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The Task
> Motivations > Approaches: Feature-Enriched MF-SLU
o Antypical SDS has two main challenges: o Enrich semantics with the structured knowledge or behavioral
1) Predefined ontology: the domain ontology is required to support the patterns for improving intent prediction
corresponding functions o Unify the human written knowledge and automatically inferred
2) Language ambiguity: same utterance may infer different intents during iInformation in a matrix and predict user intents in the mean time
different situations > Results
® §tructured knowledge resources are ayailable (e.g. Freebase, Wikipedia, o Feature-enriched MF-SLU benefits from hidden information and rich
-rameNet) and may provide semantic information features, and then outperforms the baselines for both single-turn
o Users’ behavioral patterns may help disambiguate the current intents requests and multi-turn interactions.
o Hidden semantics help infer the relation between different features

Feature-Enriched MF-SLU: Spoken Language Understanding by Matrix Factorization
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Matrix Factorization Conclusions

* Modeling Implicit Feedback:

+ £ - . Obiective: * In a smart-phone intelligent assistant
3]; o7 fr= (Ua33'+> » p(f+) > p(f7) J Z Z In U(9f+ — Qf—) setting (e.g. requesting an app), the
— 1 [ = ({u,z7) fHcoO f- 20 feature-enriched MF-SLU can handle
u @ . users’ open domain intents by
P(Myz=1]042) =0(0y,) = » MF learns a set of well-ranked intents returning relevant apps that provide
1+ exp (—0u,4) per utterance. desired functionality either locally
available or by suggesting installation

Experiments of suitable apps and doing so in an
- unsupervised way.

Transcripts * The framework can extend to
iIncorporate personal behavior history

Feature Matrix

LM / MLR MF-SLU LM / MLR MF-SLU for improving a system’s ability to
Word Observation 25.1 29.2 (+16.2%) 26.1 30.4 (+16.4%) assist users pursuing personalized
Single-Turn _ . multi-app activities.
+ Type-Enriched Semantics 31.5 32.2 (+2.1%) 32.9 34.0 (+3.4%) | The effectiveness of the feature.
| Word Observation 52.1 52.7 (+1.2%) 55.5 55.4 (-0.2%) enriched MF-SLU model can be
Multi-Turn + Behavioral Patterns 53.9 55.7 (+3.3%) 56.6 57.7 (+1.9%) shown In different domains, indicating

good generality and providing a
reasonable direction for the future
work.

» The feature-enriched MF-SLU can benefit from both hidden information modeled by MF and enriched semantics
Including structured knowledge and behavioral patterns to improve Intent prediction.




