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O Speech Summarization 

O Spoken documents are more difficult to browse than texts 

 easy to browse, save time, easily get the key points 

O Multi-Party Corpus 

O Speaker information may help summarization 
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O Extractive Speech Summarization 

O Select the indicative utterances in a spoken document 

O Cascade the utterances to form a summary 

 

1st  utterance 
2nd utterance 
3rd utterance 
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n-th utterance 
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Extractive 
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O Selection of Indicative Utterances 

O Each utterance U in a spoken document d is given an 
importance score I(U, d) 

O Select the indicative utterances based on I(U,d) 

O The number of utterances selected as summary is decided 
by a predefined ratio 

 

ni ttttU 21

   




n

i

i dtsdU

1

],[,I 

utterance term 

term statistical measure (ex. TF-IDF) 
Importance score 



Outline 

9 

LTI SRS 2012‧Carnegie Mellon University 

Introduction Approach Experiments Conclusion 

O Graph Construction 

O Two-Layer Mutually Reinforced Random Walk 

O Between-Layer Propagation (MRRW-BP) 

O Within- and Between-Layer Propagation (MRRW-WBP) 

 



Outline 

10 

LTI SRS 2012‧Carnegie Mellon University 

Introduction Approach Experiments Conclusion 

O Graph Construction 

O Two-Layer Mutually Reinforced Random Walk 

O Between-Layer Propagation (MRRW-BP) 

O Within- and Between-Layer Propagation (MRRW-WBP) 

 



U1 

U2 

U3 

U4 

U5 

U6 

U7 

Utterance-Layer 

Graph Construction (1/2) 

11 

LTI SRS 2012‧Carnegie Mellon University 

O Utterance-Layer 

O Each node is the utterance in the meeting document 

O The edge is weighted by topical/lexical similarity between 
two utterances 
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O Speaker-Layer 

O Each node is the speaker in the meeting document 
O Combine all utterances from the same speaker as the speaker node 

O The edge (red and green) is weighted by lexical similarity 
between two nodes 
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O Similarity Matrix 
O LUU: utterance-to-utterance relation (topical/lexical similarity) 

O LSS: speaker-to-speaker relation (TF-IDF cosine similarity) 

O LUS: utterance-to-speaker relation (TF-IDF cosine similarity) 

O LSU: speaker-to-utterance relation (TF-IDF cosine similarity) 
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O Topical similarity between utterances 

O Edge weight TopicSim(Ui, Uj) (utterance Ui → utterance Uj) 

 

 

Two-Layer Mutually Reinforced Random Walk (2/3) 
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TopicSim(Ui, Uj): latent topic similarities of Ui to Uj based on PLSA model 
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latent topics 



O Lexical similarity between utterances 

O Cosine similarity between TF-IDF vectors from Ui and Uj 

 

 

Two-Layer Mutually Reinforced Random Walk (3/3) 

LexSim(Ui, Uj): evaluated by the word overlap between two utterances 
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Two-Layer MRRW-BP (Between-Layer Propagation) (2/2) 
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Utterance node U can get higher score when  
 Higher original importance I(U, d) 
 More speaker nodes similar to utterance U 
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Two-Layer MRRW-BP (Between-Layer Propagation) (2/2) 
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FU* (final utterance scores) is the dominate eigenvector of M1 
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scores propagated from speaker-layer 
then propagated within utterance-layer 
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Two-Layer MRRW-WBP 
(Within- and Between-Layer Propagation) (1/2) 
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FU* (final utterance scores) is the dominate eigenvector of M2 

Utterance node U can get higher score when  
 Higher original importance I(U, d) 
 More speaker nodes similar to utterance U 
 More important utterances similar to utterance U 
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O CMU Speech Meeting Corpus 

O 10 meetings from 2006/04 – 2006/06 

O #Speaker: 6 (total), 2-4 (each meeting) 

O WER = 44% 

O Reference Summaries 

O Manually labeled by two annotators 

O Parameter Setting 

O α = 0.9 

O Extractive summary ratio = 30% 

Experimental Setup 
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O ROUGE 

O ROUGE-1 

O F-measure of matched unigram between extracted 
summary and reference summary 

O ROUGE-L (Longest Common Subsequence) 

O F-measure of matched LCS between extracted summary 
and reference summary 
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Graph-based approaches are significantly better than baseline 
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Graph-based approaches are significantly better than baseline Improvement for ASR is larger than manual transcripts due to recognition errors 



Results – Single- & Two-Layer Graph Approaches 

50 

LTI SRS 2012‧Carnegie Mellon University 

44 

44.5 

45 

45.5 

46 

46.5 

47 

47.5 

48 

48.5 

49 

Baseline: LTE RandomWalk 
(LexSim) 

RandomWalk 
(TopicSim) 

Two-Layer 
MRRW-BP 

Two-Layer 
MRRW-WBP 

(LexSim) 

Two-Layer 
MRRW-WBP 
(TopicSim) 

ROUGE-1 (Manual) 

Baseline: LTE RandomWalk 
(LexSim) 

RandomWalk 
(TopicSim) 

Two-Layer 
MRRW-BP 

Two-Layer 
MRRW-WBP 

(LexSim) 

Two-Layer 
MRRW-WBP 
(TopicSim) 

ROUGE-L (Manual) 

46 

46.5 

47 

47.5 

48 

48.5 

49 

49.5 

50 

50.5 

Baseline: LTE RandomWalk 
(LexSim) 

RandomWalk 
(TopicSim) 

Two-Layer 
MRRW-BP 

Two-Layer 
MRRW-WBP 

(LexSim) 

Two-Layer 
MRRW-WBP 
(TopicSim) 

ROUGE-1 (ASR) 

Baseline: LTE RandomWalk 
(LexSim) 

RandomWalk 
(TopicSim) 

Two-Layer 
MRRW-BP 

Two-Layer 
MRRW-WBP 

(LexSim) 

Two-Layer 
MRRW-WBP 
(TopicSim) 

ROUGE-L (ASR) 

Two-layer approaches involving speaker info. outperform single-layer approaches 
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Two-layer approaches involving speaker information perform better than single-layer The utterances from the speakers who speak more important utterances tend to be more important 
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For ASR transcripts, within-layer propagation using topical similarity is better 
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For ASR, considering within-layer propagation using topical similarity is better For manual transcripts, within-layer propagation using lexical similarity is better 
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For ASR transcripts, topical similarity outperforms lexical similarity in both cases 
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For ASR, topical similarity performs better than lexical similarity in both cases Topical similarity can compensate recognition errors 
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For ASR, topical similarity performs better than lexical similarity in both cases Topical similarity can compensate recognition errors Lexical similarity from word overlap may have some noises due to recognition errors 
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For manual transcripts, lexical similarity outperforms topical similarity in both cases 
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For ASR, topical similarity performs better than lexical similarity in both cases For manual, lexical similarity performs better than topical similarity in both cases For ASR, lexical similarity from word overlap may have some noises due to errors Lexical similarity can model relations accurately since in absence of errors 
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Proposed approaches achieve 7.2% and 8.2% relative improvement compared to baseline for ASR and manual respectively 



Outline 

60 

LTI SRS 2012‧Carnegie Mellon University 

Introduction Approach Experiments Conclusion 

O Graph-based approaches can improve speech summarization 
performance 

O Two-layer approaches involving speaker information can get 
further improvement 

O Topical similarity is more robust to recognition errors 

 better for ASR transcripts 

O Lexical similarity is more accurate when absence of errors 

 better for manual transcripts 

O Our proposed approaches achieve more than 7% relative 
improvement compared to the baseline 
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