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Abstract

Spoken language based intelligent assistants (IAs) have been developed for a num-
ber of domains but their functionality has mostly been confined to the scope of a
given app. One reason is that it’s is difficult for IAs to infer a user’s intent without
access to relevant context and unless explicitly implemented, context is not avail-
able across app boundaries. We describe context-aware multi-app dialog systems
that can learn to 1) identify meaningful user intents; 2) produce natural language
representation for the semantics of such intents; and 3) predict user intent as they
engage in multi-app tasks. As part of our work we collected data from the smart-
phones of 14 users engaged in real-life multi-app tasks. We found that it is reason-
able to group tasks into high-level intentions. Based on the dialog content, IA can
generate useful phrases to describe the intention. We also found that, with readily
available contexts, IAs can effectively predict user’s intents during conversation,
with accuracy at 58.9%.

1 Introduction

Intelligent assistants (IAs) on smart devices can converse with human users and help them with
simple tasks such as finding a restaurant or sending a message. But human users may interact
with their phones in more complex ways that can span multiple domains and apps. Planning and
executing such multi-domain tasks is managed by users with the global context awareness for the
tasks. We assume that IAs would become more valuable if they could actively assist on this more
abstract task level, instead of treating each domain independently.

An app IA will, by definition, not maintain expectations of any follow-up domains. It is equally
likely that the user would talk about food or weather next, regardless of the context. The conse-
quences include 1) the system may not be fully prepared as it could be, if it understands how users
actually structure such tasks; 2) the system may lose the opportunity to provide timely assistance
to smoothly guide the dialog across domains (“Do you want to send this picture to someone?”) or
share the context of the multi-app interaction to the next elemental tasks (“You mean the picture you
just took?”). In this paper, we address this issue by conducting a user study investigating how users
perform multi-app tasks via language. We demonstrate that systems with shallow understandings,
such as what the user said and the common task structures, can still improve interaction quality.

Systems that support multi-domain speech interaction have been studied in the past [11, 16]. One
realization is a distributed architecture that allows different domains to be developed independently
but cooperate with one another to respond to user input [8, 14, 2, 7]. However, these approaches wait
for the user to invoke a domain by some explicit means and do not attempt to exploit relationships
between applications that would exist in common tasks. We are interested in systems that become
aware of these relationships and are able to proactively support user activities.
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Figure 1: Multi-app annotation example; time and location are in red; constituent apps are blue.

It has been shown that based on simple context such as time or location, smartphones that anticipate
a user’s needs can significantly improve the efficiency of navigating the apps [19, 24]. However,
language interaction may generate more information, allowing for better assistance. People also
worked on discovering high-level latent structure in conversations [26], with the assumption that
utterances (words) in a dialog are generated by a dynamic latent topic. In our work, we assume that
we know previous apps (true for OS-level agent) and the latent topic (i.e. high-level intention such
as “scheduling a meeting”) is static within a dialog.

To investigate these questions we collected a corpus of actual smartphone usage, coupled with spo-
ken language versions of these activities. We use these data to build models of user activity and
provide an end-to-end pipeline for IAs to learn to understand and talk about such activities based
on the language produced by the user. We evaluate how well IAs can anticipate potential task flow
stemming from user intentions, by adapting to individual user’s language and behavior patterns and
surrounding context.

2 Data Collection

Participants in our study agreed to provide a continuous log of their smartphone use over an extended
period of time. We built an Android app to log each app invocation as an event, together with
date/time and the phone’s location (if GPS is enabled). Participants were asked to upload their log
on a daily basis. A privacy step allowed them to delete episodes that they might not wish to share.

The next task is to find meaningful groups of events (apps) from the logs submitted by users. How-
ever, due to the multi-tasking user behavior, time-based [20, 4] or content/lexicon-based [5] identi-
fication approaches may not come in handy [10]. However, this is not the focus of this paper. Initial
analysis of the data indicated that phone usage could be segmented into episodes consisting of inter-
action events closely spaced in time. We used 3 mins inactivity to separate event clusters first, based
on a pilot study. Participants were then invited to our lab on a regular basis (about once a week) to
annotate their logs to provide more accurate groupings of events.

2.1 Smart Phone Annotation

We showed participants episodes extracted from their own logs via time-based approach. Meta
information such as date, time, and location, was shown to aid recall. Participants were asked to
produce two types of annotation, using the Brat server-based tool [21]: 1) Task Structure: link
applications that served a common goal/intention; 2) Task Description: type in a brief description
of the goal or intention of the task. For example, in Fig 1, the user first linked two apps (one about
camera and another about text message) together since they were used for the goal of sharing a
photo, and wrote a description “took a pic of ”. Some of the task descriptions were quite detailed
and provided the actual app sequence executed (see example in Fig 1). However, others were quite
abstract, such as “look up math problems” or “schedule a study session”.

2.2 Interactive Dialog Task

We also let users talk to a Wizard-of-Oz dialog system to reproduce (“reenact”) the multi-domain
tasks in speech, instead of using the touch screen, in a controlled laboratory environment. The
users were shown 1) apps used; 2) task description they provided earlier; 3) meta data such as time,
location to help them recall the task (see the left part in Fig 2). The wizard (21-year-old male
native English speaker) was instructed to respond directly to participant’s goal-directed requests
and to not accept out-of-domain inputs. The participants were not required to follow the order of
the applications used on the smartphones. Other than for remaining on-task, we did not constrain
expression. An example of a transcribed dialog is shown in the right part in Fig 2. This allowed us
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:  Ready. 

:  Connect my phone to bluetooth speaker. 

:  Connected to bluetooth speaker. 

:  And play music. 

:  What music would you like to play? 

:  Shuffle playlist. 

:  I will play the music for you. 

TASK59; 20150203; 1; Tuesday; 10:48 

play music via bluetooth speaker 

com.android.settings  com.lge.music 

W1 

U1 

W2 

U2 

W3 

U3 

W4 

Meta 

Desc 

App 

Dialogue 

SETTINGS 

MUSIC 

MUSIC 

Figure 2: Multi-app task dialog example. Meta, Desc, App were shown to the participant. Utterances
were transcribed manually or via Google ASR. Apps were manually assigned to utterances.

Category #Participants Age #Apps #Tasks #Multi

Male 4 23.0 19.3 170 133
Female 10 34.6 19.1 363 322

Age < 25 6 21.2 19.7 418 345
Age ≥ 25 8 38.9 18.8 115 110

Native 12 31.8 19.3 269 218
Non-native 2 28.5 18.0 264 237

Overall 14 31.3 19.1 533 455

Table 1: Corpus characteristics. Age informally indicates young and old; #Apps is the average
number of unique apps; #Multi is the number of multi-turn dialogues.

to create parallel corpora1 of how people would use multiple apps to achieve an intention via both
smartphone (touch screen) and language. We recruited 14 participants in this study and collected 533
parallel interactions, among which 455 involve multiple user turns (see Table 1 for the breakdown).

3 Context-Aware User Models

Context has been shown to improve the performance of interactive systems [17, 6]. To predict an
individual user’s next app (e.g., MUSIC) or current intention (e.g., “organize a dinner”) during the
conversation, we trained personalized user models that include the following contextual information:
1) meta context: time, day of week, location; 2) behavioral context: the previously launched app;
3) language context: words spoken by the user (e.g., “And play music” in Fig 2). These types of
context are motivated by our observations; for example: a) people use ALARM more often in the
morning on weekdays at home; b) for some user, CAMERA is more often followed by MESSENGER
to share photos instead of EMAIL; c) “find the address of the Karaoke House in Oakland” not only
indicates the use of BROWSER, but also hints that user may want to find the route to the address via
MAPS.

However, using content-based language features such as words may suffer vocabulary-mismatch
problem [10, 18], where statements related to the same topic may end up with non-overlapping
terms, caused by minor differences such as misspellings, morphologies, etc. This can be addressed
by enriching the queries (user input in our case) so similarity measurement can more easily capture
the semantic relatedness [18]. In the current work we removed stop words and kept only lemma-
tized2 verbs and nouns to reduce (morphology) noise. Semantic similarity is beyond the scope of the
present work, although elsewhere we have used methods to expand a given (sparse) vocabulary [22].

The proposed IA can communicate at low-level actions such as “OK, let me first find a restaurant
in Oakland” and at high-level intentions such as “I think you want to plan a dinner. Let me help
you.” We implemented this two-level communication by classifying input history to the predicted
ranked list of apps or of intentions, respectively. The above three contextual (”meta”) features are

1Dataset available at http://www.cs.cmu.edu/˜mings/data/MultiDomain.tar.gz.
2http://www.nltk.org/api/nltk.stem.html
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Feature Train Test
ACC MAP ACC MAP

Language 60.5 66.5 39.1 44.0
Last App 41.9 50.7 29.7 37.2
Time 27.1 36.9 23.3 31.2
Day 26.7 36.2 22.8 30.7
Location 29.9 40.3 21.2 29.4

Majority 25.8 35.2 23.9 31.7

Meta 33.2 43.6 20.4 28.4
Meta+App 43.6 52.3 28.0 35.4
Lang+App 59.2 65.3 40.0 45.0
All 55.0 61.9 38.8 43.9

Table 2: App prediction

Feature Train Test
ACC MAP ACC MAP

Last App 51.9 60.1 52.9 61.7
Language 44.6 53.6 39.3 50.5
Location 40.3 50.4 32.8 44.7
Time 31.5 42.4 31.5 44.4
Day 29.8 40.9 31.0 43.0

Majority 27.4 38.1 31.7 44.4

Meta 48.8 58.2 31.7 43.5
Meta+App 58.7 66.3 58.9 66.0
Lang+App 58.9 66.0 54.2 62.7
All 64.5 71.1 58.9 66.1

Table 3: Intention prediction

combined in a bag-of-words. For time, we use hours, from the 24-hour clock. For day, we used
{weekday, weekend}, which appears to be more informative than {Monday, ..., Sunday}. For
location, we use the street name instead of areas based on actual distances. (Note that users did
not always share location). We evaluate using top-1 prediction accuracy (ACC) or mean average
precision (MAP) over the ranked list reflecting two practical use cases [15].

4 Experiment and Results

In this section, we describe how the agent learns to predict: 1) the next app (low-level); 2) the
current user intention (high-level). We also investigate features important for this functionality, and
how to combine available features to further improve performance. For intention understanding, we
introduce approaches to discover basic intentions and extract their semantics, to support the ability
to interact on this intention level via natural language. We used each user’s chronologically first
70% interactions as training data and used the remainder for testing.

4.1 Predicting Low-Level App

Results for different features across 14 participants’ test data are shown in Table 2; we use multi-
class logistic regression (individual features are ordered according to MAP on the test set). We used
L2 regularization and used 10-fold cross validation on the individual user’s training set to determine
the optimal regularization strength (C ∈ [0.1, 10]). The baseline, majority class, is also shown. Note
that this is a difficult task; on average each participant has 19 unique apps. As we can see, Last App
outperforms Meta features (time, location, day), which others have observed [19]; the Language
feature (lemmatized verbs and nouns) is better than Last App. When we combine all individual
features (All), we can improve on performance compared to just individual context.

Table 2 demonstrates that shallow understanding (e.g., what the user said and what app was launched
earlier) can be predictive of a user’s next actions. For example, given that MAPS is the predicted next
app, the GUI can bring it into focus; the assistant can prompt “Would you like to find the driving
directions?” or even proactively fetch and offer the information, e.g., “By the way, you can take Bus
XXX in five minutes”.

4.2 Modeling High-Level User Intention

We want IAs to be able to 1) discover meaningful intentions; 2) communicate with users at intention
level and 3) predict the intention for ongoing conversation. We first cluster all past dialogs into a
few groups, based on dialog content, task descriptions, and contextual information such as location,
time. (Ideally) each group/cluster corresponds to a particular intent. Then IA can use the language
produced in each cluster’s dialogs to automatically propose key phrases that characterize the cluster
semantics. Given a new interaction, IA would associate it with one of the clusters. In this work, we
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Cluster Item Examples (task descriptions supplied by participant)

1 “Picture messaging XXX”, “Take picture and send to XXX”

2 “Look up math problems”, “Doing physics homework”, “Listening to and trying to
buy a new song”

3 “Talking with XXX about the step challenge”, “Looking at my step count and then
talking to XXX about the step challenge”

4 “Playing [game] spiderman”, “Allocating memory for spiderman”

5 “Using calculus software”, “Purchasing Wolfram Alpha on the play store”

6 “Texting and calling XXX”, “Ask XXX if she can talk then call her”

7 “Talking and sharing with group mates”, “Emailing and texting group members”

Table 4: Intention clustering of tasks based on utterances, with typical descriptions.

describe this automated procedure, and also describe an interactive process to involve human users
in refining clustering, and to provide natural language templates to carry phrases.

4.2.1 Intention Discovery

Similar to identifying tasks from search queries for Web Search Engines [10], our goal is to identify
tasks/intentions from interaction data which is composed of sequence of apps, speech input and a
task description. We cluster each participant’s data into K clusters based on features including 1)
apps being used; 2) words in description; 3) words in user utterances in the dialog.

The group of apps in a multi-app dialog is a natural hint of what the user is trying to achieve, except
that the same set of apps may serve different purposes. For example, MAPS can given directions
to certain places (navigation task) or provide review information/phone numbers for some business
(restaurant reservation task). Using words in user descriptions (“finding a good restaurant”) or the
actual user utterances (“find me the nearest route to campus”) may disambiguate the task identity.

For each user, the number of clusters K was determined by computing gap statistics, an unsupervised
approach, during clustering [23] on the training set. On average, by using KMeans clustering, each
participant has 7.6± 1.8 clusters. Examples (task descriptions) for clusters in Table 4 show that, in
general, similar tasks cluster together. We asked 6 participants to evaluate the clustering performance
on their own data. We showed them the members of each cluster—task description, full dialog, time
and location. For each cluster, we asked them for agreement with the statement that “the dialogs
shown are essentially the same task”, from 1 (do not agree at all) to 5 (strongly agree). On average,
these 6 participants rated their agreement with the system clustering with 4.2 ± 1.2 out of 5.0.
Among 51 clusters altogether, these 6 users would further divide 10 of them (about 20%) into 27
subgroups. In short, people appear in general satisfied with the clustering algorithm we are using. It
is possible that people would manually separate a certain amount of system-proposed clusters each
into, on average, 2.7 subgroups. But this interactive process is optional.

4.2.2 Intention Representation in Natural Language

IAs may communicate with the user in language cast at the level of intention, especially in a clar-
ification phase, e.g., “are you trying to share picture with a friend?” This involves template (“are
you trying to ?”) and content (“share picture ”). We can either elicit that information from
the user or let the system automatically infer the semantics of the action in the cluster. Note that,
by abstracting the semantics of the cluster that the input speech belongs to, IA can show true (mis-
)understanding of the intention, compared with simply echoing the content of incoming speech.

Techniques are available for abstracting the semantics of each intention cluster. Text summariza-
tion may be used to generate high-level description [3, 9]. Keyphrase extraction is another alter-
native [25, 12, 1]. We chose the Rapid Automatic Keyword Extraction (RAKE) algorithm [1],
an unsupervised, language-independent and domain-independent extraction method that has been
reported to outperform other unsupervised methods such as TextRank [13] in both precision and
F-score.
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MANUAL ASR DESC DESC+ASR DESC+MANUAL

20.3 20.0 11.3 29.6 29.1

Table 5: Mean number of phrases generated using different resources

We adopted RAKE3 toolkit to propose key phrases. We required that 1) each word has to have
3 or more characters; 2) each phrase to have at most 3 words; and that 3) each key word appear
in the text at least once. These parameters were based on an examination of the data; we did not
attempt tuning. We used 3 individual resources and 2 combinations. The three individual resources
are task descriptions user typed in (DESC), manual transcription of user utterances in their dialogs
(MANUAL) and their ASR transcriptions (ASR). The average number of key phrases that can be
generated from each resource (or their combination) is shown in Table 5.

We asked the 6 users, reviewing their own clusters, to judge whether the system-generated phrase
summarized all the activities in the cluster (binary judgement). For evaluation we used: 1) Precision
at position K (P@K); 2) Mean Average Precision at position K (MAP@K); 3) Mean Reciprocal
Rank (MRR). The first two metrics emphasize the quality of the top K phrases, MRR focuses on a
practical goal—“how deep does the user has to go down a ranked list to find one useful phrase?”.
MRR is above 0.62 for the two combinations, that is, on average, the user will find an acceptable
descriptive phrase in the top 2 items; an ANOVA did not show significant differences between
resources. Using the more sensitive MAP@K and P@K metrics, DESC+ASR and DESC+MANUAL
do best. The improvement becomes significant as K increases: a user-generated task description is
very useful. Nevertheless, by observing user’s speech commands or eliciting descriptions from user,
IAs can generate understandable activity references, avoiding less efficient interactions (e.g., lists).

We also asked participants to suggest carrier phrases that could be used by the agent to refer to
activities; these were unremarkable. Among the 23 phrases collected, “do you want to ” and
“would you like to ” were the most popular. Likely content will remain the most important part.

4.2.3 Intention Prediction

Similar to app prediction described earlier, we built a user-dependent multi-class logistic regression
model to predict user intention at each dialog turn. We used data from the 6 users mentioned above,
whose clusters were initially proposed by the system automatically then refined by user if necessary.
We evaluate the performance of each feature in Table 3. Again, L2 regularization is applied with
strength C ∈ [0.1, 10] tuned through 10-fold cross validation. Last App outperforms other features.
Best performance is obtained by combining all features. We observe improvement when language
is incorporated (All vs. Meta+App), especially in the training set. Careful investigation is needed to
understand the less improvement in the testing set.

5 Conclusion

We conducted a user study to investigate how human could interact with Intelligent Agents via
speech in activities that span multiple domains/apps. We demonstrated that unsupervised techniques
can be used for automatically identifying different types of high-level user intentions from dialogs,
task descriptions, and other sources. We found that systems are able to develop a language that
allows them to talk about intentions based on natural language extracted from what humans say.
We evaluated methods to predict user intentions and the applications that they might subsequently
invoke, by exploring user-specific app relationships, taking a hint from user utterances and using
meta information such as time, location. We found language is predictive of app selection. Our
findings provide preliminary evidence that IAs might be able to learn, over time, how to talk with
users about activities that are organized at a level higher than that of individual applications; these
would be on the level of activities and intents that are specific to the individual. We believe that
this will be much like the functionality that currently is implemented in dialog applications, but
customized to the needs of the individual.

3https://www.airpair.com/nlp/keyword-extraction-tutorial
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[4] Daqing He and Ayse Göker. Detecting session boundaries from web user logs. In Proceedings of the
BCS-IRSG annual colloquium on information retrieval research, 2000.
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