retrieval cue to find relevant applications

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Unsupervised Task Prediction [Chen and Rudnicky, SLT'14]

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- Unsupervised SLU are more and more popular.
- Using external knowledge helps SLU in different ways.
- Word embeddings is very useful

Future Work

- Fusion of various knowledge resources
 - Different resources help SLU in different ways
- Active learning
 - In terms of practical and efficiency, manually labeling a small set of samples can boost performance.

Q&A ③

THANKS FOR YOUR ATTENTIONS!!

UNSUPERVISED SPOKEN LANGUAGE UNDERSTANDING IN DIALOGUE SYSTEMS