

Unsupervised Spoken Language Understanding in Dialogue Systems

YUN-NUNG (VIVIAN) CHEN 陳縕儂
CARNEGIE MELLON UNIVERSITY
2015/01/16 @NCTU

HTTP://VIVIANCHEN.IDV.TW

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Domain Exploration [Chen and Rudnicky, SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Conclusions & Future Work

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Domain Exploration [Chen and Rudnicky, SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Conclusions & Future Work

Spoken Language Understanding (SLU)

SLU in dialogue systems

SLU maps natural language inputs to semantic forms
 "I would like to go to NCTU on Friday."

location: NCTU date: Friday

- Semantic frames, slots, and values
 - often manually defined by domain experts or developers.

What are the problems?

Problems with Predefined Information

Generalization: may not generalize to real-world users.

Bias propagation: can bias subsequent data collection and annotation.

Maintenance: when new data comes in, developers need to start a new round of annotation to analyze the data and update the grammar.

Efficiency: time consuming, and high costs.

Can we automatically induce semantic information w/o annotations?

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Domain Exploration [Chen and Rudnicky, SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Conclusions & Future Work

Unsupervised Slot Induction

Motivation

- Spoken dialogue systems (SDS) require predefined semantic slots to parse users' input into semantic representations
- Frame semantics theory provides generic semantics
- Distributional semantics capture contextual latent semantics

Probabilistic Frame-Semantic Parsing

FrameNet [Baker et al., 1998]

- a linguistically-principled semantic resource, based on the frame-semantics theory.
- "low fat milk" → "milk" evokes the "food" frame;
 "low fat" fills the descriptor frame element

- Frame (food): contains words referring to items of food.
- Frame Element: a descriptor indicates the characteristic of food.

SEMAFOR [Das et al., 2010; 2013]

 a state-of-the-art frame-semantics parser, trained on manually annotated FrameNet sentences

Step 1: Frame-Semantic Parsing for ASR outputs

Task: adapting *generic* frames to *task-specific* settings for SDSs

Main Idea

 Ranking domain-specific concepts higher than generic semantic concepts

Rank the slot candidates by integrating two scores

$$w(s_i) = (1 - \alpha) \log f(s_i) + \alpha \cdot \log h(s_i)$$

the frequency of the slot candidate in the SEMAFOR-parsed corpus

the coherence of slot fillers

slots with higher frequency may be more important

domain-specific concepts should focus on fewer topics and be similar to each other

slot: quantity

lower coherence in topic space

slot: expensiveness

cheap inexpensive expensive

higher coherence in topic space

Measure coherence by pair-wised similarity of slot fillers

 $^{\circ}$ For each slot candidate $\,S_{i}\,$

$$V(s_i) = \{x_a, x_b, ...\}$$

slot candidate: expensiveness corresponding slot filler: "cheap", "not expensive"

$$h(s_i) = \frac{\sum_{x_a, x_b \in V(s_i), x_a \neq x_b} \text{Sim}(x_a, x_b)}{|V(s_i)|^2}$$

The slot with higher $h(s_i)$ usually focuses on fewer topics, which are more specific, which is preferable for slots of SDS.

How to define the vector for each slot filler?

- Run clustering and then build vectors based on clustering results
 - K-means, spectral clustering, etc.
- Use distributional semantics to transfer words into vectors
 - LSA, PLSA, neural word embeddings (word2vec)

Dataset

- Cambridge University SLU corpus [Henderson, 2012]
 - Restaurant recommendation in an in-car setting in Cambridge
 - WER = 37%
 - vocabulary size = 1868
 - 2,166 dialogues
 - 15,453 utterances
 - dialogue slot: addr, area, food, name, phone, postcode, price range, task, type

The mapping table between induced and reference slots

- Slot Induction Evaluation: MAP of the slot ranking model to measure the quality of induced slots via the mapping table
- Slot Filling Evaluation: MAP-F-H/S: weight the MAP score with F-measure of two slot filler lists

Approach				ASR		
				MAP	MAP-F-H	MAP-F-S
Frame Sem	(a)	Frequency		67.61	26.96	27.29
	(b)	K-Means		67.38	27.38	27.99
	(c)	Spectral Clustering		68.06	30.52	28.40
Frame Sem + Dist Sem	(d)	Google News	RepSim	72.71	31.14	31.44
	(e)		NeiSim	73.35	31.44	31.81
	(f)	Freebase	RepSim	71.48	29.81	30.37
	(g)		NeiSim	73.02	30.89	30.72
	(h)	(d) + (e) + (f) + (g)		76.22	30.17	30.53

Approach				ASR		
				MAP	MAP-F-H	MAP-F-S
Frame Sem	(a)	Frequency		67.61	26.96	27.29
	(b)	K-Means		67.38	27.38	27.99
	(c)	Spectral Clustering		68.06	30.52	28.40
Frame Sem + Dist Sem	(d)	Google News	RepSim	72.71	31.14	31.44
	(e)		NeiSim	73.35	31.44	31.81
	(f)	Freebase	RepSim	71.48	29.81	30.37
	(g)		NeiSim	73.02	30.89	30.72
	(h)	(d) + (e) + (f) + (g)		76.22	30.17	30.53

Adding distributional information outperforms our baselines

Approach				ASR		
				MAP	MAP-F-H	MAP-F-S
Frame Sem	(a)	Frequency		67.61	26.96	27.29
	(b)	K-Means		67.38	27.38	27.99
	(c)	Spectral Clustering		68.06	30.52	28.40
Frame Sem + Dist Sem	(d)	Google News	RepSim	72.71	31.14	31.44
	(e)		NeiSim	73.35	31.44	31.81
	(f)	Freebase	RepSim	71.48	29.81	30.37
	(g)		NeiSim	73.02	30.89	30.72
	(h)	(d) + (e) + (f) + (g)		76.22	30.17	30.53

Combining two datasets to integrate the coverage of Google and precision of Freebase can rank correct slots higher and performs the best MAP scores

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14] Question?

Unsupervised Domain Exploration [Chen and Rudnicky, SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14]

Conclusions & Future Work

Unsupervised Domain Exploration

Target: given conversation interaction with SDS, predicting which application the user wants to launch

Approach:

- Step 1: enriching the semantics using word embeddings
- Step 2: using the descriptions of applications as a retrieval cue to find relevant applications

Proposed Framework

Proposed Framework

Semantic Seed Generation

- Main idea: <u>Slot types</u> help imply semantic meaning of the utterance for expanding domain knowledge.
- Frame Type of Semantic Parsing

 $S_{frm}(Q)$: frame-based semantic seeds

Semantic parsing performs well on a generic domain, and cannot recognize domain-specific named entities.

Semantic Seed Generation

- Main idea: <u>Slot types</u> help imply semantic meaning of the utterance for expanding domain knowledge.
- Entity Type from Linked Structured Knowledge
 - Wikipedia Page Linking
- Freebase List Linking

Q: play lady gaga's bad romance

| Age | Policy | Policy

 $S_{wk}(Q)$: wikipedia-based semantic seeds

... is an American singer, songwriter, and actress

 $S_{fb}(Q)$: freebase-based semantic seeds

Proposed Framework

Semantic Enrichment

- Main idea: Utilizing distributed word embeddings to obtain the semantically related knowledge of each word.
 - 1) Modeling word embeddings by the application vender descriptions.
 - Extracting the most related words by trained word embeddings for each word. (ex. "text" → "message", "msg")

Words with higher similarity suggest that they are often occurs with common contexts in the embedding training data.

Proposed Framework

Retrieval Process

- Main idea: Retrieving the applications that are more likely to support users' requests.
 - Query Reformulation (Q')
 - \circ Embedding-Enriched Query: integrates similar words to all words in Q
 - Type-Embedding-Enriched Query: additionally adds similar words to semantic seeds S(Q)
 - Ranking Model

$$P(Q \mid A) = \frac{1}{|Q'|} \sum_{x \in Q'} \log P(x \mid A)$$
 at user speaks Q to probability that word x

probability that user speaks Q to make the request for launching the application A

The application with higher $P(Q \mid A)$ is more likely to be able to support the user desired functions.

occurs in the

application

Results

Overall Results

Tune the thresholds by develop set

۸۰۰	araach	ASR			
App	oroach	MAP	P@5		
Origin	nal Query	25.50	34.97		
Embeddi	ng-Enriched	30.42	40.72		
Type- Embed Enriched	Frame	30.11	39.59		
	Wikipedia	30.74	40.82		
	Freebase	32.02	41.23		
	Hand-Craft	34.91	45.03		

- Enriching semantics improves performance by involving domain-specific knowledge.
- Freebase results are better than the embedding-enriched method, showing that we can effectively and efficiently expand domain-specific knowledge by types of slots from Freebase.
- Hand-crafted mapping shows that the correct types of slots offer better understanding and tells the room of improvement.

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Domain Exploration [Chen and Rudnicky, SLT'14] Question?

Unsupervised Relation Detection [Chen et al., SLT'14]

Conclusions & Future Work

Unsupervised Relation Detection

Spoken Language Understanding (SLU): convert ASR outputs into predefined semantic output format

"when was james cameron's avatar released"

Intent: FIND_RELEASE_DATE

Slot-Val: MOVIE_NAME="avatar", DIRECTOR_NAME="james cameron"

Relation: semantic interpretation of input utterances

movie.release_date, movie.name, movie.directed_by, director.name

Unsupervised SLU: utilize external knowledge to help relation detection without labelled data

Semantic Knowledge Graph

Priors for SLU

What are knowledge graphs?

- Graphs with
 - strongly typed and uniquely identified entities (nodes)
 - facts/literals connected by relations (edge)

Examples:

Satori, Google KG, Facebook Open Graph,
 Freebase

How large?

> 500M entities, >1.5B relations, > 5B facts

How broad?

- Wikipedia-breadth: "American Football" ←→ "Zoos"
- Slides of Larry Heck, Dilek Hakkani-Tur, and Gokhan Tur, <u>Leveraging Knowledge Graphs for Web-Scale Unsupervised</u>
 <u>Semantic Parsing</u>, in *Proceedings of Interspeech*, 2013.

Semantic Interpretation via Relations

Two Examples

differentiate two examples by including the originating node types in the relation

User Utterance:

find movies produced by james cameron

SPARQL Query (simplified):

SELECT ?movie {?movie. ?movie.produced_by?producer.
?producer.name"James Cameron".}

Logical Form:

 λx . $\exists y$. movie.produced by(x, y) Λ person.name(y, z) Λ z="James Cameron"

Relation:

movie.produced_by producer.name

User Utterance:

who produced avatar

SPARQL Query (simplified):

SELECT ?producer {?movie.name"Avatar". ?movie.produced_by?producer.}

Logical Form:

 λy . $\exists x$. movie.produced by(x, y) Λ movie.name(x, z) Λ z="Avatar"

Relation:

movie.name movie.produced_by

Proposed Framework

Proposed Framework

producer

director

james

cameron

Relation Inference from Gazetteers

Gazetteers (entity lists)

#movies James Cameron directed "james cameron"

$$P_{E}(t_{i} \mid w) = \frac{C(w, t_{i})}{\sum_{t_{k} \in T(w)} C(w, t_{k})}$$
director
$$P_{E}(r_{i} \mid w) = P_{E}(t_{i} \mid w)$$
conditions and the condition of the condition

 $P_E(r_i \mid w) = P_E(t_i \mid w)$

movie.directed_by director director.name

director

Proposed Framework

Web Resource Mining

Bing query snippets including entity pairs connected with specific relations in KG

Avatar is a 2009 American epic science fiction film directed by James Cameron.

directed by

Dependency Parsing

Dependency-Based Entity Embeddings

Word & Context Extraction

Word	Contexts		
\$movie	film/nsub ⁻¹		
is	film/cop ⁻¹		
a	film/det ⁻¹		
2009	film/num ⁻¹		
american, epic, science, fiction	film/nn ⁻¹		

Word	Contexts			
film	film/nsub, is/cop, a/det, 2009/num, american/nn, epic/nn, science/nn, fiction/nn, directed/vmod			
directed	\$director/prep_by			
\$director	directed/prep_by ⁻¹			

Dependency-Based Entity Embeddings

2) Training Process

- \circ Each word w is associated with a vector v_w and each context c is represented as a vector v_c
- $^{\circ}$ Learn vector representations for both words and contexts such that the dot product $v_w \cdot v_c$ associated with good word-context pairs belonging to the training data D is maximized

• Objective function:
$$\arg\max_{v_w,v_c}\sum_{(w,c)\in D}\log\frac{1}{1+\exp(-v_c\cdot v_w)}$$

Word	Contexts		
\$movie	film/nsub ⁻¹		
is	film/cop ⁻¹		
a	film/det ⁻¹		
2009	film/num ⁻¹		
american, epic, science, fiction	film/nn ⁻¹		

Word	Contexts
film	film/nsub, is/cop, a/det, 2009/num, american/nn, epic/nn, science/nn, fiction/nn, directed/vmod
directed	\$director/prep_by
\$director	directed/prep_by ⁻¹

Surface Form Derivation

Entity Surface Forms

learn the surface forms corresponding to entities

based on word vector v_{ij}

\$char, \$director, etc.

\$char: "character", "role", "who" \$director: "director", "filmmaker"

\$genre: "action", "fiction"

→ with similar contexts

Entity Syntactic Contexts

learn the important contexts of entities

$$S_i^C(w_j) = \underbrace{\frac{\sin(\hat{w_j}, e_i)}{\sum_{e_k \in E} \sin(\hat{w_j}, e_k)}}_{\text{based on context vector } v_c}$$

\$char: "played" \$director: "directed"

> frequently occurring together

Proposed Framework

Probabilistic Enrichment

Integrate relations from

- \circ Prior knowledge $P_E(r\mid w)$
- Entity surface forms $P_F(r \mid w)$
- \circ Entity syntactic contexts $P_C(r \mid w)$

r	actor	produced_by	location	
$P_E(r \mid w)$	0.7	0.3	0	
$P_F(r \mid w)$	0.4	0	0.6	
$P_C(r \mid w)$	0	0	0	
Unweighted $R_w(r)$	1	1	1	
Weighted $R_w(r)$	0.7	0.3	0.6	
Highest Weighted $R_w(r)$	0.7	0	0.6	

Integrated Relations for Words by

- Unweighted: combine all relations with binary values
- Weighted: combine all relations and keep the highest weights of relations
- · Highest Weighted: combine the most possible relation of each word

Integrated Relations for Utterances by

$$R_u(r_i) = \max_{w \in u} R_w(r_i)$$

• Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding, in *Proceedings of Interspeech*, 2014.

Boostrapping

Unsupervised Self-Training

Training a multi-label multi-class classifier estimating relations given an utterance

Experiments of Relation Detection Dataset

Knowledge Base: Freebase

- 670K entities
- 78 entity types (movie names, actors, etc)

Relation Detection Data

- Crowd-sourced utterances
- Manually annotated with SPARQL queries → relations

Query Statistics	Dev	Test
% entity only	8.9%	10.7%
% rel only w/ specified movie names	<u>27.1%</u>	<u>27.5%</u>
% rel only w/ specified other names	39.8%	39.6%
% more complicated relations	15.4%	14.7%
% not covered	8.8%	7.6%
#utterances	3338	1084

User Utterance:

who produced avatar

Relation:

movie.name

movie.produced_by

All performance

Evaluation Metric: micro F-measure (%)

	Annroach	Unwe	Unweighted		Weighted		Highest Weighted	
	Approach	Ori	Boostrap	Ori	Boostrap	Ori	Boostrap	
(Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89	
ļ	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98	
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16	

Baseline

All performance

Evaluation Metric: micro F-measure (%)

	Approach	Unwe	eighted	Weighted		Highest Weighted	
		Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
U	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74

Baseline

Words derived by dependency embeddings can successfully capture the surface forms of entity tags, while words derived by regular embeddings cannot.

All performance

Evaluation Metric: micro F-measure (%)

	Approach	Unweighted		Weighted		Highest Weighted	
		Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
\	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
l	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
,	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04

Words derived from entity contexts slightly improve performance.

All performance

Evaluation Metric: micro F-measure (%)

	Approach	Unweighted		Weighted		Highest Weighted	
		Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
ł	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
l	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
ł	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

Combining all approaches performs best, while the major improvement is from derived entity surface forms.

Baseline

Proposed -

All performance

Evaluation Metric: micro F-measure (%)

	Approach	Unweighted		Weighted		Highest Weighted	
		Ori	Boostrap	Ori	Boostrap	Ori	Boostrap
	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89
ł	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98
l	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74
{	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04
l	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34

With the same information, learning surface forms from dependency-based embedding performs better, because there's mismatch between written and spoken language.

Proposed

All performance

Evaluation Metric: micro F-measure (%)

	Approach	Unwei	Unweighted		Weighted		Highest Weighted	
		Ori	Boostrap	Ori	Boostrap	Ori	Boostrap	
	Gazetteer	35.21	36.91	37.93	40.10	36.08	38.89	
ł	Gazetteer + Weakly Supervised	25.07	37.39	39.04	39.07	39.40	39.98	
	Gazetteer + Entity Surface Form (Reg)	34.23	34.91	36.57	38.13	34.69	37.16	
	Gazetteer + Entity Surface Form (Dep)	37.44	38.37	41.01	41.10	39.19	42.74	
ł	Gazetteer + Entity Context	35.31	37.23	38.04	38.88	37.25	38.04	
	Gazetteer + Entity Surface Form + Context	37.66	38.64	40.29	41.98	40.07	43.34	

Weighted methods perform better when less features, and highest weighted methods perform better when more features.

Baseline

Proposed.

Entity Surface Forms Derived from Dependency Embeddings

The functional similarity carried by dependency-based entity embeddings effectively benefits relation detection task.

Entity Tag	Derived Word
\$character	character, role, who, girl, she, he, officier
\$director	director, dir, filmmaker
\$genre	comedy, drama, fantasy, cartoon, horror, sci
\$language	language, spanish, english, german
\$producer	producer, filmmaker, screenwriter

Effectiveness of Boosting

- The best result is the combination of all approaches, because probabilities came from different resources can complement each other.
- Only adding entity surface forms performs similarly, showing that the major improvement comes from relational entity surface forms.
- Boosting significantly improves most performance

Outline

Introduction

Unsupervised Slot Induction [Chen et al., ASRU'13 & Chen et al., SLT'14]

Unsupervised Domain Exploration [Chen and Rudnicky, SLT'14]

Unsupervised Relation Detection [Chen et al., SLT'14] Question?

Conclusions & Future Work

Conclusions & Future Work

Conclusions

- Unsupervised SLU are more and more popular.
- Using external knowledge helps SLU in different ways.
- Word embeddings is very useful

Future Work

- Fusion of various knowledge resources
 - Different resources help SLU in different ways
- Relation between slots
 - Understanding Inter-slot relations can help develop better SDS
- Active learning
 - In terms of practical and efficiency, manually labeling a small set of samples can boost performance.

THANKS FOR YOUR ATTENTIONS!!