HELPR: A Framework to Break the Barrier
across Domains in Spoken Dialog Systems

Ming Sun, Yun-Nung Chen and Alexander I. Rudnicky

Abstract People usually interact with intelligent agents (IAs) when they have cer-
tain goals to be accomplished. Sometimes these goals are complex and may require
interacting with multiple applications, which may focus on different domains. Cur-
rent [As may be of limited use in such cases and the user needs to directly manage
the task at hand. An ideal personal agent would be able to learn, over time, these
tasks spanning different resources. In this paper, we address the problem of cross-
domain task assistance in the context of spoken dialog systems, and describe our
approach about discovering such tasks and how IAs learn to talk to users about the
task being carried out. Specifically we investigate how to learn user activity patterns
in a smartphone environment that span multiple apps and how to incorporate users’
descriptions about their high-level intents into human-agent interaction.

Key words: cross-domain; user intention; spoken dialog systems

1 Introduction

Smart devices, such as smartphones or TVs, allow users to achieve their goals (in-
tentions) through verbal and non-verbal communication. The intention sometimes
can be fulfilled in one single domain (i.e., an app). However, the user’s intention
is possible to span multiple domains and requires information coordination among
these domains. A human user, with the global context at hand, can well-organize the
functionality provided by apps and coordinate information efficiently. On the other

Ming Sun
School of Computer Science, Carnegie Mellon University, e-mail: mings@cs.cmu.edu

Yun-Nung Chen
School of Computer Science, Carnegie Mellon University, e-mail: yvchen@cs.cmu.edu

Alexander I. Rudnicky
School of Computer Science, Carnegie Mellon University, e-mail: air@cs.cmu.edu

2 Ming Sun, Yun-Nung Chen and Alexander I. Rudnicky

hand, although intelligent agents can be configured by developers to passively sup-
port (limited) types of cross-domain interactions, they are not capable of actively
managing apps to satisfy a user’s potentially complex intentions, because they do
not consider the repeated execution of activities in pursuit of user intentions.

Currently, most human-machine interactions are carried out via touch-screen.
Although the vocabularies of recognizable gestures have been expanded during the
past decade [8], interactive expressions are still restricted due to the limit of gestures
and displays. This limit may affect usability, especially for certain populations, such
as older users or users with visual disabilities. By contrast, spoken language can ef-
fectively convey the user’s high-level and complex intentions to a device. However,
the challenges are: 1) understanding both at the level of individual apps and at the
level of activities that span apps; and 2) communicating a task-level functionality
between user and agent. Our previous work focused on predicting user’s follow-up
action at app level [25] or understanding the current app-level intention [4]. This
paper mainly addresses the high-level intention-embedded language understanding.
For example, our proposed model understands that “plan a dinner with Alex” is com-
posed of several domains such as YELP, OPENTABLE and MESSENGER. We also
enable the system to verbally communicate its understanding of users intentions, in
order to maintain a transparent communication channel.

Multi-domain dialog systems have been studied in the past [14, 19], where a
classic architecture contains multiple models developed independently for different
domains and allows corresponding apps to handle user requests [11, 18, 3, 4]. Given
a spoken utterance, a domain detector selects 1) a single domain [10, 18, 25, 4] or
2) several domains based on the functionality in the user request [20, 21]. However,
neither of the two approaches considered the user intention behind the multi-domain
interaction (i.e., why the user needs this set of domains). Our method bridges the
low-level surface forms in cross-domain interactions and the high-level intention in
the user’s mind to enable systems to support intention realization. Moreover, con-
sidering a personal assistant’s perspective, we compare personalized models with
generic ones based on personal data availability.

The rest of the paper is organized as follows: we first briefly describe a data
collection process to gather user’s real-life multi-domain tasks. Then we discuss the
methodology to discover, recognized and realize user intentions. Two user studies
are described later as end-to-end and component-wise evaluation.

2 Data Collection

We undertook a data collection during which the participants in our study agreed
to provide a continuous record of their smartphone use over an extended period of
time, in the form of operating system events (e.g. app invoked, phone number dialed,
etc). To do this we implemented an Android app that logs each event, together with
its date/time and the phone’s location (if GPS is enabled).

HELPR: A Framework to Break the Barrier across Domains in Spoken Dialog Systems 3

Note: took a pic of cat; texted to Krista

[2015-Feb-16-Monday 22:34-22:37 1634 Harpster St, Pittsburgh] com.sec.android.app.camera com.android.mms

Fig. 1: Example of user annotation

Initial analysis of the data indicated that phone usage could be segmented into
episodes consisting of interaction events closely spaced in time. In our pilot data, we
found 3 mins of inactivity could be used to group events. Although this parameter
appeared to vary across users, we used a single value for simplicity. Participants
were asked to upload their log on a daily basis. A privacy step allowed them to
delete episodes that they might not wish to share.

Due to multi-tasking, episodes might consist of multiple activities, each corre-
sponding to a specific intent. For example one might be communicating with a friend
but at the same time playing a game or surfing the web. We invited participants to
our lab on a regular basis (about once a week) to annotate their submitted logs to
decouple multiple tasks in the same episodes and also describe the nature (intent) of
the tasks (see details below). Note that some activities might also span episodes (for
example making plans with others); we did not examine these.

2.1 Smartphone Data Annotation

Participants were presented with episodes from their log and asked to group events
into sequences corresponding to individual activities [13] (which we will also refer
to as tasks). Meta-information such as date, time, and street location, was shown
to aid recall. Participants were asked to produce two types of annotation, using the
Brat server-based tool [23]: 1) Task Structure: link applications that served a com-
mon goal/intention; 2) Task Description: type in a brief description of the goal or
intention of the task.

For example, in Fig 1, the user first linked two apps (one about camera and an-
other about text message) together since they were used for the goal of sharing a
photo, and wrote a description “fook a pic of __”. Some of the task descriptions
were quite detailed and provided the actual app sequence executed (see example in
Fig 1). However, others were quite abstract, such as “look up math problems” or
“schedule a study session”. In this paper, we took task descriptions as transcribed
intent-embedded user utterances since these descriptions are usually abstract. We
used these descriptions as data for our intention understanding models.

4 Ming Sun, Yun-Nung Chen and Alexander I. Rudnicky

Dialogue
p . W, Ready.
Meta | TASK59; 20150203; 1; Tuesday; 10:48J U, : Connect my phone to bluetooth speaker. | SerTinGs
W,: Connected to bluetooth speaker.

Desc | play music via bluetooth speaker U, : And play music. " Music |
p N . : B o)

App | com.android.settings = com.lge.music W3: What music WOUId you like to play?) 5
- U, - Shuffle playlist. Music |

W,: 1 will play the music for you.

Fig. 2: Multi-app task dialog example. Meta, Desc, App were shown to the participant. Utterances
were transcribed manually or via Google ASR. Apps were manually assigned to utterances.

Table 1: Corpus characteristics. Age informally indicates young and old. A native Korean and
Spanish speaker participated; both were fluent in English. #Apps is the average number of unique
apps. #Multi is the number of tasks which involves multiple user turns.

Category #Participants Age #Apps #Tasks #Multi
Male 4 23.0 19.3 170 133
Female 10 34.6 19.1 363 322
Age <25 6 21.2 19.7 418 345
Age > 25 8 38.9 18.8 115 110
Native 12 31.8 19.3 269 218
Non-native 2 28.5 18.0 264 237
Overall 14 313 19.1 533 455

2.2 Interactive Dialog Task

We also asked users to talk to a Wizard-of-Oz dialog system to reproduce (“reenact”)
their multi-domain tasks using speech, instead of the GUI, in a controlled laboratory
environment. The users were shown 1) apps used; 2) task description they provided
earlier; 3) meta data such as time, location to help them recall the task (see left part
in Fig 2). The participants were not required to follow the order of the applications
used on the smartphones. Other than for remaining on-task, we did not constrain
expression. The wizard (21-year-old male native English speaker) was instructed to
respond directly to a participant’s goal-directed requests and to not accept out-of-
domain inputs. An example of a transcribed dialog is shown in Fig 2.

This allowed us to create parallel corpora! of how people would use multiple
apps to achieve a goal via both smartphone (touch screen) and language. We re-
cruited 14 participants and collected 533 parallel interactions, of which 455 involve
multiple user turns (see Table 1).

! Dataset: http://www.cs.cmu.edu/-mings/data/MultiDomain.tar.qgz

HELPR: A Framework to Break the Barrier across Domains in Spoken Dialog Systems 5

2
o [J
o0 ® 0
o 0@ o o9
® o ® ‘o
. ® ®
0 00
@ 3 (]
Static Dynamic

Fig. 3: Illustration of static intention vs. dynamic intention. Blue circles denote training examples
and the yellow circle is a testing example.

3 Methodology

For an agent to interact with users at the level of intention, it should 1) understand
an intention expressed by speech; and 2) be able to convey its understanding of the
intention via natural language. For example, once the user says “I'd like to plan
a farewell party for my lab-mate”, the agent needs to know the intention behind
this spoken input as well as be able to assist user to find a restaurant (YELP) and
schedule time with other lab-mates (MESSENGER). On the other hand, the agent
may reveal its inner state of understanding to the user, especially in clarification
process. For instance, it may say “I think we are going to plan an evening event,
right?” Channel-maintenance with such verbal cues (either implicit or explicit) is
helpful in conversation [2]. We first describe modeling intention understanding, then
describe the process by which the agent can verbally convey its inner state.

3.1 Models for Intention Understanding

What is user intention? We consider two possibilities. Observed interactions in the
intention semantic space may be clustered into K¢ groups, each representing a spe-
cific intention. We refer to this as the static intention. On the other hand, we can
also define dynamic intention, which is a collection of local neighbors (seen inter-
actions) of the input speech. See Fig 3 as an example. In the static intention setting,
the agent is aware of the existence of K¢ intentions and their semantics prior to in-
vocation. However, in the dynamic setting, intention is implicitly defined by the Ky
nearest neighbors during execution. In both cases, a realization process using the
members of the recognized intention set maps the user utterance into a sequence/set
of apps to support the user activity.

We anticipate two major differences between statically and dynamically based
intentions. First, the static approach can use potentially richer information than just
intention-embedded utterances when discovering basic intentions — it could use
post-initiate features such as apps launched or user utterances in the spoken dialog.
Ideally, this may yield a better semantic space to categorize seen interactions. How-

6 Ming Sun, Yun-Nung Chen and Alexander I. Rudnicky

ever, during execution, the input feature is the same as in the dynamic approach,
i.e., task description. Second, the static approach has hard boundaries between in-
tentions. Instances close to the boundaries may not be well characterized by their
cluster members.

In both cases the agent will need to map an intention-embedded utterance into
steps (i.e., sequence of apps/domains). Several techniques are available. We can
combine the individual app sequences of the set members into a single app sequence
that represents a common way of surfacing the intention (denoted as REPSEQ). Al-
ternately, we can use a classifier that assigns multiple labels (apps ids) to the input
(denoted as MULTLAB). Compared with the MULTLAB strategy, the advantage of
REPSEQ is that it can preserve the order of the app sequence. However, once the
intention is classified, the representative app sequence will always be the same, re-
gardless of variations in the input. This could be a potential problem for statically
based intentions. Arguably, during this process, we could weight each set member
by its closeness to the input; we did not investigate this possibility. To evaluate, we
compare the set of apps predicted by our realization model with the actual apps
launched by the user and compute an F; score?.

There are two types of users—ones for which historical data are available, and the
others. New users or users with privacy concerns will not have sufficient data. Thus,
a generic model trained from large user community can be used instead of person-
alized model. We expect that a sufficiently well-trained generic model can provide
reasonable performance; as history is accumulated performance will improve.

The building of intention understanding models may be impacted by intra- and
inter-user inconsistency in the language/apps. We may encounter the problem of
vocabulary-mismatch [13, 22], where interactions related with the same intention
have non-overlapping 1) spoken terms (words), even caused by minor differences
such as misspellings, morphologies, etc; 2) apps, e.g., people may use different apps
— MESSENGER or EMAIL with essentially similar functionality. Below we describe
two techniques to overcome potential language- and app-mismatch.

3.1.1 Language Mismatch

We can consider a user’s input utterances (e.g., “schedule a meeting”) as a query to
the intention model. To manage language inconsistency, we used a two-phase pro-
cess — 1) text normalization where only verbs and nouns in the query are preserved
and further lemmatized (e.g., “took” — “take”); 2) query enrichment (QryEn) which
expands the query by incorporating words related to it semantically. QryEn can re-
duce the likelihood of seeing sparse input feature vector du to out-of-vocabulary [24]
words. In this work, we used word2vec [17] with gensim? toolkit on the pre-trained
GoogleNews word2vec* model. The proposed QryEn algorithm is described in Al-

2 Fi = 2 x Precision x Recall /(Precision+ Recall)
3 Toolkit: https://radimrehurek.com/gensim/models/word2vec.html

4Model: https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTT1SS21pQmM/
edit?usp=sharing

HELPR: A Framework to Break the Barrier across Domains in Spoken Dialog Systems 7

gorithm 1. In short, each word w; in the lemmatized query Q yields mass increases
for N semantically close words in the feature vector f.

Algorithm 1 Query Enrichment

Require: lemmatized words of the query Q = {wi,...,w)g} and their counts C = {c1,...,c|g};
training vocabulary V; bag-of-word feature vector Oy = {f1,...,. \Vl} constructed on Q; the
word semantic relatedness matrix M; the number of semantically similar words N to be ex-
tracted for each word in Q;
Ensure: an enriched bag-of-word feature vector
1: for each w; € Q do
2: Use M to find the N closest words Vy = {vi,...,vn} € V;
3 for each v; € Vy do
4 fi=fi+Mijxci
5: end for
6: end for

7: return f;

3.1.2 App Mismatch

When a generic model is used, recommended apps may not match the apps available
on a specific user’s device. For example, the recommended app, BROWSER should
be converted to CHROME if that is the only (or preferred) app in this user’s phone
that can browse the Internet. Therefore, similarity metrics among apps are needed.

There are several ways to compute app similarity (AppSim). First, based on the
edit distance between app (package) names, for example com.lge.music is similar
to com.sec.android.app.music since both contains the string “music”. Second,
we can project an app to a vector space. Ideally, apps with similar functionalities
will appear close to each other. Possible resources to use are 1) app descriptions in
app stores; 2) language associated with each app when users verbally command the
app (see example in Fig 2). Third, app-store category may indicate functionality-
wise similarity. However, we found Google Play category too coarse. In this work,
we used the first method with 16 fillers (e.g., “android”, ”com”, "htc”’) removed
from package names. Examples are shown in Table 2. We found this simple method
significantly improved system performance (described later).

Table 2: Most similar apps for Accuweather and Music among 132 apps in our data collection

order com.accuweather.android com.lge.music

1 com.sec.android.widgetapp.ap.hero.accuweather com.google.android.music
2 com.jrdcom.weather com.sec.android.app.music
3 com.weather.Weather com.spotify.music

8 Ming Sun, Yun-Nung Chen and Alexander I. Rudnicky

3.2 Conveying Intention Understanding

IAs may need to communicate with the user in language cast at the level of intention,
especially as part of a clarification process. For example, the IA may launch a short
sub-dialog by saying “are you trying to share a picture?” This involves a template
(“are you trying to ___?”) and some content (“share a picture”). Instead of echoing
content directly extracted from the user’s current input, we abstract the semantics of
similar previous interactions to provide language material indicating that the agent
(though a paraphrase) indeed understands the user’s intention.

4 Study

4.1 Intention Interpretation and Realization

To evaluate intention modeling, we focus on three comparisons: 1) intention:
static vs. dynamic models; 2) source: personalized vs. generic setups; 3) method:
REPSEQ vs. MULTLAB realization strategies. We used the chronologically first 70%
of each user’s data for training the personalized model, in principle mirroring actual
data accumulation. The remaining 13 users’ first 70% data was combined to train the
generic model. The number of intentions K¢ for the static intention model and the
number of nearest neighbors Ky for the dynamic model can be varied. We adapted
K¢ using gap statistics [26], an unsupervised algorithm, to select the optimal K¢
from 1 to 10 before KMeans. Ky was set to the square root of the number of train-
ing examples [5]. For REPSEQ we used ROVER to collapse multiple app sequences
into one [6]. For MULTLAB, we used SVM with linear kernel.

We show system performance in Table 3. This prediction task is difficult since on
average each user has 19 unique apps and 25 different sequences of apps in our data
collection. The upper part corresponds to static intention model and the lower part to
dynamic intention. Within either approach, different intention realization strategies
(QryEn and AppSim) and their combination are also shown. We performed a bal-
anced ANOVA test of F; score on the factors mentioned above: intention, source
and method. The test indicates that the performance differs significantly (p < 0.05).

As noted earlier, the static model has the flexibility to incorporate richer informa-
tion (post-initiate features) when used to discover the basic K¢ intentions. As shown
in Table 3, adding more post-initiate information (denoted with x and) improves
personalized models since users have behavioral patterns. However, it does not nec-
essarily improve generic models, mainly due to the inter-user difference in language
and apps.

But we do not observe superior performance for the static model over the dy-
namic one, even when richer information incorporated (x and {) . For REPSEQ
strategy, the dynamic model is much better than the static one. It is possible that
REPSEQ is sensitive to the selection of similar interactions. Arguably, an input may
fall close to the intention boundary in a static setting, which indeed is closer to some
interactions on the other side of the boundary as opposed to the ones within the same

HELPR: A Framework to Break the Barrier across Domains in Spoken Dialog Systems 9

Table 3: Weighted average F; score (%) on test set across 14 participants, using bag-of-words.
Average K¢ in static condition is 7.0 £ 1.0 for generic model, and 7.1 & 1.6 for personalized model.
The static condition was run 10 times and the average is reported. Ky in the dynamic condition
is 18.5 + 0.4 for the generic model and 4.9 £ 1.4 for the personalized model. % indicates both
descriptions and user utterances are used in clustering and { indicates apps are used as well.

REQSEQ MULTLAB

Personalized Generic Personalized Generic

Static (baseline) 42.8 10.1 55.7 23.8
+QryEn 44.6 11.2 56.3 27.9
+AppSim 42.8 15.1 55.7 27.8
+QryEn+AppSim 44.6 16.1 56.3 36.1
+QryEn+AppSimx 449 18.0 57.5 37.1
+QryEn+AppSim¥ 45.8 18.1 57.6 35.9
Dynamic (baseline) 50.8 23.8 51.3 19.1
+QryEn 54.9 26.2 57.0 22.9
+AppSim 50.8 30.1 51.3 22.7

+QryEn+AppSim 54.9 325 57.0 28.0

intention cluster. On the other hand, the MULTLAB approach shows relatively con-
sistent performance in both static and dynamic settings, indicating robustness and
self-adaptability with respect to the choice of interactions of similar intention.

In Table 3, the fact that QryEn improves the F; score in all conditions indi-
cates that semantic similarity among words can effectively address the language-
mismatch problem. On the other hand, although AppSim has no effect on the per-
sonalized model, it addresses the app-mismatch issue in generic models intuitively
(p < 0.05 when comparing with the baseline in an balanced ANOVA on additional
two factors: intention, method). Combining QryEn and AppSim methods together
(denoted as “+QryEn+AppSim”) consistently achieves the highest F; score. As we
expected, generic intention model is consistently inferior to the personalized model.

4.2 Intention Representation in Natural Language

It should be possible to automatically abstract the semantics of the recognized inten-
tion cluster (or neighbors): Text summarization may be used to generate high-level
description of the intention cluster [7, 12]. Keyphrase extraction provides another
alternative [27, 15, 1]. Note that, even if the automatic generation of semantic sum-
marization is not precise, it may still be sufficiently meaningful in context.

In this study, we used the Rapid Automatic Keyword Extraction (RAKE?) al-
gorithm [1], an unsupervised, language-independent and domain-independent ex-
traction method. This method has been reported to outperform other unsupervised

5 Toolkit: https://www.airpair.com/nlp/keyword-extraction-tutorial

10 Ming Sun, Yun-Nung Chen and Alexander I. Rudnicky

Table 4: Mean number of phrases generated using different resources
MANUAL ASR DESc DEsc+ ASR DESC+ MANUAL
20.0 20.3 11.3 29.6 29.1

methods such as TextRank [16] and [9] in both precision and F score. In RAKE,
we required that 1) each word have 3 or more characters; 2) each phrase have at
most 3 words; and that 3) each key word appear in the text at least once. We did
not investigate tuning these parameters. We use 3 individual resources and 2 com-
binations, reflecting constraints on the availability of different contexts in real-life.
The three individual resources are manual transcription of user utterances in their
dialogs (MANUAL) and their ASR transcriptions (ASR) and high-level task descrip-
tions (DESC). The average number of key phrases generated by each resource (or
their combination) is shown in Table 4.

We selected 6 users to first review their own clusters, by showing them all clus-
ter members with 1) apps used in the member interaction; 2) dialog reproduced; 3)
meta-data such as time, date, address, etc. We let them judge whether each individ-
ual phrase generated by the system summarized all the activities in the cluster (bi-
nary judgement). We used three Information Retrieval (IR) metrics to evaluate per-
formance among different resources — 1) Precision at position K (P@K); 2) Mean
Average Precision® at position K (MAP@K); 3) Mean Reciprocal Rank (MRR). The
first two metrics emphasize on the quality of the top K phrases, MRR focuses on a
practical goal — “how deep the user has to go down a ranked list to find one use-
ful phrase?”. Average MRR is 0.64, meaning that the user will find an acceptable
descriptive phrase in the top 2 items shown; an ANOVA did not show significant
differences between resources. With more sensitive MAP@K and P@K metrics,
DESC+ASR and DESC+MANUAL do best. The improvement becomes significant
as K increases: having a user-generated task description is very useful.

Participants also were asked to suggest carrier phrases that the agent could use
to refer to activities; we found these to be unremarkable. Among the 23 phrases
collected, “do you want to ___ " and “would you like to ___** were the most popular.

To conclude, if the IA can observe a user’s speech commands or elicit descrip-
tions from the user (ideally both), it can generate understandable activity references
and might avoid less efficient interactions (e.g. lists).

5 Conclusion and Future Work

We present a framework, HELPR, that is used to learn to understand a user’s in-
tention from a high-level description of goals (e.g., “go out with friends”) and to
link these to specific functionality available on a smart device. The proposed agent
solicits descriptions from the user. We found that the language used to describe ac-
tivities is sufficient to group together similar activities. Query enrichment and app
similarity help with language- and domain-mismatch problems, especially when a

6 MAP@K computed as: YX_| precision(k) * relevance(k) /K

HELPR: A Framework to Break the Barrier across Domains in Spoken Dialog Systems 11

generic model is used. We demonstrated that an agent could use data from large user
community while also learning user-specific models.

The long-term goal of our work is to create agents that observe recurring human
activities, understand the underlying intentions and support the task through spoken
language interaction. The agent must communicate on the level of intentions instead
of, or in addition to, individual apps. And it needs to manage the context of the
activity so that its state can be shared between different apps.

The value of such an agent is that it would operate on a level higher than provided
by app-specific interfaces. It would moreover allow the user to effectively build their
own applications by composing the functionality in existing apps. We have shown
that it is possible to infer user intentions; the next challenge is to capture meaningful
context and actively apply it across different apps.

6 Acknowledgement

This work was supported in part by YAHOO! InMind, and by the General Motors
Advanced Technical Center. We thank Zhenhao Hua for implementing the logger
application, and Yulian Tamres-Rudnicky and Arnab Dash for collecting data.

References

1. Michael W. Berry and Jacob Kogan. 2010. Text mining: applications and theory.

2. Dan Bohus and Alexander I Rudnicky. 2005. Sorry, I didn’t catch that!-An investigation
of non-understanding errors and recovery strategies. In SIGdial Workshop on Discourse and
Dialogue (SIGDIAL).

3. Yun-Nung Chen and Alexander I. Rudnicky. 2014. Dynamically supporting unexplored do-
mains in conversational interactions by enriching semantics with neural word embeddings. In
Proceedings of 2014 IEEE Spoken Language Technology Workshop (SLT). IEEE, 590-595.

4. Yun-Nung Chen, Ming Sun, and Alexander I. Rudnicky. 2015. Leveraging Behavioral Patterns
of Mobile Applications for Personalized Spoken Language Understanding. In Proceedings of
2015 International Conference on Multimodal Interaction (ICMI).

5. Richard Duda, Peter Hart, and David Stork. 2012. Pattern Classification. John Wiley and
Sons.

6. Jonathan G Fiscus. 1997. A Post-Processing System to Yield Reduced Word Error Rates: Rec-
ognizer output voting error reduction (ROVER). In Proceedings of Automatic Speech Recog-
nition and Understanding Workshop (ASRU). 347-352.

7. Kavita Ganesan, Chengxiang Zhai, and Jiawei Han. 2010. Opinosis: a graph-based approach
to abstractive summarization of highly redundant opinions. In Proceedings of the 23rd inter-
national conference on computational linguistics (COLING). ACL, 340-348.

8. Chris Harrison, Robert Xiao, Julia Schwarz, and Scott E. Hudson. 2014. TouchTools: lever-
aging familiarity and skill with physical tools to augment touch interaction. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 2913-2916.

9. Anette Hulth. 2003. Improved automatic keyword extraction given more linguistic knowledge.
In Proceedings of the 2003 conference on Empirical methods in natural language processing
(EMNLP). ACL, 216-223.

10. Qi Li, Gokhan Tur, Dilek Hakkani-Tur, Xiang Li, Tim Paek, Asela Gunawardana, and Chris
Quirk. 2014. Distributed open-domain conversational understanding framework with domain

12

11.

12.

13.

14.
15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Ming Sun, Yun-Nung Chen and Alexander I. Rudnicky

independent extractors. In Spoken Language Technology Workshop (SLT), 2014 IEEE. IEEE,
566-571.

Bor-shen Lin, Hsin-min Wang, and Lin-shan Lee. 1999. A distributed architecture for cooper-
ative spoken dialogue agents with coherent dialogue state and history. In Proceedings of 1999
IEEE Workshop on Automatic Speech Recognition and Understanding Workshop (ASRU),
Vol. 99. 4.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A. Smith. 2015. To-
ward Abstractive Summarization Using Semantic Representations. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL).

Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and Gabriele
Tolomei. 2011. Identifying task-based sessions in search engine query logs. In Proceedings of
the fourth ACM international conference on Web search and data mining. ACM, 277-286.
Jean-Michel Lunati and Alexander I. Rudnicky. 1991. Spoken language interfaces: The OM
system. CHI91 Human Factors on Computing Systems (1991).

Olena Medelyan. 2009. Human-competitive automatic topic indexing. In Thesis Dissertation,
University of Waikato.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bringing order into texts. In ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeftfrey Dean. 2013. Efficient Estimation of
Word Representations in Vector Space. In Proceedings of Workshop at International Confer-
ence on Learning Representations (ICLR).

Mikio Nakano, Shun Sato, Kazunori Komatani, Kyoko Matsuyama, Kotaro Funakoshi, and
Hiroshi G Okuno. 2011. A two-stage domain selection framework for extensible multi-domain
spoken dialogue systems. In SIGdial Workshop on Discourse and Dialogue (SIGDIAL). As-
sociation for Computational Linguistics, 18-29.

Alexander I Rudnicky, Jean-Michel Lunati, and Alexander M Franz. 1991. Spoken language
recognition in an office management domain. In Proceedings of International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). IEEE, 829-832.

Seonghan Ryu, Donghyeon Lee, Injae Lee, Sangdo Han, Gary Geunbae Lee, Myungjae Kim,
and Kyungduk Kim. 2012. A Hierarchical Domain Model-Based Multi-Domain Selection
Framework for Multi-Domain Dialog Systems. In Proceedings of the 24" International Con-
ference on Computational Linguistics(ACL).

Seonghan Ryu, Jaiyoun Song, Sangjun Koo, Soonchoul Kwon, and Gary Geunbae Lee. 2015.
Detecting Multiple Domains from Users Utterance in Spoken Dialog System. In Proceedings
of the International Workshop on Spoken Dialogue Systems (IWSDS).

Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2005. Implicit user modeling for personal-
ized search. In Proceedings of the 14th ACM international conference on Information and
knowledge management. ACM, 824-831.

Pontus Stenetorp, Sampo Pyysalo, Goran Topi¢, Tomoko Ohta, Sophia Ananiadou, and
Jun’ichi Tsujii. 2012. BRAT: a web-based tool for NLP-assisted text annotation. In Proceed-
ings of the Demonstrations at the 13th Conference of the European Chapter of the Association
for Computational Linguistics (EACL). Association for Computational Linguistics, 102—107.
Ming Sun, Yun-Nung Chen, and Alexander I. Rudnicky. 2015a. Learning OOV through Se-
mantic Relatedness in Spoken Dialog Systems. In 16" Annual Conference of the International
Speech Communication Association (Interspeech).

Ming Sun, Yun-Nung Chen, and Alexander. I. Rudnicky. 2015b. Understanding User’s Cross-
Domain Intentions in Spoken Dialog Systems. In NIPS workshop on Machine Learning for
SLU and Interaction.

Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the number of
clusters in a data set via the gap statistic. In Journal of the Royal Statistical Society: Series B
(Statistical Methodology). 411-423.

Tan H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and Craig G. Nevill-Manning.
1999. KEA: Practical automatic keyphrase extraction. In Proceedings of the fourth ACM
conference on Digital libraries. 254-255.

