An Intelligent Assistant for High-Level Task Understanding

Ming Sun
Yun-Nung Chen
Alexander I. Rudnicky
School of Computer Science
Carnegie Mellon University
Many devices, many apps...

- Rich functionality is now available
- How well can it support user activities?
Book a restaurant!

I can do Yelp!
Show me bus to China Palace.

I know Maps!
Tell kids we will have Chinese tonight.

I will Text!
Multi-domain Dialog – Current System

System: What can I do for you?
User: Could you **arrange a dinner** for me and my friends?
System: *Sorry I don’t understand that.* What can I do for you?
User: Can I book a table for three in Täkō downtown for this Friday?

…

System: OK. **What can I do for you next?**
User: Show me the bus from here.
System: Where is your **destination** please?
User: Täkō downtown Pittsburgh.

…

System: **What should I do next?**
User: Send **the bus route** to Carrie and Peter.
System: OK. Sending the following message to Carrie and Peter: “**the bus route**”.

Cannot handle complex intention

Passively support cross-domain dialog

No shared context
Multi-domain Dialog – Human Assistant

Assistant: What can I do for you?

User: Could you arrange a dinner for me and my friends?

Assistant: What kind of food do you prefer?

User: Mexican?

Assistant: How about Täkō? I can book a table for you.

User: Sounds good! Can I take a bus there?

Assistant: 61 A/B/C/D can take you there. Do you want to send this to your friends?

User: Great! Send it to Carrie and Peter.

Assistant: OK. The bus route 61 has been sent.
Intention Understanding

Find a restaurant!

Yelp!
Intention Understanding

Find a bus route!

Maps!
Intention Understanding

Message Agnes & Edith!

Messenger!
Intention Understanding

Set up meeting!

Yes Dad!
Special Team 2!
Approach

- Step 1: Observe human user perform multi-domain tasks

- Step 2: Learn to assist at task level
 - Map an activity description to a set of domain apps
 - Interact at the task level
Data Collection 1 – Smart Phone

- Log app invocation + time/date/location
- Separate log into episodes if there is 3 minute inactivity

Schedule a visit to CMU Lab

Wednesday
17:08 – 17:14
CMU

Messenger

Gmail

Browser

Calendar
Data Collection 2 – Wizard-of-Oz

Schedule a lunch with David.

Monday
10:08 – 10:15
Home

Yelp Maps Messenger Music

Find me an Indian place near CMU.

Yuva India is nearby.
When is the next bus to school?

In 10 min, 61C.

Schedule a lunch with David.
Tell David to meet me there in 15 min.

Message sent.

Schedule a lunch with David.
Corpus

- 533 real-life multi-domain interactions from 14 real users
 - 12 native English speakers (2 non-)
 - 4 males & 10 females
 - Mean age: 31
 - Total # unique apps: 130 (Mean = 19/user)

<table>
<thead>
<tr>
<th>Resources</th>
<th>Examples</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>App sequences</td>
<td>Yelp->Maps->Messenger</td>
<td>structure/arrangement</td>
</tr>
<tr>
<td>Task descriptions</td>
<td>“Schedule a lunch with David”</td>
<td>nature of the intention, language reference</td>
</tr>
<tr>
<td>User utterances</td>
<td>“Find me an Indian place near CMU.”</td>
<td>language reference</td>
</tr>
<tr>
<td>Meta data</td>
<td>Monday, 10:08 – 10:15, Home</td>
<td>contexts of the tasks</td>
</tr>
</tbody>
</table>
Infer:
1) Supportive Domains: United Airlines, TripAdvisor, AirBnB
2) Summarization: “plan trip”
Find similar past experience

- Cluster-based:
 - K-means clustering on user generated language
- Neighbor-based:
 - KNN
Realize domains from past experience

- Representative Sequence

- Multi-label Classification
Some Obstacles to Remove

• Language-mismatch
 • **Solution:** Query Enrichment (QryEnr)
 • [“shoot”, “photo”] -> [“shoot”, “take”, “photo”, “picture”]
 • *word2vec, GoogleNews model*

• App-mismatch
 • **Solution:** App Similarity (AppSim)
 • Functionality space (derived from app descriptions) to identify apps
 • *Data-driven: doc2vec on app store texts*
 • *Rule-based: app package name*
 • *Knowledge-driven: Google Play similar app suggestions*
Gap between Generic and Personalized Models

QryEnr, AppSim, QryEnr+AppSim reduce the gap of F1
Compare different AppSim

Baseline, Data, Knowledge, Rule, Combine

Precision, Recall, F1
Compare different AppSim

- Combining three approaches performs the best

- Knowledge-driven and data-driven have low coverage among (manufacture) apps

- Rule-based is better than the other two individual approaches
Learning to talk at the task level

- Techniques:
 - (Extractive/abstractive) summarization
 - Key phrase extraction [RAKE]

- User study:
 - Key phrase extraction + user generated language
 - Ranked list of key phrases + user’s binary judgment

[descriptions]
Looking up math problems.
Now open a browser.
Go to slader.com.
Doing physics homework.
...

[utterances]
Go to my Google drive.
Look up kinematic equations.
Now open my calculator so I can plug in numbers.
...
Learning to talk at the task level

- **Metrics**
 - Mean Reciprocal Rank (MRR)

- **Result:**
 - MRR ~0.6
 - understandable verbal reference show up in top 2 of the ranked list

[descriptions]
Looking up math problems.
Now open a browser.
Go to slader.com.
Doing physics homework.
...

[utterances]
Go to my Google drive.
Look up kinematic equations.
Now open my calculator so I can plug in numbers.
...

1. solutions online
2. project file
3. Google drive
4. math problems
5. physics homework
6. answers online
...
Summary

- Collected real-life cross-domain interactions from real users

- HELPR: a framework to learn assistance at the task level
 - Suggest a set of supportive domains to accomplish the task
 - Personalized model > Generic model
 - The gap can be reduced by QryEnr + AppSim
 - Generate language reference to communicate verbally at task level
HELPR demo

- Interface
 - HELPR display
 - GoogleASR
 - Android TTS
- HELPR server
 - User models
Thank you

- Questions?