Learning Bidirectional Intent Embeddings by Convolutional Deep

Structured Semantic Models for Spoken Language Understanding
Yun-Nung (Vivian) Chen, Dilek Hakkani-Tiir, and Xiaodong He

»  Motivation: Inflexible Intent Schema

@ Intents are usually predefined and inflexible to expand and transfer across domains
and genres
o Re-designing a semantic schema requires manual annotation and model re-training.

»  Approach: Learning Intent Representation

e Learn high-level semantic representations to bridge the semantic relation across
domains and across genres

v Cross-domain: intent expansion v Cross-genre: actionable item detection
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how about we discuss this later

> Training Procedure A(6;) = log Pt |U) - Predictive Model: maximizes the likelihood
W1 of associated intents given utterances
-=> Generative Model: maximizes the likelihood
e A(B,) =lo P(UT|I
() =log o ( 2) & (J_ ‘+‘) ( | ) of generated utterances given user intents
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