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 Motivation: Inflexible Intent Schema 

o Intents are usually predefined and inflexible to expand and transfer across domains 

and genres

o Re-designing a semantic schema requires manual annotation and model re-training.

 Approach: Learning Intent Representation

o Learn high-level semantic representations to bridge the semantic relation across 

domains and across genres
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 Cross-genre: actionable item detection Cross-domain: intent expansion
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 Model Architecture

 Training Procedure  Predictive Model: maximizes the likelihood 
of associated intents given utterances
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 Generative Model: maximizes the likelihood 
of generated utterances given user intents


