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ABSTRACT

People are able to interact with domain-specific applications
in smart environments and get assistance with specific tasks.
Current intelligent agents (IAs) tend to be limited to specific
applications. In order to engage in more complex activities
users have to directly manage a task that may span multiple
applications. An ideal personal IA would be able to learn,
over time, about these tasks that span different resources.
This paper addresses the problem of multi-domain task as-
sistance in the context of spoken dialog systems. We pro-
pose approaches to discover users’ high-level intentions and
using this information to assist users in their task. We col-
lected real-life smart phone usage data from 14 participants
and investigated how to extract high-level intents from users’
descriptions of their activities. Our experiments show that un-
derstanding high-level tasks allows the agent to actively sug-
gest apps relevant to pursuing particular user goals and reduce
the cost of users’ self-management.
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INTRODUCTION

Environments, such as a home, can host smart objects/devices
where each typically operates in a specific domain (for exam-
ple, climate control or security). Each such object, by design
manages few domains, usually one. For example, a fridge
may support a grocery domain by tracking vegetables inside
of it, perhaps additionally helping to compose a shopping list.
It might even be configured to support sharing of information
to other domains known to it, but such functionality would
not be scalable and might lack potentially desirable adaptive
features.

In contrast, users often mentally arrange tasks that span do-
mains and easily manage the information shared among them.
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However, even if we assume that environment information
is aggregated into a handheld device (e.g., phone) in the
form of apps, the process of launching apps one by one may
be time-consuming and difficult for users, especially for el-
ders and ones with (visual) disabilities, although vocabular-
ies of a touch-screen or gestures have been enriched signif-
icantly over the past decade [10]. We would want our per-
sonal intelligent agents (IAs) to automatically help us or-
ganize tasks across domains (or, apps) given a user’s re-
quest expressed, in language, at the level of intentions. For
example, upon receiving “can you help me plan a grocery
shopping trip?”, the IA should determine what foods are out
of stock (FRIDGE), the next bus to a nearby supermarket
(NAVIGATION) and finally the locations of the food inside
the supermarket (AISLEFINDER).

Conventional dialog systems operate in specific domains such
as restaurant [31, 11], bus information [21] or event arrange-
ment [19]. Multi-domain dialog systems have been studied
in the past [16, 22, 15, 18, 14, 4, 24, 5, 6, 7], but they typ-
ically lack the capability of understanding the user’s goal or
high-level intention. As a result such a system has certain
drawbacks (see example in Fig 1): 1) it passively selects one
domain at a time given the user request; 2) it has no expecta-
tion of the next domain expected by the user at the task level;
3) it does not maintain a shared context across domain bound-
aries. Consequently, the multi-domain conversation will not
be as natural/efficient as a human assistant would provide.
The IA should assist human users in interacting with multi-
ple domains, as in the following use cases: 1) during con-
versation, our model can use the current context to predict
user’s next action as well as his high-level intention [27]; 2)
the IA should understand the user’s high-level intention (e.g.
as stated at the start of the conversation) and coordinate exist-
ing domains to accomplish this intention [28, 29].

In this paper, we summarize our findings from previous work,
followed by the remaining challenges in this multi-domain
agent setup.

DATA COLLECTION

To let the agent learn how human users coordinate existing
functionalities for complex tasks, there are two ways: 1) users
can explicitly instruct/author such procedural knowledge [23,
1]; 2) the agent can observe how users perform such tasks and
learn. The first approach may rely on the agent’s capability to
comprehend sequential instructions, as well as user’ capabil-
ity to thoroughly define a task via language. In this work, we
take the second approach. We use a smartphone to allow us to
investigate cross-domain task management without having to
deal with the complexity of a fully situated implementation.



S: What can | do for you?

U: Could you arrange a dinner for me

and my friends?

S: Sorry | don’t understand that. What
can | do for you?

U: Can | book a table for three in Tako
downtown for this Friday?

A: What can | do for you?

U: Could you arrange a dinner for me
and my friends?

A : What kind of food do you prefer?
U: Mexican?

A : How about Tako? | can book a
table for you.

U: Sounds good! Can | take a bus

S: OK. What can | do for you next? there?

A : 61 A/B/C/D can take you there. Do
you want to send this to your friends?
U: Great! Send it to Carrie and Peter.
A: OK. The bus route 61 has been
sent.

U: Show me the bus from here.
S: Where is your destination please?
U: Tako downtown Pittsburgh.

S: What should | do next?
U: Send the bus route to Carrie and
Peter.

S: OK. Sending the following message
to Carrie and Peter: “the bus route”.

Figure 1. Left: example dialog between user (U) and a classic multi-
domain dialog system (S); Right: example dialog between user (U) and
human assistant (A).

We logged real-life interactions at app-level (app invocation
+ when + where), segmenting a day’s log into episodes (as
separated by periods of 3 minute inactivity). Each episode
could contain more than one app invocation. We asked users
to annotate each episode to: 1) group apps used for a par-
ticular goal; and 2) describe the goal in language. Meta in-
formation such as day, time, location was shown to the user
to aid recall. Users were asked to re-enact the smart phone
interaction by speaking with a Wizard-of-Oz dialog system.
The participants were not required to follow the order of the
applications they used on the smart phones. Other than for
remaining on-task, we did not constrain expression. The wiz-
ard (21-year-old male native English speaker) was instructed
to respond directly to a participant’s goal-directed requests
and to not accept out-of-domain inputs. An example of anno-
tation and Wizard-of-Oz dialog is shown in Figure 2.

We had 14 participants and collected 533 sessions; mean age
for the 4 male participants was 23.0 and 34.6 for the 10 fe-
males. 12 were native English speakers. On average, each
user interacts with 19 different apps. Across 14 users, a total
of 132 apps were used. Details of the collection are provided
in [25].

DOMAIN TRANSITION

As mentioned earlier, users can mentally coordinate a set of
domains to accomplish complex tasks. However, this would
require user to manually launch the next domain through
speech, touch-screen or other modalities. Ideally, we would
like the agent to have some expectation of the follow-up do-
main such that the transition can be smooth and easy for the
user. In our previous work, we built context-based model to
predict the next domain a user would interact with [27]. The
agent could use this expectation to warm up the predicted app
in the background, forward current information about the in-
teraction so far to this app, or even proactively fetch the in-
formation from the next app and offer to the user.

Meta: 20150203; Tuesday; 10:48; Home

N

Apps: settings; music; mms
Desc: play music via bluetooth speaker

User: Connect my phone to bluetooth speaker.
Wizard: Connected to bluetooth speaker.
User: And play music.

Wizard: What music would you like?

User: Shuffle the playlist.

Wizard: | will play the music for you.

Figure 2. User annotation: 1) user connected SETTINGS and MUSIC;
and 2) user noted that these two apps were used to play music via blue-
tooth speaker. Wizard-of-Oz dialog was collected and manually tran-
scribed.

Rank App Prediction Intention Prediction

1 Lang+App All
2 All Meta+App
3 Meta+App Lang+App
4 Lang App
5 App Lang
6 Majority Location
7 Time Majority
8 Day Meta
9 Location Time
10  Meta Day

Table 1. Ranked features for prediction tasks without goal statement.
Meta is a combination of time, day and location.

The contexts for prediction include 1) time (hours based on
24 hour clock), day (Monday, Tuesday, ..., Sunday), location
(street names e.g, “Forbes Ave”); 2) previously launched app;
3) (noun and verb) words in user utterance. The intuition be-
hind these contexts are: 1) people would have different tasks
in different places or time; 2) what information people ob-
tained (in certain app via certain speech command) would
indicate what he might want to seek next. From our exper-
iment, we found that previous app and user utterance are very
informative by using multi-class (i.e., app ids) classification
models. The rank of the result is shown in the left side of
Table 1.

INTENTION PREDICTION

A user might not explicitly express their ultimate
goal/intention (e.g., “plan a dinner with friends”). The
agent might need to infer the user’s ultimate intention to
provide timely assistance. Knowing that the user’s intention
is to “schedule a meeting”, it could reference how this
user (or others) accomplishes this task. Note that sharing
this information can improve the communication channel
transparency: The agent can say “I think you want to plan a
dinner. Let’s find a restaurant for you first.” In this way, the
agent can reveal its (mis-)understanding of the task at hand,
allowing the user to redirect it.
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Figure 3. Cluster-based vs. Neighbor-based intention definition.
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There are two cases in predicting a user’s high-level intention.
First, when the user does not explicitly state his intention, the
agent can infer it by context (time, day, location, apps and
user utterances). On the other hand, the user may directly ex-
press the intention via language at the beginning of the inter-
action. The agent could map that expression to an intention.
Regardless of the different use cases, this process of inferring
user’s intention has two phases: 1) define a finite set of inten-
tions and 2) recognize the intention given the input (either the
context or the user’s utterance at the outset).

Intention Definition

We let our agent automatically cluster seen interactions into
K¢ groups, each representing one intention. Bag-of-words
features extracted from each interaction are words (lemma-
tized nouns and verbs) in user-generated language (i.e., task
description and user utterances) as well as other contexts. The
number of clusters K~ can be automatically optimized by
using gap statistic [30]. We call this cluster-based intention
definition.

We conducted a user study to examine the effectiveness of
this cluster-based approach [28]. Users were shown the clus-
ter members, each with the produced dialog, apps involved,
task description provided by user. We asked each user to rate
their agreement with the statement that the tasks shown in
each cluster are essentially of the same nature. On average,
we obtained 4.2 out of 5.0, where 5.0 indicates strong agree-
ment. An example of clustered user tasks are shown in Ta-
ble 2.

Similarly, we can use the K v nearest neighbors of the input to
denote the current intention (neighbor-based definition). The
difference is illustrated in Fig 3. In this approach, K was
set to the square root of the number of training examples [8].
The advantage of cluster-based approach is that the agent has
awareness of the typical tasks a user performs everyday. This
can be useful in the future when the agent list a few possible
intentions for grounding, to prevent potential misunderstand-
ings.

Intention Recognition

In this section, we introduce two use cases of intention recog-
nition: one with ultimate goal/intention expressed and one
without. When the user does not express his goal, the agent

needs to recognize the goal implicitly from other contexts.
On the other hand, if the goal is directly expressed (usually
at the beginning of the interaction), the agent needs to under-
stand it. In the following, we briefly note our findings when
no goal statement is provided. We then focus more closely on
understanding intention from explicitly expressed goal state-
ments.

Use Case 1: without goal statement

Multi-class classification technique is adopted to recognize
the user intention. The input are current contexts — 1) time,
location; 2) previously launched app; 3) user utterance. Simi-
lar to the results in app prediction, last app and user utterance
outperform other contexts when predict user intention. Fus-
ing all contexts together yields the best performance. Ranks
of individual feature and combinations of features are shown
in the right side of Table 1.

Use Case 2: with goal statement

The second use case where user initiates the conversation by
a high-level command (e.g., “please organize a meeting for
me”) is illustrated in Fig 4. Let’s take cluster-based inten-
tion definition as an example. We first segment the semantic
space constructed from past interactions based on user’s high-
level commands as well as other contexts (red dashed lines in
Fig 4). During execution time, user utters a new command
(yellow) which would be mapped to a certain cluster within
this semantic space. Thus, we can find past experience of sim-
ilar nature to the input. By using the information provided by
such experience, i.e., how user previously performed these
task with domains, our agent is able to effectively map the
new command to a set of supportive domains in the following
ways:

o Representative Sequence (REPSEQ): We can combine
the individual app sequences of the set members into a sin-
gle app sequence that represents a common way of surfac-
ing the intention. An example is shown in Fig 5. We used
ROVER to implement this majority vote [9].

e Multi-label Classification (MULTLAB): We can treat this
problem as associating multiple labels (app ids) to the input
command, given the training instances of cluster members
(or neighbors). We used SVM with linear kernel.

In this use case, we have the following obstacles: 1) people
use different language to describe tasks of similar nature (e.g.,
“take a picture” vs. “snap a photo”); 2) people use differ-
ent domains/apps for essentially the same functionality (e.g.,
GMAIL vs. MESSENGER for contacting someone). The first
obstacle holds even for the same user. We adopted the fol-
lowing techniques to solve these problems, with the goal of
improving the system’s prediction performance especially for
a model trained from a generic group of users:

e Query Enrichment (QryEnr): We expand the query/ com-
mand by incorporating words related to it semantically.
QryEnr can reduce the likelihood of seeing sparse input
feature vector due to out-of-vocabulary [26] words. The
algorithm is shown in Algorithm 1. In short, each word
w; in the lemmatized query () yields mass increases for NV
semantically close words in the feature vector f.



Cluster Item Examples (task descriptions supplied by participant)

1 “Picture messaging XXX, “Take picture and send to XXX”

2 “Look up math problems”, “Doing physics homework”, “Listening to and trying to

buy a new song”

3 “Talking with XXX about the step challenge”, “Looking at my step count and then
talking to XXX about the step challenge”

“Playing [game] spiderman”, “Allocating memory for spiderman”

“Using calculus software”, “Purchasing Wolfram Alpha on the play store”

“Texting and calling XXX, “Ask XXX if she can talk then call her”

SN N B~

“Talking and sharing with group mates”, “Emailing and texting group members”

Table 2. Intention clustering of tasks based on utterances, with typical descriptions.

Weekend, afternoon, home
[TripAdvisor, United Airlines, Hotwire]
“Plan a trip to California”

Weekend, evening, home
[TripAdvisor, AirBnB, United Airlines]
“I was traveling for vacation”

Weekday, afternoon, office
[Yelp, Maps, Uber]
“Arrange evening out”

Weekend, afternoon, home
“Plan a weekend in Virginia”

0" 0%¢
....\\. Q@ Vzzzzzzzzzzzze (5 ((('

Intention
Realization [
Model

————

.
/’. [ ) Weekday, morning, office
e @® @ | (Camera, Messenger]

“Share picture to Alexis”

Infer:
1) Supportive apps, e.g., TripAdvisor, United Airlines, AirBnB
2) Language reference, e.g., “plan a trip”

Figure 4. Intention understanding (cluster-based) and realization ex-
ample. Solid nodes denote past interactions (blue) and current input
(yellow).

o App Similarity (AppSim): Similarity between two apps is
measured in the following ways:

— Data-driven: App descriptions from the Google
Play Store can be projected into a high-dimensional
semantic space to compute similarity. We used
doc2vec [13] via gensim' trained on 1 million app
descriptions. Cosine similarity can then be computed
given any two apps. Most objects will have associated
descriptive materials and we expect this approach can
scale accordingly.

— Knowledge-driven: The Google Play store provides a
finite ranked list of “similar apps” for each entry. We
used reversed rank (1/r) as similarity.

— Rule-based: The app package names can be useful,
e.g., com.lge.music is close to com.sec.android
.app.music since both contain the string “music”.

! https://radimrehurek.com/gensim/models/doc2vec.
html

3 app sequences of similar experience

|
[ )

1 Yelp -> Maps| -> Messenger
2. Yelp -> Maps|->| Email
3. OpenTable | -> Maps|->  Email

g

Yelp -> Maps -> Email

Figure 5. Example of Representative Sequence approach

Here, we applied a manually constructed list of 50 fil-

ters (e.g., “com”, “android”, “lge”) on package names.
Then we compute Edit Distance based similarity.

Algorithm 1 Query Enrichment

Require: lemmatized words of the query @ =
{w1, ..., wig} and their counts C' = {ci1,...,c)q};
training vocabulary V; bag-of-word feature vector
Qs = {f1,.... fiv|} constructed on Q; the word seman-
tic relatedness matrix M; the number of semantically
similar words IV to be extracted for each word in Q);

Ensure: an enriched bag-of-word feature vector

1: for each w; € Q do
2: Use M to find the N closest words Vy =
{v1, ..., un} €V}

3 for each v; € Vi do

4: fi=Ffi+M;;xc

5: end for

6

7

: end for
: return f;

We compare the system-generated apps with the ones users
actually launched to compute precision, recall and F} score.
The results are shown in Table 3. Our main finding is that the
original gap between personalized model and generic model
can be effectively reduced by adopting QryEnr and AppSim
techniques, while the personalized model performance (i.e.
the upper bound of our agent) can be improved as well. This
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REPSEQ MULTLAB

Personal  Generic Personal  Generic

Cluster (baseline) 42.8 10.5 55.1 24.0

+QryEnr 44.0 11.0 56.1 274
+AppSim — 14.8 — 29.2
+QryEnr+AppSim — 154 — 38.2
Neighbor (baseline)  50.8 23.8 51.3 19.1
+QryEnr 54.9 26.2 57.0 22.9
+AppSim — 30.7 — 24.7
+QryEnr+AppSim — 32.7 — 30.3

Table 3. Weighted average F; score (%) on test set across 14 partici-
pants, using bag-of-word features. Average number of clusters, K, in
the cluster-based approach is 7.0 = 1.0 for generic models, and 7.1 +1.6
for personalized models. The reported numbers are average perfor-
mance of 20 K-means clustering results. K in the neighbor-based con-
dition is 18.5 £ 0.4 for generic models and 4.9 4 1.4 for personalized
models. AppSim is rule-based.

REPSEQ MULTLAB
Prec. Rec. F; Prec. Rec. Fj

Baseline 333 189 238 458 123 19.1

Rule 433 243 307 594 159 247
Knowledge 41.8 223 287 53.0 146 22.6
Data 38.1 21.2 270 54.6 139 217

Combine 44.7 25.0 31.7 61.0 164 255

Table 4. Comparison of different AppSim approaches on neighbor-
based intention in a generic model. Precision, recall and F; score are
reported. For the data-driven method, the vector dimension D = 500.

result shows that, after deployment, if the agent keeps observ-
ing the user performing tasks, it can learn to assist the user in
the future. Even if this is a new user, or out of privacy con-
cern, given insufficient user data, the agent can use generic
model obtained from other users.

We varied ways to compute app similarity. The result is
shown in Table 4. As we can see, rule-based approach out-
performs the other approaches. It is not clear whether this is
due to the coverage issue in the other two methods: since ven-
dor apps do not have entries in our snapshot of Google Store
database, 15.5% of the cells of the data-driven similarity ma-
trix are non-zero. For knowledge-driven matrix, only 1.0%
are non-zero. Combining three similarity measurements to-
gether provides the best performance.

LANGUAGE REFERENCE

To reveal the agent’s understanding of user’s intention can
improve the channel transparency. One useful modality is
for the agent to verbally convey such understanding (e.g., “I
think you want to plan a trip”’). We adopted keyphrase ex-
traction [2] on user-generated language to generate a ranked
list of phrases. We used Rapid Automatic Keyword Extrac-
tion (RAKE?) algorithm [2], an unsupervised, language- and

2https://www.airpair.com/nlp/
keyword-extraction-tutorial

DEsSC + DESC +
MANUAL ASR DESC ASR MANUAL

20.0 203 113 29.6 29.1

Table 5. Mean number of phrases generated using different resources.
MANUAL: manual transcription of user utterances. ASR: Google
speech recognition transcription of user utterances. DESC: user descrip-
tion of the task.

. solutions online
. project file
. Google Drive

Looking up math problems. (Desc) 5
X
. math problems v
v
v
X

Go to slader.com. (Manual)

Doing physics homework. (Desc) '

Check the solutions online. (Manual)
Go to my Google Drive. (Manual)

Look up kinematic equations. (Manual)
Now open my calculator. (Manual)

. physics homework
. answers online
. recent picture

NoOuUhdWNBR

Figure 6. Key phrases (ranked) extracted from user-generated language,
with user judgment.

domain-independent extraction method, reported to outper-
form other unsupervised method such as TextRank [17, 12]
in both precision and F’ score. In RAKE, we required that 1)
each word have 3 or more characters; 2) each phrase have at
most 3 words; and that 3) each key word appear in the text
at least once. We did not tune these parameters. We used
3 individual resources and 2 combinations, reflecting con-
straints on the availability of different contexts in real-life.
The three individual resources are manual transcription of
user utterances from their dialogs (MANUAL), ASR transcrip-
tions (ASR) thereof and high-level task descriptions (DESC).
The number of phrases generated from different language re-
sources (and their combinations) are shown in Table 5.

We selected 6 users to first review their own clusters, by
showing them all cluster members with 1) apps used in the
member interaction; 2) dialog reproduced; 3) meta-data such
as time, day, address, etc. We let them judge whether each in-
dividual phrase (the order is randomized) generated by the
system summarized all the activities in the cluster (binary
judgement). See example in Fig 6.

We found that, on average, users would find an acceptable
phrase within top 2 of the list (average Mean Reciprocal Rank
= 0.64). This demonstrates that, the agent can generate un-
derstandable activity references. An ANOVA did not show
significant differences between resources. With more sensi-
tive metrics MAP@K? (Mean Average Precision at position
K) and P@K (Precision at position K') metrics, DESC+ASR
and DESC+MANUAL do best. The improvement becomes
significant as K increases: having a user-generated task de-
scription is very useful.

REMAINING CHALLENGES

We have shown that it’s possible to build models to infer a
user’s intention and use this information to activate the set of
domains that will allow the user to accomplish the high-level
goal. At the same time, we have found that an agent can use
the user’s high-level descriptions to generate language refer-
encing this goal in conversation. Nevertheless there are still

SMAP@K = Y"1, precision(k) * relevance(k)/ K


https://www.airpair.com/nlp/keyword-extraction-tutorial
https://www.airpair.com/nlp/keyword-extraction-tutorial

Training Phase

a8,
OoBIO

Task: share picture l

a1a7 aSaZ
OB, 1,0

Task
Clustering

2,3,8,3,3,8,8,

a3a2a3a1a7a2a10
BI10BI O

B,l, 1,0B,1,0
Task1: share picture L
Task2: plan a trip . Last Episode
8,858,8,
Task of Interest .
Detection
___________

.‘ Request User ‘:
1
,  Knowledge W

Figure 7. Pipeline for growing complex task inventory

remaining challenges to solve before the agent assistant is
able to actively help the user in their high-level activity.

One challenge is having to ask the user to explain what they
are doing is intrusive and perhaps not realistic. This would
be time-consuming and intrusive in realistic settings. Ideally,
the agent should have the ability to balance the cost of an
interruption and the expected value of the information to be
gained and act accordingly. In practical terms, the agent could
observe the user for some period of time to first identify ac-
tivities that appear to recur. Only when such activities are
recognized should the agent ask for a description. We expect
that the agent would continue to monitor activities to detect
changes or even propose ones itself.

Another challenge is the need for the agent to manage
activity-level context so that relevant information can be
transferred between apps; for example, passing the address
of a restaurant from a reviews app to an app that will pro-
vide directions on how to get there. Unless perhaps the apps
were developed by the same vendor, its unlikely that similar
concepts will be easy to match across different domains. But
doing so is necessary for maintaining a context.

Data Gathering

There are explicit and implicit ways to acquire knowledge
about a user’s high-level intentions so that the inventory of
intentions can evolve over time. First, user could explicitly
teach the agent about an activity by saying “To plan a trip,
you should find a cheap flight from PRICELINE and then look
for 3-star hotel in downtown by using HOTWIRE ...” Such in-
structable agents has been studied in dialog setup [23, 1]. The
difficulties lie in the dependence on the agent’s capability to
comprehend complex language instructions. Alternately, the
user could say “Agent, watch this” allowing the agent to ob-
serve an activity and then ask the user for more information as
needed. This initiative command (“Agent, watch this”) can be
further omitted if the agent is capable of segmenting stream
of events into meaningful sessions, e.g., thresholding the idle
time.

A proposed pipeline for this process of knowledge acquisi-
tion is shown in Fig 7. We assume that the initial inventory

Restaurant Navigation
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m o

& = —

22 Cuisine

3 g Price_range
Cuisine g % Origin Origin
Price_range % 2 Travel mode Restaurant

35 - Time

33

s o Travel_mode

20

o 3

3

o

Figure 8. Illustration of overlapping domain knowledge. The size of
shared context (red) is less than the sum of concepts in individual domain
(purple and black).

has full annotation from user for each task — 1) apps (e.g.,
ajarasas where the indicies indicate the app id); 2) IOB la-
bels [20] assigned to the apps to distinguish noise (O’s) from
content (B’s and I’s); 3) the user’s description of what the task
is about.

After deployment, the agent first clusters seen interactions
(complex tasks in the inventory) into groups and indexes the
IOB labels in each interaction accordingly. For example,
tasks similar to “sharing picture” are grouped into cluster 1.
Then their corresponding IOB labels would be indexed (e.g.,
OBIO — OB;1I,0). Next, the agent detects a task of in-
terests (Tol) — either a recurrence of seen task type or an
anomaly which does not conform to the automatically learned
tasks (i.e., normal behavior) [3]. Either way, the system can
take appropriate actions to add the current task back into the
task inventory during the execution time (path in orange) is
elaborated in Table 6.

Sharing Context

The necessary communication skills to request neces-
sary information concepts/slots are already provided by
domain experts (e.g., “request._destination” in
NAVIGATION domain, “inform_restaurant_review’,
“request_price_range” in RESTAURANT domain). It
is up to the agent to mix these skills into one conversation.
However, the concepts required by different domains may
overlap. For example, destination in NAVIGATION do-
main may be implied by the restaurant in RESTAURANT
domain. More intelligently, the arrival_time in NAVI-
GATION can be computed as reserved_time - 10min by
understanding that user tends to arrive 10min earlier. There-
fore, it is important for the agent to have a shared context
in order to avoid requesting information it has already pos-
sessed.

An illustration is shown in Fig 8. Two domains
(RESTAURANT and NAVIGATION) have a few concepts in
common but with different names. When collectively serving
a common user intention (“plan a dinner”), knowing the value
of Restaurant slot induces the value of Destination.
Thus, this problem can be formalized as follows: Given
the union of concepts in D different domains C' = C; U
Cy U ... U Cp and the concepts already filled in Cp €
C, for the target concept ¢; find the source concept ¢; =
arg maxe,ccop R(c;, ci|[Intention), where function R mea-



Tol Type Confidence System Action Example Sub-dialog

Recurrence High Add to seen interactions N/A

Recurrence Mild Confirm with user “I think you were planning a party, am I right?”

Recurrence Low Request user annotation  “Could you tell me what you just did, isitone of [1ist of tasks]?”’
Anomaly N/A Request user annotation ~ “I think you were doing something new, could you teach me?”

Table 6. System actions based on classification and confidence

sures the relatedness (semantic similarity) between two con-
cepts given the ultimate user intention. A further filtering
function has to be applied to either use the source concept ¢4
(e.g., restaurant) as the target concept (destination)
or discard it. A perfect R measurement plus the filtering func-
tion would resolve the inter-domain as well as intra-domain
redundancy.

The following approaches can be adopted to learn the seman-
tic relatedness function R(cs, c;|Intention) where we assume
cs and ¢; are from different domains:

1. Rule-based: In a multi-domain conversation, if the values
of cs and ¢; coincide, they are probably of similar nature;

2. Data-driven: We can embed concepts C' in the training di-
alog corpus. Thus, ¢, and ¢; can be projected to a semantic
space and their similarity can be computed.

We believe that this class of information could be pooled
across users: identifying the right mappings in principle
needs to be done only once for any given pair of apps, with
extensions being inferred through transitivity. At this point,
this is speculative. But we believe that it can be part of a
strategy for establishing an operational ontology across apps.

CONCLUSION

We present a framework that will allow an agent to implicitly
learn from past interactions to map high-level expressions of
goals (e.g., “go out with friends”) to specific functionalities
(apps) available in a smart environment. The proposed agent
uses language produced by user to identify interactions sim-
ilar to the current input. A set of domains/apps can be pro-
posed from past experience and used to support current ac-
tivities. This framework is also capable of generating natural
language references to past experience clusters. As a result,
the communication channel would have greater transparency,
supporting timely recovery from possible misunderstandings.
The value of such an agent is that it can learn to manage activ-
ities on a level more abstract than provided by object-specific
interfaces and would allow users to build their own (virtual)
apps that combine the functionalities of existing objects.

ACKNOWLEDGMENTS

This work is partially funded by Yahoo! InMind project and
General Motors Advanced Technical Center. We thank Zhen-
hao Hua for implementing the logger app. We thank Yulian
Tamres-Rudnicky and Arnab Dash for collecting the data.

REFERENCES
1. Azaria, A., Krishnamurthy, J., and Mitchell, T. M.
Instructable intelligent personal agent. In AAAI (2016).

2. Berry, M. W., and Kogan., J. Text mining: applications
and theory (2010).

10.

11.

12.

. Chandola, V., Banerjee, A., and Kumar, V. Anomaly

detection: A survey. In ACM computing surveys (CSUR)
(2009).

. Chen, Y.-N., and Rudnicky, A. I. Dynamically

supporting unexplored domains in conversational
interactions by enriching semantics with neural word
embeddings. In Proceedings of 2014 IEEE Spoken
Language Technology Workshop (SLT), IEEE (2014),
590-595.

. Chen, Y.-N., Sun, M., and Rudnicky, A. I. Leveraging

behavioral patterns of mobile applications for
personalized spoken language understanding. In
Proceedings of 2015 International Conference on
Multimodal Interaction (ICMI) (2015).

. Chen, Y.-N., Sun, M., and Rudnicky, A. I. Matrix

factorization with domain knowledge and behavioral
patterns for intent modeling. In NIPS Workshop on
Machine Learning for SLU and Interaction (2015).

. Chen, Y.-N., Sun, M., Rudnicky, A. I., and Gershman,

A. Unsupervised user intent modeling by
feature-enriched matrix factorization. In Proceedings of
The 41th IEEFE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (2016).

. Duda, R., Hart, P., and Stork, D. Pattern Classification.

John Wiley and Sons, 2012.

. Fiscus, J. G. A post-processing system to yield reduced

word error rates: Recognizer output voting error
reduction (rover). In Proceedings of Automatic Speech
Recognition and Understanding Workshop (ASRU)
(1997), 347-352.

Harrison, C., Xiao, R., Schwarz, J., and Hudson, S. E.
Touchtools: leveraging familiarity and skill with
physical tools to augment touch interaction. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2014), 2913-2916.

Hastie, H., Aufaure, M.-A., Alexopoulos, P., Bouchard,
H., Breslin, C., Cuayhuitl, H., Dethlefs, N., Gaic, M.,
Henderson, J., Lemon, O., Liu, X., Mika, P., Mustapha,
N. B., Potter, T., Rieser, V., Thomson, B., Tsiakoulis, P.,
Vanrompay, Y., Villazon-Terrazas, B., Yazdani, M.,
Young, S., and Yu, Y. The Parlance mobile application
for interactive search in english and mandarin. In
SIGDIAL (2014).

Hulth, A. Improved automatic keyword extraction given
more linguistic knowledge. In Proceedings of the 2003
conference on Empirical methods in natural language
processing (EMNLP), ACL (2003), 216-223.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Le, Q. V., and Mikolov, T. Distributed representations of
sentences and documents. In ICML (2014).

Li, Q., Tur, G., Hakkani-Tur, D., Li, X., Paek, T,
Gunawardana, A., and Quirk, C. Distributed
open-domain conversational understanding framework
with domain independent extractors. In Spoken
Language Technology Workshop (SLT), 2014 IEEE,
IEEE (2014), 566-571.

Lin, B.-s., Wang, H.-m., and Lee, L.-s. A distributed
architecture for cooperative spoken dialogue agents with
coherent dialogue state and history. In Proceedings of
1999 IEEE Workshop on Automatic Speech Recognition
and Understanding Workshop (ASRU), vol. 99 (1999), 4.

Lunati, J.-M., and Rudnicky, A. I. Spoken language
interfaces: The OM system. CHI91 Human Factors on
Computing Systems (1991).

Mihalcea, R., and Tarau, P. Textrank: Bringing order
into texts. In ACL (2004).

Nakano, M., Sato, S., Komatani, K., Matsuyama, K.,
Funakoshi, K., and Okuno, H. G. A two-stage domain
selection framework for extensible multi-domain spoken
dialogue systems. In SIGdial Workshop on Discourse
and Dialogue (SIGDIAL), Association for
Computational Linguistics (2011), 18-29.

Pappu, A., Sun, M., Sridharan, S., and Rudnicky, A. L.
Situated multiparty interaction between humans and
agents. In Human-Computer Interaction (2013).

Ramshaw, L. A., and Marcus, M. P. Text chunking using
transformation-based learning. In Proceedings of the
ACL Workshop on Very Large Corpora (1995).

Raux, A., Langner, B., Black, A. W., and Eskenazi, M.
LETS GO: Improving spoken dialog systems for the
elderly and non-native. In Eurospeech (2003).

Rudnicky, A. I, Lunati, J.-M., and Franz, A. M. Spoken
language recognition in an office management domain.
In Proceedings of International Conference on

23.

24.

25.

26.

27.

28.

29.

30.

31.

Acoustics, Speech, and Signal Processing (ICASSP),
IEEE (1991), 829-832.

Rudnicky, A. 1., Pappu, A., Li, P, Marge, M., and
Frisch, B. Instruction taking in the teamtalk system. In
AAAI Fall Symposium: Dialog with Robots (2010).

Ryu, S., Song, J., Koo, S., Kwon, S., and Lee, G. G.
Detecting multiple domains from users utterance in
spoken dialog system. In Proceedings of the

International Workshop on Spoken Dialogue Systems
(IWSDS) (2015).

Sun, M., Chen, Y.-N., Hua, Z., Tamres-Rudnicky, Y.,
Dash, A., and Rudnicky, A. I. Appdialogue: Multi-app
dialogues for intelligent assistants. In LREC (2016).

Sun, M., Chen, Y.-N., and Rudnicky., A. I. Learning
OOV through semantic relatedness in spoken dialog
systems. In 16" Annual Conference of the International
Speech Communication Association (Interspeech)

(2015).

Sun, M., Chen, Y.-N., and Rudnicky, A. L.
Understanding user’s cross-domain intentions in spoken
dialog systems. In NIPS Workshop on Machine Learning
for SLU and Interaction (2015).

Sun, M., Chen, Y.-N., and Rudnicky, A. I. HELPR: A
framework to break the barrier across domains in spoken
dialog systems. In International Workshop on Spoken
Dialog Systems (2016).

Sun, M., Chen, Y.-N., and Rudnicky, A. I. An intelligent
assistant for high-level task understanding. In IUI
(2016).

Tibshirani, R., Walther, G., and Hastie., T. Estimating
the number of clusters in a data set via the gap statistic.
In Journal of the Royal Statistical Society: Series B
(Statistical Methodology) (2001), 411-423.

Young, S. Using POMDPs for dialog management. In
SLT (2006).



	Introduction
	Data Collection
	Domain Transition
	Intention Prediction
	Intention Definition
	Intention Recognition
	Use Case 1: without goal statement
	Use Case 2: with goal statement


	Language Reference
	Remaining Challenges
	Data Gathering
	Sharing Context

	Conclusion
	Acknowledgments
	REFERENCES 

