

- Motivation
 - SDSs require a predefined semantic ontology; can it be learned from data?
 - Inter-slot relations can provide a coherent ontology Ο

Typed dependencies enable learning of ontology structure Ο > Approach

- Construct two-layer knowledge graph represent slots, words, and relations
- Compute scores for edges (relations) and nodes (slots) by random walk 2)
- Identify important slots associated with relations 3)
- ➢ Result
 - Using embedding similarity, we achieve 70% AP for slot induction and 48% AF for SLU Ο
 - The automatically acquired slot set enhances the interpretability of semantic slots

Step 1: Knowledge Graph Constructi

Structure can be constructed via the unlabeled collection frame-semantic parsing and syntactic dependency pars

Word-Based Lexical KG

Jointly Modeling Inter-Slot Relations by Random Walk on Knowledge Graphs for Unsupervised Spoken Language Understanding Yun-Nung (Vivian) Chen, William Yang Wang, and Alexander I. Rudnicky

Summary

tion	Step 2: Weight Me	
ion with rsing.	Idea: the edge weights can represent thWe train dependency-based word/s	
ant	 Then the relation matrices can be built Slot-to-slot relation L_{ss}: similarity be Word-to-slot relation L_{ws} or L_{sw}: free Word-to-word relation L_{ww}: similarity 	
y_use	Assumption: the slots with more depoint slots should be more important The random walk algorithm computes	
Less L _{sw} Cheap L _{ww}	slot importance original f $\begin{cases} r_s^{(t+1)} = (1 - \alpha)r_s^{(t+1)} \\ r_w^{(t+1)} = (1 - \alpha)r_w^{(t+1)} \end{cases}$	
	The converged scores suggest wheth this domain based on the automatication	
	[1] Levy and Goldberg, " Dependency-Based Wo [2] Released code: https://github.com/wychen/N	

ord Embeddings," Proc. of ACL, 2014. [2] Released code: https://github.com/yvchen/MRRW

Experimental Results • Domain: restaurant recommendation in an in-car setting (WER = 37%) • Dialogue slots: addr, area, food, phone, postcode, pricerange, task, type Unlabelled Collection • **AP:** Average Precision given a ranked list Slot Induction (AP) SLU (AF) of induced slots and associated scores 71.48 • **AF:** Average micro F-measure of SLU 69.04 models at all cut-off positions in the ranked list 56.69 The double-layer random walk 48.89 47.91 performs best for slot induction **Domain-Specific Ontology** 43.28 and almost best for SLU. Baseline Single-Layer RW Double-Layer RW "can I have a cheap restaurant" \circ \circ Semantic Decoder Training Semantic KG **SLU Model** Slot Ranking Lexical KG Model target=restaurant, pricerange=cheap Semantic Representation Induced Slots Step 3: Domain Slot/Relation Identification easurement the relation importance Converged slot importance helps us identify domain ontology: slot embeddings [1]. Rank slot pairs by summing up their converged scores Select slot pairs with higher scores according to a threshold PREP FOR

etween slot embeddings requency of the slot-word pair rity between word embeddings

endencies to more important

the importance for each slot

frequency score (0) $\alpha L_{ss} L_{sw} T_w$ $+ \alpha L_{ww} L_{ws} r_s^{\prime}$

her the slots are important for cally built structure [2].

scores propagated from word-layer then propagated within slot-layer

locale by use building	→ type	(
food origin	→ food	
contacting	\rightarrow phone	(
seeking desiring locating	→ task	
sending	\rightarrow postcod	e

