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Abstract When designing robots to assist in everyday human activities, it is cru-
cial to enhance user requests with visual cues from their surroundings for improved
intent understanding. This process is defined as a multimodal classification task.
However, gathering a large-scale dataset encompassing both visual and linguistic el-
ements for model training is challenging and time-consuming. To address this issue,
our paper introduces a novel framework focusing on data augmentation in robotic
assistance scenarios, encompassing both dialogues and related environmental im-
agery. This approach involves leveraging a sophisticated large language model to
simulate potential conversations and environmental contexts, followed by the use of
a stable diffusion model to create images depicting these environments. The addi-
tionally generated data serves to refine the latest multimodal models, enabling them
to more accurately determine appropriate actions in response to user interactions
with the limited target data. Our experimental results, based on a dataset collected
from real-world scenarios, demonstrate that our methodology significantly enhances
the robot’s action selection capabilities, achieving the state-of-the-art performance.
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1 Introduction

As robotic technology advances, robots are increasingly capable of providing a va-
riety of services in different contexts. A key challenge in robotics is understanding
and responding to human requests that are not always clear-cut, especially in life-
support situations [33]. This requires interpreting both the visual context of the en-
vironment and the user’s verbal communication, essentially making it a multimodal,
multi-class classification problem. Recent advancements have seen the development
of large multimodal language models [2, 8, 12, 16, 23], that can process and respond
to multiple channels of input data.

Our study utilizes the latest multimodal model, LLaVA [16], as a foundation for
predicting responsive actions to human requests. While LLaVA has shown promise
in general multimodal interactions, it requires additional data to tailor its responses
to specific actions in a human-robot interaction context. Gathering such interaction
data is often time-intensive and not easily scalable.

Inspired by the success of the large generative model in the language [40] and
vision [36, 39, 38] domains, this paper introduces a framework for automatically
enhancing scenario data, specifically in contexts where a robot needs to perform
life-support actions in response to human requests. We harness the power of large
language models [20, 35, 1, 22], to create plausible dialogue scenarios [13, 11, 4]
and describe environmental settings. These narratives are then visualized using ad-
vanced diffusion models [15, 24, 30], creating images that represent the robot’s
perspective during each dialogue.

By using this augmented scenario data, we can train an agent to choose appro-
priate actions based on everyday user interactions. This training is conducted in
a controlled environment, supplemented with a small, real-world dataset collected
from human-robot interactions. Our experiments demonstrate that this approach not
only generates realistic scenarios but also effectively trains the multimodal language
model to respond with appropriate life-support actions based on both verbal requests
and environmental cues. The success of this framework highlights its potential to
make robotic scenario data more scalable and relevant.

2 Related Work

In this paper, we explore the augmentation of scenario data using large generative
models. We provide an overview of the relevant background in large language mod-
els (LLMs) and stable diffusion models.
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2.1 Large Language Models (LLMs)

Language models have been widely studied for research in language understand-
ing and generation, evolving from statistical to neural network-based models [40].
In recent years, the emergence of pre-trained language models (PLMs) [7, 25, 17],
marked a significant advancement. These models, based on Transformer architec-
ture and trained on vast text corpora, have shown remarkable proficiency across
various natural language processing tasks. A key finding in this domain is that in-
creasing model size enhances performance. As a result, the term “large language
models” (LLMs) has been adopted to describe PLMs of substantial scale [9]. A no-
table example is ChatGPT [21], which has set new benchmarks in NLP tasks and
demonstrates advanced linguistic capabilities in human interactions. The ongoing
development and diversification of LLMs across various parameter sizes continue
to be a focal point in both academic and industrial research [5, 34, 35, 6].

2.2 Large Diffusion Models

Text-to-image generation has been a significant challenge in the field of computer
vision [38]. Early attempts, such as AlignDRAW [18], produced images from text
but lacked realism. The introduction of Text-conditional GANs [28] marked a shift
towards more sophisticated models capable of generating images from text descrip-
tions, which is the first end-to-end architecture with characters as its input and pixels
as its output. However, these GAN-based methods were limited to smaller datasets.
The advent of large-scale data utilization in autoregressive models, exemplified by
DALL-E [27] and Parti [37], brought improvements but at the cost of high compu-
tational demands and sequential error accumulation.

Recently, diffusion models have emerged as the new benchmark in text-to-image
generation. These models can be broadly categorized based on their operational do-
main: pixel space or latent space. Pixel-level approaches, like GLIDE [19] and Im-
agen [31], generate images directly from high-dimensional data. On the other hand,
latent space methods, such as stable diffusion [30] and DALL-E 2 [26], involve
compressing images into a lower-dimensional space before applying the diffusion
model. This innovation in model design has significantly enhanced the quality and
efficiency of text-to-image generation.

3 Proposed Augmentation Framework

In our framework, we approach the challenge of robotic action determination as
a multi-class classification problem. The task involves interpreting an ambiguous
request x from a user, coupled with an image depicting the robot’s view of the en-
vironment. The objective is to accurately predict a suitable action y ⊆ Y, with Y
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Fig. 1: Illustration of our augmentation method.

representing the set of all actions available to the robot, to assist the human user
effectively.

The primary challenge of training a model to tackle this task is the time-intensive
and non-scalable nature of collecting authentic interaction data between humans and
robots. To address this, we have developed a framework utilizing large generative
models to enrich the dataset with various potential life-support scenarios, encom-
passing both dialogues and environmental images. Figure 1 illustrates our augmen-
tation pipeline. Our framework comprises two distinct pathways, each tailored to
generate robotic scenarios for a specific purpose.

• Place-based augmentation focuses on creating dialogues pertinent to a spe-
cific location, such as a living room, kitchen, or bedroom, along with a detailed
description of the respective environment.

• Action-based augmentation focuses on generating dialogues aligned with po-
tential robot actions, like fetching a banana, clearing garbage, or organizing
glasses, accompanied by a depiction of the setting where these actions would
occur.

3.1 Place-based Augmentation

In the initial phase of our augmentation pipeline, we employ gpt-3.5, a robust large
language model, to create various dialogues. These dialogues simulate scenarios
where a human presents an ambiguous request in everyday settings, and a robot
must respond with an appropriate service action. The process begins by selecting a
commonplace setting, such as a bedroom, bathroom, or dining room—areas where
robots are likely to offer routine assistance. Next, we prompt gpt-3.5 to generate
potential conversations that could occur in these settings, along with descriptions
of the surrounding environment. Following this, we use the stable-diffusion-XL
model [24] to transform these textual descriptions into visual representations of the
respective locations.
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Fig. 2: Example of two augmentation methods.

When crafting prompts for gpt-3.5, we do not set constraints on the generated
user requests or robot actions. This approach allows the language model to conjure
a wide array of scenarios, helping the model to learn and adapt to a diverse range of
potential situations. For the image generation via the diffusion model, we emphasize
the first-person perspective in the prompt, mirroring what the robot would observe
in these environments.

We have identified ten everyday locations, each serving as the basis for generat-
ing ten distinct dialogues through the large language model. An illustrative example
of this place-based augmentation process is depicted in the left part of Figure 2. The
following is the prompt template used in our pipeline.

Give me ten conversation examples between two people in
a [location]
Person A made an ambiguous request indirectly without asking
a question to Person B
And Person B responded with a reflected action to A
Each conversation should be one utterance
And describe some related object in the background



6 Authors Suppressed Due to Excessive Length

3.2 Action-based Augmentation

While place-based augmentation focuses on equipping robots with the versatility
to navigate various locations, action-based augmentation concentrates on creating
scenarios tailored to specific, predefined robot actions [14]. In this second route of
our framework, we utilize the same large language model as discussed in Section 3.1
for generating dialogues.

The key difference here lies in the nature of the input constraint. Rather than se-
lecting a location, we choose an action from a robot’s predefined action set, such
as “I will clean up the table”. The gpt-3.5 model is then prompted to formulate po-
tential dialogues where this action is the appropriate response, along with descrip-
tions of the relevant surroundings. This approach allows the model to concentrate
on learning and responding to specific, realistic scenarios tied to particular actions.

To generate images that resemble real-world settings, we employ the blip diffu-
sion model [15], known for its ability to create images with a consistent theme or
subject. When generating an image from a text description, we incorporate a refer-
ence image from our real-world data collection, specifying “room” as the constant
subject. This method ensures the generated images closely align with the kind of
environments a robot is likely to encounter.

Our framework includes 43 distinct actions, each serving as a basis to prompt the
language model to produce ten unique dialogues. An example of this action-based
augmentation is showcased in the right part of Figure 2. Below is a prompt template
used with the large language model for this purpose.

Here is a reflected action from B.
B: [reflected_action]
A is another person talking to B in a room
What ambiguous request may A talk to B indirectly without
asking a question causing B to respond above reflected action.
And describe some related object in the background according
to utterance between A and B

After obtaining the scenario data derived from both the place-based and action-
based augmentation routes, we construct our comprehensive augmented dataset.
This enriched dataset is then utilized to refine the performance of our base mul-
timodal model, specifically designed for predicting robotic action responses. The
model, adept at processing both visual and linguistic inputs, is trained to recognize
and understand the scenarios presented in our augmented dataset. Upon fine-tuning
this base model, we proceed to assess its proficiency in zero-shot accuracy using
real-world data. This evaluation helps us measure the model’s ability to accurately
predict robot actions in previously unseen situations, indicating the effectiveness of
our augmentation approach.
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4 Experiments

To assess the impact of our augmentation data, we conducted experiments using the
Do-I-Demand dataset [32], a collection of real interactive records between humans
and robots. This dataset comprises 400 samples and serves as a benchmark for eval-
uating our method. We apply two base models with differing parameter sizes to test
the efficacy of our proposed augmentation approach.

4.1 Experimental Setup

The evaluation dataset features two primary text elements: the human’s ambiguous
request and a description of the environment, inferred from an image. We develop
two input settings based on these elements:

• Utterance: Here, only the human’s request is used as input, with the output
being one of the 43 predefined actions.

• Utter + Description: This setting combines the human’s request with the en-
vironmental description as input, aiming to predict one of the 43 predefined
actions as output.

For our experiments, we select LLaVA, a large multimodal model renowned for
its multimodal chat capabilities, as our base model. LLaVA integrates a vision en-
coder with a large language model (LLM) to facilitate general visual and linguistic
understanding. We chose its two versions, 13B and 7B parameters, for subsequent
fine-tuning.

We fine-tune the base models using our augmentation dataset for five epochs,
keeping the hyperparameters largely consistent with those used in the original
LLaVA model. The training input comprised the image and the ambiguous human
request, with the goal of maximizing the likelihood of the model predicting the cor-
rect response action. This process was carried out on 4 A6000 GPUs, each with
40GB of memory, utilizing the LoRA technique [10] for efficient training.

In evaluating the fine-tuned models, we focused on measuring zero-shot accu-
racy on the evaluation dataset. To match LLaVA’s responses with specific actions,
we employ a sentence encoder to process both the model’s response and each po-
tential action. We calculated the cosine similarity between each pair, selecting the
action with the highest similarity as the final prediction. For this purpose, we exper-
iment with two encoders: the Sentence-BERT model (SBERT) [29] and the GPT-3
model [3], both of which have shown excellent performance in various NLP bench-
marks.
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Model Utterance-Only Description + Utterance

SBERT GPT3 SBERT GPT3

LLaVA-13B 20.3 24.5 28.3 34.8
+ place-based augmentation 29.0† 34.3† 33.3† 39.0†

+ action-based augmentation 31.5† 31.5† 45.5† 45.5†

+ both 36.3† 35.3† 48.5† 47.8†

LLaVA-7B 19.5 22.5 27.8 36.3
+ place-based augmentation 30.3† 36.1† 36.0† 42.3†

+ action-based augmentation 32.3† 32.5† 41.8† 41.5†

+ both 34.0† 33.8† 48.8† 47.5†

Table 1: Results on the DO-I-DEMAND (%). † indicates the significant improvement achieved by
the augmented data. The best score for each base predictor is marked in bold.

4.2 Results

The effectiveness of our augmentation methods on the Do-I-Demand dataset is sum-
marized in Table 1. We evaluate the accuracy of each method by comparing the
exact match rates across all labels. The baseline results, achieved using the origi-
nal multi-modal model LLaVA in two distinct sizes, are presented in the first row.
The data clearly indicates that both our place-based and action-based augmentation
methods significantly enhance the performance of the base models. However, it is
noteworthy that action-based augmentation generally outperforms place-based aug-
mentation. This is likely because action-based augmentation is specifically tailored
to align with the action categories in the evaluation dataset, whereas place-based
augmentation aims to broadly improve the model’s versatility in various scenarios.

Interestingly, we observe the highest performance when combining both place-
based and action-based augmentations, except in one instance: the LLaVA-7B
model with a GPT-3 encoder under the utterance-only setting. The top accuracy
is recorded at 36.3% for LLaVA-13B with the SBERT encoder in the utterance set-
ting, and 48.8% for LLaVA-7B with SBERT in the utterance plus description setting.
These results reinforce the value of environmental descriptions in enhancing action
prediction accuracy.

4.3 Effectiveness with Diverse Prompts

For place-based augmentation, our original prompt is “make an ambiguous request
indirectly without asking a question”. To explore variations, we test two alternative
prompts: “make an ambiguous request without asking a question” and simply “make
an ambiguous request.” After merging data generated from all three prompts, we
observe a general decline in accuracy, as shown in Table 2. This suggests that our
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Model Utterance-Only Description + Utterance

SBERT GPT3 SBERT GPT3

LLaVA-13B (original prompt) 29.0 34.3 33.3 39.0
+ diverse prompts 27.3 32.0 35.0 43.5

LLaVA-7B (original prompt) 30.3 36.1 36.0 42.3
+ diverse prompts 23.3 25.5 34.0 42.0

Table 2: Results of the original place-based and diverse prompts on the DO-I-DEMAND (%).

Model Utterance-Only Description + Utterance

SBERT GPT3 SBERT GPT3

LLaVA-13B (both augmentation) 36.3 35.3 48.5 47.8
w/o blip diffusion 30.5 31.8 46.0 45.5

LLaVA-7B (both augmentation) 34.0 33.8 48.8 47.5
w/o blip diffusion 32.8 33.3 44.8 46.0

Table 3: Results of the framework with and without blip diffusion on the DO-I-DEMAND (%).

original prompt is sufficiently detailed, leading to the generation of high-quality
dialogues for model training.

4.4 Ablation of Blip Diffusion

In our action-based augmentation, the use of the blip diffusion model for generat-
ing environmental images is crucial. We experiment by substituting blip diffusion
with stable-diffusion-XL, as used in place-based augmentation. Table 3 reveals a
consistent decrease in accuracy across all scenarios, including a notable 6% drop
in the LLaVA-13B utterance setting. This highlights the significant role of the blip
diffusion model in our augmentation strategy.

4.5 Effectiveness on Low-Performing Labels

Our analysis reveals that a significant portion, over one-third, of the actions pre-
dicted by the original multi-modal model perform zero accuracy. To delve into
how our proposed augmentation methods impact these lower-performing labels, we
group the labels into four categories based on their accuracy levels. Each group rep-
resents a quartile of performance, with bucket 1 consisting of the ten labels with the
lowest accuracy, all at zero initially.
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In Figure 3, we plot the mean performance of the LLaVA-1.5-13B model on the
Do-I-Demand utterance set, categorized by label performance ranking. The graph
clearly shows that our augmentation methods significantly improve the accuracy of
labels in bucket 1. There is also a noticeable increase in accuracy across the other
buckets.

Similarly, Figure 4 illustrates the mean performance on the Do-I-Demand utter-
ance plus description set, again broken down by label performance ranking. This
figure further confirms the positive impact of augmentation, especially in buckets 1
and 2, compared to the relatively lesser gains in buckets 3 and 4.
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These findings underscore that each augmentation method we propose not only
boosts overall performance but also effectively redistributes the performance across
different labels, enhancing the model’s ability to predict a wide range of actions
with improved accuracy.

5 Conclusion

In this paper, we introduce a novel pipeline designed to enhance the collection of
robotic life-support scenario data, traditionally a time-consuming process. Our ap-
proach leverages a large language model to simulate dialogues between humans and
robots, and a large diffusion model to create corresponding images of the environ-
ments. We design two distinct types for dialogue generation: place-based augmen-
tation, which focuses on scenarios occurring in specific places, and action-based
augmentation, which centers around specific actions the robot might perform. Both
approaches have proven effective in generating realistic and relevant data, signifi-
cantly aiding in the training of the LLaVA model. This model is fine-tuned to pre-
dict suitable actions based on ambiguous user requests and environmental imagery.
The experiments conducted on real-life collected data demonstrate that the aug-
mented data not only significantly enhances the model’s accuracy with all types of
actions, especially low-performing ones, but also contributes to making robotic sce-
nario data more scalable and adaptable. This advancement underscores the potential
of our augmentation methods in enriching the training datasets for robotic action
prediction models, thereby broadening their applicability in real-world scenarios.
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