

### DERIVING LOCAL RELATIONAL SURFACE FORMS FROM DEPENDENCY-BASED ENTITY EMBEDDINGS FOR UNSUPERVISED SPOKEN LANGUAGE UNDERSTANDING

YUN-NUNG (VIVIAN) CHEN & DILEK HAKKANI-TÜR



Yun-Nung (Vivian) Chen

PhD student advised by Prof. Alexander I Rudnicky

Language Technologies Institute, School of Computer Science, Carnegie Mellon University

Research focus: spoken dialogue system, unsupervised spoken language understanding

# Outline

### Introduction

- Main Idea
- Semantic Knowledge Graph
- Semantic Interpretation via Relation

Proposed Approach

- Relation Inference from Gazetteers
- Relational Surface Form Derivation
- Probabilistic Enrichment
- Boostrapping

Experiments

### Conclusions

Ongoing & Future Work

## Main Idea Relation Detection for Unsupervised SLU

**Spoken Language Understanding (SLU)**: convert automatic speech recognition (ASR) outputs into pre-defined semantic output format

- "when was james cameron's avatar released"

Intent: FIND\_RELEASE\_DATE Slot-Val: MOVIE\_NAME="avatar", DIRECTOR\_NAME="james cameron"

**Relation:** semantic interpretation of input utterances

movie.release\_date, movie.name, movie.directed\_by, director.name

Unsupervised SLU: utilize external knowledge to help relation detection without labelled data

## Semantic Knowledge Graph Priors for SLU

### What are knowledge graphs?

- Graphs with
  - strongly typed and uniquely identified entities (nodes)
  - facts/literals connected by relations (edge)

### Examples:

• Satori, Google KG, Facebook Open Graph, Freebase

How large?

> 500M entities, >1.5B relations, > 5B facts

### How broad?

- Slides of Larry Heck, Dilek Hakkani-Tur, and Gokhan Tur, Leveraging Knowledge Graphs for Web-Scale Unsupervised Semantic Parsing, in Proceedings of Interspeech, 2013.



# Semantic Interpretation via Relations

### **Two Examples**

• differentiate two examples by including the originating node types in the relation

#### **User Utterance:**

find movies produced by james cameron

### SPARQL Query (simplified):

SELECT ?movie {?movie. ?movie.produced\_by?producer. ?producer.name"James Cameron".}

### Logical Form:

 $\lambda x$ .  $\exists y$ . movie.produced\_by(x, y)  $\Lambda$  person.name(y, z)  $\Lambda$  z="James Cameron" **Relation:** 

movie.produced\_by producer.name

#### **User Utterance:**

who produced avatar

### SPARQL Query (simplified):

SELECT ?producer {?movie.name"Avatar". ?movie.produced\_by?producer.} Logical Form:

 $\lambda y$ .  $\exists x. movie.produced_by(x, y) \land movie.name(x, z) \land z="Avatar"$ **Relation:** 

movie.name movie.produced\_by



>、 produced\_by

PERSON

name

# Proposed Framework



# Proposed Framework



# Relation Inference from Gazetteers

Gazetteers (entity lists)



• Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding, in *Proceedings of Interspeech*, 2014.

# Proposed Framework



## Relational Surface Form Derivation Web Resource Mining

Bing query snippets including entity pairs connected with specific relations in KG



# Relational Surface Form Derivation (cont.)

Dependency-Based Entity Embeddings

1) Word & Context Extraction



| Word                             | Contexts                | Word       | Contexts                                                    |
|----------------------------------|-------------------------|------------|-------------------------------------------------------------|
| \$movie                          | film/nsub <sup>-1</sup> |            | film/nsub, is/cop, a/det, 2009/num,                         |
| is                               | film/cop <sup>-1</sup>  | film       | american/nn, epic/nn, science/nn, fiction/nn, directed/vmod |
| а                                | film/det <sup>-1</sup>  | directed   | Śdirector/prep. by                                          |
| 2009                             | film/num <sup>-1</sup>  | unceteu    | Surcetor/prep_by                                            |
| 2009                             | mmynum                  | \$director | directed/prep by-1                                          |
| american, epic, science, fiction | film/nn <sup>-1</sup>   |            |                                                             |

## Relational Surface Form Derivation (cont.) Dependency-Based Entity Embeddings

### 2) Training Process

- Each word w is associated with a vector  $v_w$  and each context c is represented as a vector  $v_c$
- Learn vector representations for both words and contexts such that the dot product  $v_w \cdot v_c$ associated with good word-context pairs belonging to the training data D is maximized
- Objective function:

$$\arg\max_{v_w, v_c} \sum_{(w,c)\in D} \log \frac{1}{1 + \exp(-v_c \cdot v_w)}$$

| Word                             | Contexts                | Word      | Contexts                                                    |
|----------------------------------|-------------------------|-----------|-------------------------------------------------------------|
| \$movie                          | film/nsub <sup>-1</sup> |           | film/nsub, is/cop, a/det, 2009/num,                         |
| is                               | film/cop <sup>-1</sup>  | film      | american/nn, epic/nn, science/nn, fiction/nn, directed/ymod |
| а                                | film/det <sup>-1</sup>  | directed  | Śdirector/prep. by                                          |
| 2009                             | film/num⁻¹              | directed  |                                                             |
| american, epic, science, fiction | film/nn <sup>-1</sup>   | Şdirector | directed/prep_by <sup>-1</sup>                              |

## Relational Surface Form Derivation (cont.) Surface Form Derivation

### Entity Surface Forms

• learn the <u>surface forms</u> corresponding to entities \$char, \$director, etc.

$$S_i^F(w_j) = \underbrace{\frac{\sin(w_j, e_i)}{\sum_{e_k \in E} \sin(w_j, e_k)}}_{P^F(r_i \mid w_j)}$$

based on word vector  $v_w$ 

\$char: "character", "role", "who"
\$director: "director", "filmmaker"
\$genre: "action", "fiction"

 $\rightarrow$  with similar contexts

Entity Syntactic Contexts

learn the <u>important contexts</u> of entities

$$S_{i}^{C}(w_{j}) = \underbrace{\frac{\sin(\hat{w}_{j}, e_{i})}{\sum_{e_{k} \in E} \sin(\hat{w}_{j}, e_{k})}}_{\text{based on context vector } v_{e_{k}}}$$

\$char: "played"
\$director: "directed"

 $\rightarrow$  frequently occurring together

# Proposed Framework



# Probabilistic Enrichment

Integrate relations from

- $\circ$  Prior knowledge  $P_E(r \mid w)$
- Entity surface forms  $P_F(r \mid w)$
- $\,\circ\,$  Entity syntactic contexts  $P_C(r\mid w)$

Integrated Relations for Words by

- **Unweighted**: combine all relations with binary values
- Weighted: combine all relations and keep the highest weights of relations
- Highest Weighted: combine the most possible relation of each word

Integrated Relations for Utterances by

$$R_u(r_i) = \max_{w \in u} R_w(r_i)$$

| r                         | actor | produced_by | location |
|---------------------------|-------|-------------|----------|
| $P_E(r \mid w)$           | 0.7   | 0.3         | 0        |
| $P_F(r \mid w)$           | 0.4   | 0           | 0.6      |
| $P_C(r \mid w)$           | 0     | 0           | 0        |
| Unweighted $R_w(r)$       | 1     | 1           | 1        |
| Weighted $R_w(r)$         | 0.7   | 0.3         | 0.6      |
| Highest Weighted $R_w(r)$ | 0.7   | 0           | 0.6      |

<sup>•</sup> Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, Probabilistic enrichment of knowledge graph entities for relation detection in conversational understanding, in *Proceedings of Interspeech*, 2014.

# Proposed Framework



## Boostrapping Unsupervised Self-Training

Training a multi-label multi-class classifier estimating relations given an utterance



# Experiments

Dataset

### Knowledge Base: Freebase

- 670K entities
- 78 entity types (movie names, actors, etc)

### **Relation Detection Data**

- Crowd-sourced utterances
- $\,\circ\,$  Manually annotated with SPARQL queries  $\rightarrow$  relations

| Query Statistics                    | Dev          | Test         |
|-------------------------------------|--------------|--------------|
| % entity only                       | 8.9%         | 10.7%        |
| % rel only w/ specified movie names | <u>27.1%</u> | <u>27.5%</u> |
| % rel only w/ specified other names | 39.8%        | 39.6%        |
| % more complicated relations        | 15.4%        | 14.7%        |
| % not covered                       | 8.8%         | 7.6%         |
| #utterances                         | 3338         | 1084         |

### User Utterance: who produced avatar Relation: movie.name movie.produced\_by



### Evaluation Metric: micro F-measure (%)

|          | Approach                              |       | Unweighted |       | Weighted |       | Highest Weighted |  |
|----------|---------------------------------------|-------|------------|-------|----------|-------|------------------|--|
|          |                                       |       | Boostrap   | Ori   | Boostrap | Ori   | Boostrap         |  |
| ſ        | Gazetteer                             | 35.21 | 36.91      | 37.93 | 40.10    | 36.08 | 38.89            |  |
| Baseline | Gazetteer + Weakly Supervised         | 25.07 | 37.39      | 39.04 | 39.07    | 39.40 | 39.98            |  |
|          | Gazetteer + Entity Surface Form (Reg) | 34.23 | 34.91      | 36.57 | 38.13    | 34.69 | 37.16            |  |

### Evaluation Metric: micro F-measure (%)

|          | Approach                              | Unweighted |          | Weighted |          | Highest Weighted |          |
|----------|---------------------------------------|------------|----------|----------|----------|------------------|----------|
|          |                                       | Ori        | Boostrap | Ori      | Boostrap | Ori              | Boostrap |
| ſ        | Gazetteer                             | 35.21      | 36.91    | 37.93    | 40.10    | 36.08            | 38.89    |
| Baseline | Gazetteer + Weakly Supervised         | 25.07      | 37.39    | 39.04    | 39.07    | 39.40            | 39.98    |
| L        | Gazetteer + Entity Surface Form (Reg) | 34.23      | 34.91    | 36.57    | 38.13    | 34.69            | 37.16    |
|          | Gazetteer + Entity Surface Form (Dep) | 37.44      | 38.37    | 41.01    | 41.10    | 39.19            | 42.74    |

Words derived by dependency embeddings can successfully capture the surface forms of entity tags, while words derived by regular embeddings cannot.

### Evaluation Metric: micro F-measure (%)

|          | Approach                              | Unweighted |          | Weighted |          | Highest Weighted |          |
|----------|---------------------------------------|------------|----------|----------|----------|------------------|----------|
|          |                                       | Ori        | Boostrap | Ori      | Boostrap | Ori              | Boostrap |
| ſ        | Gazetteer                             | 35.21      | 36.91    | 37.93    | 40.10    | 36.08            | 38.89    |
| Baseline | Gazetteer + Weakly Supervised         | 25.07      | 37.39    | 39.04    | 39.07    | 39.40            | 39.98    |
| L        | Gazetteer + Entity Surface Form (Reg) | 34.23      | 34.91    | 36.57    | 38.13    | 34.69            | 37.16    |
|          | Gazetteer + Entity Surface Form (Dep) | 37.44      | 38.37    | 41.01    | 41.10    | 39.19            | 42.74    |
|          | Gazetteer + Entity Context            | 35.31      | 37.23    | 38.04    | 38.88    | 37.25            | 38.04    |

Words derived from entity contexts slightly improve performance.

### Evaluation Metric: micro F-measure (%)

|            | American                                  | Unweighted |          | Weighted |          | Highest Weighted |          |
|------------|-------------------------------------------|------------|----------|----------|----------|------------------|----------|
|            | Approach                                  | Ori        | Boostrap | Ori      | Boostrap | Ori              | Boostrap |
| ſ          | Gazetteer                                 | 35.21      | 36.91    | 37.93    | 40.10    | 36.08            | 38.89    |
| Baseline - | Gazetteer + Weakly Supervised             | 25.07      | 37.39    | 39.04    | 39.07    | 39.40            | 39.98    |
|            | Gazetteer + Entity Surface Form (Reg)     | 34.23      | 34.91    | 36.57    | 38.13    | 34.69            | 37.16    |
| ſ          | Gazetteer + Entity Surface Form (Dep)     | 37.44      | 38.37    | 41.01    | 41.10    | 39.19            | 42.74    |
| Proposed-  | Gazetteer + Entity Context                | 35.31      | 37.23    | 38.04    | 38.88    | 37.25            | 38.04    |
|            | Gazetteer + Entity Surface Form + Context | 37.66      | 38.64    | 40.29    | 41.98    | 40.07            | 43.34    |

Combining all approaches performs best, while the major improvement is from derived entity surface forms.

### Evaluation Metric: micro F-measure (%)

|          | American                                  | Unweighted |          | Weighted |          | Highest Weighted |          |
|----------|-------------------------------------------|------------|----------|----------|----------|------------------|----------|
|          | Approach                                  | Ori        | Boostrap | Ori      | Boostrap | Ori              | Boostrap |
| ſ        | Gazetteer                                 | 35.21      | 36.91    | 37.93    | 40.10    | 36.08            | 38.89    |
| Baseline | Gazetteer + Weakly Supervised             | 25.07      | 37.39    | 39.04    | 39.07    | 39.40            | 39.98    |
| l        | Gazetteer + Entity Surface Form (Reg)     | 34.23      | 34.91    | 36.57    | 38.13    | 34.69            | 37.16    |
| ſ        | Gazetteer + Entity Surface Form (Dep)     | 37.44      | 38.37    | 41.01    | 41.10    | 39.19            | 42.74    |
| Proposed | Gazetteer + Entity Context                | 35.31      | 37.23    | 38.04    | 38.88    | 37.25            | 38.04    |
|          | Gazetteer + Entity Surface Form + Context | 37.66      | 38.64    | 40.29    | 41.98    | 40.07            | 43.34    |

With the same information, learning surface forms from dependency-based embedding performs better, because there's mismatch between written and spoken language.

### Evaluation Metric: micro F-measure (%)

|           | Approach                                  | Unwei | Unweighted |       | Weighted |       | Veighted |
|-----------|-------------------------------------------|-------|------------|-------|----------|-------|----------|
|           | Approach                                  | Ori   | Boostrap   | Ori   | Boostrap | Ori   | Boostrap |
| ſ         | Gazetteer                                 | 35.21 | 36.91      | 37.93 | 40.10    | 36.08 | 38.89    |
| Baseline  | Gazetteer + Weakly Supervised             | 25.07 | 37.39      | 39.04 | 39.07    | 39.40 | 39.98    |
|           | Gazetteer + Entity Surface Form (Reg)     | 34.23 | 34.91      | 36.57 | 38.13    | 34.69 | 37.16    |
| ſ         | Gazetteer + Entity Surface Form (Dep)     | 37.44 | 38.37      | 41.01 | 41.10    | 39.19 | 42.74    |
| Proposed- | Gazetteer + Entity Context                | 35.31 | 37.23      | 38.04 | 38.88    | 37.25 | 38.04    |
|           | Gazetteer + Entity Surface Form + Context | 37.66 | 38.64      | 40.29 | 41.98    | 40.07 | 43.34    |

Weighted methods perform better when less features, and highest weighted methods perform better when more features.

### Evaluation Metric: micro F-measure (%)

|            | Approach                                  | Unweighted |          | Weighted |          | Highest Weighted |          |
|------------|-------------------------------------------|------------|----------|----------|----------|------------------|----------|
|            | Approacn                                  | Ori        | Boostrap | Ori      | Boostrap | Ori              | Boostrap |
| ſ          | Gazetteer                                 | 35.21      | 36.91    | 37.93    | 40.10    | 36.08            | 38.89    |
| Baseline   | Gazetteer + Weakly Supervised             | 25.07      | 37.39    | 39.04    | 39.07    | 39.40            | 39.98    |
| l          | Gazetteer + Entity Surface Form (Reg)     | 34.23      | 34.91    | 36.57    | 38.13    | 34.69            | 37.16    |
| ſ          | Gazetteer + Entity Surface Form (Dep)     | 37.44      | 38.37    | 41.01    | 41.10    | 39.19            | 42.74    |
| Proposed - | Gazetteer + Entity Context                | 35.31      | 37.23    | 38.04    | 38.88    | 37.25            | 38.04    |
| l          | Gazetteer + Entity Surface Form + Context | 37.66      | 38.64    | 40.29    | 41.98    | 40.07            | 43.34    |
|            | + Names of Entity Types                   |            |          |          |          | 43.03            | 46.94    |

Additionally adding names of entity types helps improve performance.

# Experiments (cont.)

Entity Surface Forms Derived from Dependency Embeddings

The functional similarity carried by dependency-based entity embeddings effectively benefits relation detection task.

| Entity Tag  | Derived Word                                  |
|-------------|-----------------------------------------------|
| \$character | character, role, who, girl, she, he, officier |
| \$director  | director, dir, filmmaker                      |
| \$genre     | comedy, drama, fantasy, cartoon, horror, sci  |
| \$language  | language, spanish, english, german            |
| \$producer  | producer, filmmaker, screenwriter             |

## Experiments (cont.) Effectiveness of Boosting



- The best result is the combination of all approaches, because probabilities came from different resources can complement each other.
- Only adding entity surface forms performs similarly, showing that the major improvement comes from relational entity surface forms.
- Boosting significantly improves most performance

# Conclusions

We propose an unsupervised approach to capture the relational surface forms including entity surface forms and entity contexts based on dependency-based entity embeddings.

The detected relations viewed as local observations can be integrated with background knowledge by probabilistic enrichment methods.

Experiments show that involving derived relational surface forms as local cues together with prior knowledge can significantly improve the relation detection task and help open domain SLU.

## Ongoing & Future Work Active Learning

Idea: manually label small data to boost performance

### Approach

- 1. Extract exemplar utterances by clustering
  - Feature set: ngram, relation prob, both
  - Clustering: affinity propagation, k-means, etc.
- 2. Label exemplar utterances
- 3. Train the classifier on labelled data

### Unsupervised results

- Embeddings: 0.4334
- Embeddings + Names: 0.4694

| #training data (total = 3338) | 5      | 10     | 15     | 20     | 25     | 30     | 35     | 40     | 45     | 50     |
|-------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Baseline: random selection    | 0.2892 | 0.3581 | 0.3867 | 0.3921 | 0.4306 | 0.4421 | 0.4522 | 0.4741 | 0.4810 | 0.4821 |
| Unigram: Euclidean distance   | 0.1937 | 0.3167 | 0.3202 | 0.3252 | 0.3557 | 0.4005 | 0.4283 | 0.4447 | 0.4566 | 0.4689 |
| Relation (embeddings)         | 0.3219 | 0.3545 | 0.4126 | 0.4218 | 0.4671 | 0.4907 | 0.4550 | 0.4808 | 0.4629 | 0.4800 |
| Relation (names)              | 0.2780 | 0.2480 | 0.3686 | 0.3966 | 0.2860 | 0.4341 | 0.4490 | 0.4903 | 0.5005 | 0.5150 |
| Relation (embeddings + names) | 0.3457 | 0.3269 | 0.4552 | 0.4012 | 0.4489 | 0.4916 | 0.5191 | 0.5247 | 0.5570 | 0.5417 |



# Thanks to...

Dilek Hakkani-Tür & Gokhan Tur for their advising

Dilek Hakkani-Tür for her help and care

Qi Li & Xiang Li for their discussion

All friends met here for enjoying summer together

MSR for this internship & XBOX ONE



THANKS FOR YOUR ATTENTIONS!!