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ABSTRACT

People are able to interact with domain-specific intelligent
assistants (IAs) and get help with tasks. But sometimes user
goals are complex and may require interactions with multiple
applications. However current [As are limited to specific ap-
plications and users have to directly manage execution span-
ning multiple applications in order to engage in more com-
plex activities. An ideal personal agent would be able to
learn, over time, about tasks that span different resources.
This paper addresses the problem of cross-domain task as-
sistance in the context of spoken dialogue systems. We pro-
pose approaches to discover users’ high-level intentions and
using this information to assist users in their task. We col-
lected real-life smartphone usage data from 14 participants
and investigated how to extract high-level intents from users’
descriptions of their activities. Our experiments show that un-
derstanding high-level tasks allows the agent to actively sug-
gest apps relevant to pursuing particular user goals and reduce
the cost of users’ self-management.
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INTRODUCTION

Smart devices, such as phones or TVs, now host applica-
tions (apps) from different domains. Each app is designed
to handle a limited number of domains (usually one). It
may be configured by developers to support transition be-
tween known apps, but such functionality is not scalable
and loses potentially desirable adaptive configuration. On
the other hand, users can mentally arrange apps and seam-
lessly coordinate the information among them. However, this
manual process of launching apps one by one may be time-
consuming and difficult, especially for elder users and users
with (visual) disabilities, although vocabularies of a touch-
screen or gestures have been enriched significantly over the
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past decade [10]. We would want our personal IAs to help
organize apps/domains automatically given user requests ex-
pressed at the level of intentions. For example, upon receiving
“can you help me plan an evening out with my friends?”, we
would like our agent to find a restaurant with good reviews
(YELP), reserve a table (OPENTABLE) and contact friends
(MESSENGER).

Conventional multi-domain dialog systems passively select
one domain from multiple domains according to a user in-
put, ignoring relationships between domains and the ultimate
user intention behind cross-domain behaviors [3, 4, 5, 6, 17,
22, 14, 21, 23, 13]. This paper describes a layer above indi-
vidual applications, which links them to a specific intention
underlying user activities [26, 27]. By doing so (and in com-
bination with other techniques), an agent would be able to
manage interactions at the level of intentions, mapping in-
tents into multiple existing applications/functionality. In the
example above, the agent may respond “Okay, to plan a din-
ner event, I need to know where, when and who”. Here, “plan
a dinner event” indicates a (in-)correct interpretation of the
user intention. (The user would have opportunity to correct
the agent when misunderstanding presents.) Where, when and
who collectively construct a shared context across app bound-
aries. Thus, a unified interaction could be provided, instead of
concatenating individual domains managed by the user. This
paper focuses on an IA which is capable of 1) discovering
meaningful intentions from user’s past interactions; 2) lever-
aging surface intentions with groups of apps; 3) talking about
intentions via natural language. In the rest of the paper, a real-
life multi-domain dataset is briefly described, followed by our
framework (HELPR). At the end, we discuss user studies that
evaluate our model.

DATA COLLECTION

We logged real-life interactions at app-level from users’ smart
phones. We then requested two types of user annotation: 1)
what apps were used for a particualr goal; and 2) what the
goal was (i.e., task description). Meta information such as
date, time, location was shown to the user to aid recall. Users
were also asked to re-enact the smart phone interaction by
talking with a Wizard-of-Oz system. An example of annota-
tion and Wizard-of-Oz dialog is shown in Figure 1.

We had 14 participants and collected 533 sessions; mean age
for the 4 male participants was 23.0 and 34.6 for the 10 fe-
males. In the group were 12 native English speakers. Details
of the collection are provided in [27].

HELPR FRAMEWORK
The agent (see Figure 2) maintains an inventory of past in-
teractions, such as “plan a trip to California”, each associated



Meta: 20150203; Tuesday; 10:48; Home

N

Apps: settings; music; mms
Desc: play music via bluetooth speaker

User: Connect my phone to bluetooth speaker.
Wizard: Connected to bluetooth speaker.
User: And play music.

Wizard: What music would you like?

User: Shuffle the playlist.

Wizard: | will play the music for you.

Figure 1. User connected SETTINGS and MUSIC and noted that these
two apps were used to play music via bluetooth speaker. Wizard-of-Oz
dialog was collected and manually transcribed.

“Plan a trip to California”

“ . , “Share picture to Alexis”
Arrange evening out”

. “Plan a weekend in Virginia”
Intention | 20 N ) '
Realization 2 O@: ez Q) ((
Model .\\!_/}’ I S
. . “ . - I
. | am going to Oregon for vacation

Infer:
i 1) Supportive apps, e.g., TripAdvisor, United Airlines, AirBnB
2) Semantics such as “plan trip”

Figure 2. Intention understanding and realization example. Solid nodes
denote past interactions (blue) and current input (yellow).

with information such as the sequence of apps used and the
utterances spoken by user during the interaction. Given a new
input (yellow node), the agent first identifies similar past ex-
perience (denoted as the ones within the dashed circle). This
is the intention understanding process. Next, an intention re-
alization model is built from those similar interactions to gen-
erate 1) supportive apps and 2) natural language reference.
Thus, the intelligent agent transparently conveys its under-
standing of the input intention in these two modalities.

Intention Understanding

We define a complex intention collectively by the set of pre-
vious interactions of similar nature. We used two approaches
to find such similar past experience. A cluster-based method
first groups training examples into ¢ clusters (i.e., segment-
ing the semantic space). The input language is used to iden-
tify the closest of these clusters; the members of this cluster
define the nature of the intention. We also investigated a K-
Nearest Neighbors approach that finds the K most similar
past interactions given the input.

We anticipate some major differences between cluster-based
and neighbor-based intentions. (i) The cluster-based method
should provide insight into the basic intentions of a user. This
may become useful when the agent is actively learning tasks,
i.e., asking user to label the current activity while suggesting
one of the list of basic intentions. (ii) Cluster-based method

can utilize richer contextual information (such as the apps
used or utterances spoken by the user) when segmenting the
semantic space of past interactions. Ideally, this yields bet-
ter clustering performance. Such post-initiate information is
not available in the neighbor-based approach, since it does
not have a training process. (iii) The cluster-based approach
has hard boundaries between intentions. Instances close to
the boundaries may not be characterized well by their cluster
members, compared with neighbor-based method. However,
regardless of the differences between these two approaches,
we believe that by referring to shared (past) experience, the
agent can (i) better indicate (mis-)understanding of user’s in-
tention; and (ii) build rapport with the user [30].

Intention Realization in Two Modes

Supportive Applications

As an intelligent user interface, the agent needs to assist
human user in pursuing complex intentions that span mul-
tiple domains. We propose two strategies to generate sets
of supportive apps. In the first one, we combine the in-
dividual app sequences in a set into a single app sequence
to cover the activity (denoted as REPSEQ). For example,
{a1 a20a3,010204, 01 a3a4} will yield a1 asa4 by majority vot-
ing at each position. An alternate strategy would be to
have a classifier assign multiple labels (apps ids) to the in-
put (MULTLAB). The advantage of REPSEQ is that it can
preserve common ordering among apps. However, from the
example above, once the members are selected, the input lan-
guage has no further influence on the selection of apps. Ar-
guably, during this process we can weight each set member
by its closeness to the input; we did not investigate this pos-
sibility. In this work, we focus on the quality of the proposed
set of apps. At present we do not consider app order.

In the user interface, the agent could a) present the clickable
icons of these apps to reduce the navigation through installed
apps; b) warm up these apps to speed up the activation; c)
build unified conversation based the set of apps.

Language Reference

The human-agent communication channel needs to be trans-
parent in both directions. The agent must be able to verbally
convey its understanding of user intention, allowing the user
to track the agent’s understanding. For example, it can use
explicit or implicit confirmation [2], e.g., “do you want to
share a picture?” Practically this can simply be a template
(“do you want to ___?”) and the reference to the intention
(“share a picture”). Compared with echoing content extracted
from the user’s most recent input, our approach better com-
municates the agent’s (mis-)understanding, allowing timely
detection and recovery of errors.

To enable this we want our agent to automatically infer the
semantics from related past experience. Text summarization
can be used to generate a high-level description of the inten-
tion cluster [9, 15]. Keyphrase extraction provides an alterna-
tive [29, 18, 1]. In our case, we mainly need a short content
(“share a picture”) so the keyphrase approach is more suit-
able. Even if the automatic generation of semantic summa-
rization is not precise, in context it may still be sufficiently
meaningful to the human.



USER STUDIES

Study 1: End-to-End Evaluation

We investigated the differences within: 1) cluster-based vs.
neighbor-based intention models; 2) personalized vs. generic
setups; 3) REPSEQ vs. MULTLAB realization strategies. For
each user, the chronologically first 70% of collected data was
to train a personalized mode (in principle mirroring actual
data accumulation). The remaining 13 users’ first 70% data
was combined and used to train a generic model. The number
of intentions K¢ for the cluster-based intention model and
the number of nearest neighbor K for the neighbor-based
model were tuned. K was automatically optimized (from
1 to 10) via gap statistics [28]. K was set to the square
root of the number of training examples [7]. For REPSEQ we
used ROVER [8] to collapse multiple app sequences into one.
For MULTLAB, we used support vector machine (SVM) with
linear kernel.

There are intra-user and inter-user inconsistencies in the
use of language/apps, creating the problem of vocabulary-
mismatch [16, 24], where interactions related to the same
intention may have non-overlapping 1) spoken terms (“take
picture” vs. “shoot photo”), sometimes caused by minor dif-
ferences such as wrong word choice or morphology (“take”
vs. “taking”); 2) app choice, e.g., people may use differ-
ent apps with essentially similar purpose (MESSENGER Vs.
EMAIL). To address these issues, we applied query enrich-
ment (QryEnr) and app similarity (AppSim). We describe
them in detail.

Query Enrichment

QryEnr will expand the query by incorporating words se-
mantically close to it [25], for example {shoot,photo}
— {shoot, take, photo, picture, sel fie}. The chance of
observing sparse input feature vectors caused by out-of-
vocabulary (OOV) is thereby reduced. In this work, we used
word2vec with the gensim toolkit' on the model® pre-
trained on GoogleNews [20]. Each word w; in the pre-
processed (lemmatization on verbs and nouns) query @ =
{w1,wa,...,wr} yields mass increases for N semantically
close words in the feature vector f [27].

App Similarity

In the generic model, a recommended app, e.g., BROWSER
may not match the only (or preferred) app on a specific user’s
phone, e.g., CHROME. Therefore, similarity metrics among
apps are also needed to convert all apps in the generic model
training data into the ones that are in this user’s phone (as a
pre-process). The other is to convert the recommendation re-
sults to fit this user’s installed apps (a post-process). In the
real world, pre-process may not be feasible since there are
many individual users and adapting the (huge) generic train-
ing data for each of the users is expensive. Therefore, in this
work we adopted post-processing.

We can construct a similarity matrix among all 132 apps in
our collection by three means: (i) rule-based: the app pack-
age names can be useful, e.g., com.lge.music is close to

1https ://radimrehurek.com/gensim/
2 https://code.google.com/p/word2vec/

REQSEQ MULTLAB

Personal Generic Personal  Generic

Cluster (baseline) 42.8 10.5 55.1 24.0
+QryEnr 44.0 11.0 56.1 27.4
+AppSim 42.8 14.8 55.1 29.2
+QryEnr+AppSim 44.0 154 56.1 38.2

Neighbor (baseline)  50.8 23.8 51.3 19.1
+QryEnr 54.9 26.2 57.0 22.9
+AppSim 50.8 30.7 51.3 24.7
+QryEnr+AppSim 54.9 32.7 57.0 30.3

Table 1. Weighted average F score (%) on test set across 14 partici-
pants, using bag-of-word features. Average number of clusters, K, in
the cluster-based approach is 7.0 &= 1.0 for generic models, and 7.1 +1.6
for personalized models. The reported numbers are average perfor-
mance of 20 K-means clustering results. K in the neighbor-based con-
dition is 18.5 & 0.4 for generic models and 4.9 + 1.4 for personalized
models. AppSim is rule-based.

com.sec.android.app.music since both contain the string
“music”; (ii) knowledge-based: the Google Play store pro-
vides a finite ranked list of “similar apps” for each entry; (iii)
data-based: app descriptions from the store can be projected
into a high-dimensional semantic space to compute similarity.
In the rule-based method, we used edit distance with 50 hand-
crafted fillers (e.g., “com”, “android”’) removed from package
names. For the knowledge-based approach, we used reversed
rank (1/r) as the similarity. For the data-based approach, we
used the doc2vec toolkit to train the space for over 1 mil-
lion apps then used cosine similarity [12]. Knowledge-based
and data-based matrices are sparse since some (vendor) apps
were not found in our snapshot of the Google database; 15.5%
of the cells are non-zero for data-based and only 1.0% for
knowledge-based.

Results

We compare the apps suggested by our model with the ones
actually launched by users (Table 1). This prediction task is
difficult; in our corpus, on average each user has 19 unique
apps and 25 different sequences of apps. The upper part of
the Table corresponds to the cluster-based intention model,
the lower part to the neighbor-based intention model. Within
each approach, intention realization strategies (QryEnr, App-
Sim) and their combination are shown.

Bringing more post-initiate information (i.e. set composi-
tion) into the clustering process improves performance [27].
But we did not observe better performance for the cluster-
based model relative to the neighbor-based model. When the
REPSEQ realization strategy is adopted, neighbor-based in-
tention yields a better F score. It is possible that REPSEQ is
sensitive to the selection of similar interactions. Arguably, an
input may fall close to the intention boundary in the cluster-
based setting, which indeed is closer to some interactions
on the other side of the boundary as opposed to the ones
within the same intention cluster. On the other hand, the
MULTLAB approach shows relatively consistent performance
in both cluster- and neighbor-based settings, indicating ro-
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REQSEQ MULTLAB
Prec. Rec. F; Prec. Rec. Fj

Baseline 333 189 238 458 123 19.1

Rule 433 243 307 594 159 247
Knowledge 41.8 223 287 53.0 146 22.6
Data 38.1 21.2 270 54.6 139 217

Combine 447 25.0 31.7 61.0 164 255

Table 2. Comparison of different AppSim approaches on neighbor-
based intention in a generic model. Precision, recall and F; score are
reported. For the data-driven method, the vector dimension D = 500.

bustness and self-adaptability with respect to the choice of
interactions for similar intentions.

In Table 1, the fact that QryEnr improves F} in all condi-
tions indicates that semantic similarity among words can ef-
fectively address the language-mismatch problem. In addi-
tion, although AppSim has no effect on personalized mod-
els, it addresses the app-mismatch issue in generic model
in an intuitive way. Combining QryEnr and AppSim meth-
ods together (denoted as “+QryEnr+AppSim”) consistently
achieves the best performance on F). Further inspection
shows that QryEnr improves recall while AppSim improves
both precision and recall. As we expected, the generic inten-
tion model is inferior to the personalized model for our data.
We anticipate that with a larger user community (and perhaps
grouping of similar users instead of a single generic model)
we will observe better performance. Note that, [As will face
a cold-start problem before sufficient data has been accumu-
lated for specific users. Thus, generic models will always be
required to ensure reasonable communication.

Table 2 compares the differences across AppSim meth-
ods. Applying AppSim improves the baseline in the generic
model. The rule-based approach outperforms other two meth-
ods, although it requires filters. This is probably due to the
sparseness of similarity matrices in the knowledge- and data-
based approaches. Nevertheless, combining three similarity
scores yields the best performance, showing the effectiveness
of leveraging inter-app similarity for this task.

Study 2: Intention Representation in Natural Language

We used Rapid Automatic Keyword Extraction (RAKE?)
algorithm [1], an unsupervised, language- and domain-
independent extraction method, reported to outperform other
unsupervised method such as TextRank [19, 11] in both pre-
cision and F’ score. In RAKE, we required that 1) each word
have 3 or more characters; 2) each phrase have at most 3
words; and that 3) each key word appear in the text at least
once. We did not tune these parameters. We used 3 individual
resources and 2 combinations, reflecting constraints on the
availability of different contexts in real-life. The three indi-
vidual resources are manual transcription of user utterances
from their dialogs (MANUAL), ASR transcriptions (ASR)

3https://www.airpair.com/nlp/
keyword-extraction-tutorial

DEsC + DESC +
MaNUAL ASR DEsc ASR MANUAL

20.0 203 113 29.6 29.1

Table 3. Mean number of phrases generated using different resources

thereof and high-level task descriptions (DESC). The num-
ber of key phrases that could be generated by each resource
or their combination depends on resource size (Table 3).

We asked 6 users to first review and refine their own clus-
ters, by showing them all cluster members. Toaid rercall we
displayed, 1) context e.g., location, time; 2) task descriptions
(e.g., “planning a dinner”), 3) dialogs produced and 4) apps
involved. Users could decide whether to split each cluster
into subgroups. Then, based on the refined clusters, we gen-
erate ranked lists of key phrases using the different resources.
Users were asked to provide binary judgment for each phrase
in the list (randomized) indicating whether it correctly sum-
marized all the activities in the current (refined) cluster.

To focus on a practical goal, we used Mean Reciprocal Rank
(MRR)—"“how deep the user has to go down a ranked list
to find one descriptive phrase?” Average MRR was 0.64
across different resources and their combinations, meaning
that on average the user can find an acceptable phrase in
the top 2 items shown; although MRR is lower when in-
dividual resource was used, an ANOVA did not show sig-
nificant differences between resources (and their combina-
tions). Other metrics such as Precision at position K or
Mean Average Precision at position K shows DESC+ASR
and DESC+MANUAL do best, especially when K is larger.
Results indicate that having a task description is useful.

To conclude, if the IA can observe a user’s speech commands
or elicit descriptions from user (ideally both), it can gener-
ate understandable activity references and could communi-
cate more effectively than using alternatives (e.g. lists).

CONCLUSION AND FUTURE WORK

We present a framework, HELPR, that implicitly learns from
past interactions to map high-level expressions of goals (e.g.,
“go out with friends”) to specific functionality (apps) avail-
able on a smart device. The proposed agent uses language
produced by user to identify interactions similar to the current
input. A set of domains/apps can be proposed from past expe-
rience and used to support current activities. This framework
is also capable of generating natural language references to
a past experience cluster. As a result, the communication
channel would have greater transparency, supporting timely
recovery from possible misunderstandings.

Our long-term goal is to create agents that observe recurring
human activities, figure out the underlying intentions and then
provide active support through language-based interaction (in
addition to allowing the user to explicitly teach the agent
about complex tasks). The value of such an agent is that it
can learn to manage activities on a level more abstract than
provided by app-specific interfaces and would allow users to
build their own (virtual) applications that combine the func-
tionality of existing apps.
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