Learning Bidirectional Intent Embeddings by Convolutional Deep Structured Semantic Models for Spoken Language Understanding

Yun-Nung (Vivian) Chen, Dilek Hakkani-Tür, and Xiaodong He

- **Motivation:** *Inflexible Intent Schema*
 - Intents are usually *predefined* and *inflexible* to expand and transfer across domains and genres
 - Re-designing a semantic schema requires manual annotation and model re-training.

- **Approach:** *Learning Intent Representation*
 - Learn *high-level semantic representations* to bridge the semantic relation across domains and across genres

- **Cross-domain:** intent expansion
- **Cross-genre:** actionable item detection

Find Calendar Entry

Will Vivian come here for the meeting?

Carnegie Mellon

Microsoft Research
Learning Bidirectional Intent Embeddings by Convolutional Deep Structured Semantic Models for Spoken Language Understanding

Yun-Nung (Vivian) Chen, Dilek Hakkani-Tür, and Xiaodong He

- **Model Architecture**
 - Semantic Layer: y
 - Semantic Projection Matrix: W_s
 - Max Pooling Layer: l_m
 - Max Pooling Operation
 - Convolutional Layer: l_c
 - Convolution Matrix: W_c
 - Word Hashing Layer: l_h
 - Word Hashing Matrix: W_h
 - Word Sequence: x

 ![Model Architecture Diagram]

 Max Pooling Operation

 ![Max Pooling Operation Diagram]

- **Training Procedure**

 $\Lambda(\theta_1) = \log \prod_{(U, I^+)} P(I^+ | U)$

 $\Lambda(\theta_2) = \log \prod_{(I^+, U)} P(U^+ | I)$

 Predictive Model: maximizes the likelihood of associated intents given utterances

 Generative Model: maximizes the likelihood of generated utterances given user intents

- **How about we discuss this later**