
 Motivation

o SDSs require a predefined semantic ontology; can it be learned from data?

o Inter-slot relations can provide a coherent ontology

o Typed dependencies enable learning of ontology structure

 Approach

1) Construct two-layer knowledge graph represent slots, words, and relations

2) Compute scores for edges (relations) and nodes (slots) by random walk

3) Identify important slots associated with relations

 Result

o Using embedding similarity, we achieve 70% AP for slot induction and 48% AF for SLU

o The automatically acquired slot set enhances the interpretability of semantic slots
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Structure can be constructed via the unlabeled collection with 
frame-semantic parsing and syntactic dependency parsing.

Step 1: Knowledge Graph Construction

Slot-Based Semantic KG

Word-Based Lexical KG

𝐿𝑤𝑤

Idea: the edge weights can represent the relation importance
• We train dependency-based word/slot embeddings [1].

Then the relation matrices can be built
• Slot-to-slot relation 𝐿𝑠𝑠: similarity between slot embeddings
• Word-to-slot relation 𝐿𝑤𝑠 or 𝐿𝑠𝑤: frequency of the slot-word pair
• Word-to-word relation 𝐿𝑤𝑤: similarity between word embeddings

Assumption: the slots with more dependencies to more important 
slots should be more important
The random walk algorithm computes the importance for each slot

𝐿𝑠𝑠
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[1] Levy and Goldberg, " Dependency-Based Word Embeddings,"  Proc. of ACL, 2014.
[2] Released code: https://github.com/yvchen/MRRW

 The converged scores suggest whether the slots are important for 
this domain based on the automatically built structure [2].

Step 2: Weight Measurement
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Step 3: Domain Slot/Relation Identification

𝐿𝑠𝑤

Converged slot importance helps us identify domain ontology:
1. Rank slot pairs by summing up their converged scores
2. Select slot pairs with higher scores according to a threshold
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• Domain: restaurant recommendation in an in-car setting (WER = 37%)

o Dialogue slots: addr, area, food, phone, postcode, pricerange, task, type
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• AP: Average Precision given a ranked list 
of induced slots and associated scores

• AF: Average micro F-measure of SLU 
models at all cut-off positions in the 
ranked list

 The double-layer random walk 
performs best for slot induction 
and almost best for SLU.

the reference ontology with the most 
frequent dependencies

Can a dialogue system automatically learn open domain knowledge?
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