

Semantically-Aligned Equation Generation for Solving and Reasoning Math Word Problems

Ting-Rui Chiang and Yun-Nung (Vivian) Chen <u>https://github.com/MiuLab/E2EMathSolver</u>

Math Word Problem

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Prior Work

 $\mathbf{\Omega}$

LA

NTC

Δ

Non-neural approaches

• Template-based (Kushman et al., Upadhyay and Chang)

$$x = (? + ?) \times ? - ?$$

fill
 $x = (1+2) \times 3 - 4$

Rely on hand-crafted features!

Deep learning

• Seq2Seq (Wang et al., Ling et al.) Problem

generate

$$x = (1+2) \times 3 - 4$$

Does not use the structure of math expression.

Our model is end-to-end and structural!

Overview of the Proposed Model

Look Again at the Problem

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Semantic Meaning of the Operands

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Idea: Bridging Symbolic and Semantic Worlds

Symbolic World

Semantic World

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Preprocess

Symbolic Part

Symbol Encoding

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Semantic Generation for Unknown x

Operands & Their Semantics

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Semantic Part

Intuition of Using Semantics

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Equation Generation in Postfix

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

 $x \ 10 \ 1 \ 5 \ \times \ - \ 0.5 \ \div =$

Stack is used

 \mathbf{m}

NLA

NTO

16

- The decoder generates stack actions.
- An equation is generated with actions on stack.

$$x = 10 - 1 \times 5 \div 0.5$$

Action Selection in Each Step

 \mathbf{m} 4 D \vdash Ζ 20

 \mathbf{m} 4 D 0.5 10 \vdash Ζ 21 5

 ${\mathcal X}$

Generated Actions: $x \ 10 \ 1 \ 5 \ \times 0.5 \div =$

Training Process

- Target equation is given.
- Trained as Seq2Seq.

 $\mathbf{\Omega}$

4

N

⊢ Z

22

Encoder

Each notebook takes \$0.5 and each pen takes \$1. Tom has \$10. How many notebooks can he buy after buying 5 pens?

1

1

10

5

. . .

Decoder

5

10

X

X

<bos>

Experiments

- Dataset: Math23k
- In Chinese
- 23000 math word problems.
- Operators: +, -, ×, ÷

Results

Ablation Test

Self-Attention for Qualitative Analysis

Self-Attention for Qualitative Analysis

Attention for Operand Semantics

- The attention focuses on:
- Informative verbs

 "gain", "get", "fill", etc.

 $\mathbf{\Omega}$

NTO

30

Quantifier-related words

 "every", "how many", etc.

Conclusion

Three main contributions

- Approach: equation generation with stack
- Originality: automatic extraction of operand semantics
- Performance: a SOTA end-to-end neural model on Math23k

