

Learning OOV through Semantic Relatedness in Spoken Dialog Systems Ming Sun, Yun-Nung (Vivian) Chen, and Alexander I. Rudnicky

Summary

Motivation

- Domain language may drift over time so that ensuring language coverage in dialog systems can be a challenge (Furnas et al., 1987).
- The mismatch between training data and current input increases recognition errors and misunderstanding.
- Detect-and-Learn strategy requires human effort and takes more time to adapt the vocabulary and LM.
- > Approach: *Expect-and-Learn*
 - Automatically acquiring potential out-of-vocabulary 0.50
 (OOV) words by leveraging different types of words

Experimental Results

- Dataset: Wall Street Journal
 - Acoustic model: WSJ GMM-HMM semi continuous
 - Pronunciation: CMU Dictionary + Logios Lexicon Tool

OOV Coverage Evaluation

 How much OOV tokens in test set can be covered by using different relatedness resources.

OOV Coverage

0.60

CBOW-Algo2 CBOW-Algo1

- relatedness.
- Result
 - Both recognition and semantic parsing accuracy can be improved after acquiring potential OOVs.

OOV Learning Method

- Detect-and-Learn (Qin et al., 2011; 2012):
 - Discover OOV words during the conversation
 - Example:
 - S: "I heard something like SELF, can you repeat it?" U: "It's SELFIE."
 - Drawbacks
 - Limited number of new words
 - Required human efforts to correct spellings and pronunciations
- Expect-and-Learn (proposed):
 - Use semantic relatedness to automatically enrich the vocabulary and language model beforehand

Recognition and Understanding Performance

Only Domain Specific Models

	Learning Strategy		OOV Rate (%)	Recog. WER (%)	SLU F1 (%)
	Baseline	2854	22.6	49.9	57.0
-	Algo1	5394	11.7	41.6	65.4

Recognition Result

- Advantages
 - Large amount of potentially useful new words can be learned
 - No human involved

Expect-and-Learn Procedure

- Vocabulary Expansion
- Idea: learn new words related to the current domain represented by in-vocabulary words (IVs)
 - From the IV with the highest frequency v*, one unseen word w* is extracted from the resource according to:

Algo2	5394	11.6	42.0	65.1
Oracle	4254	0.0	23.5	80.9

Domain + Generic Models

Learning Strategy	Vocab Size	OOV Rate (%)	Recog. WER (%)	SLU F1 (%)
Baseline	20175	3.6	21.7	82.2
Algo1	22599	3.0	20.3	83.2
Algo2	22599	3.0	20.4	83.2
Oracle	20431	0.0	15.1	87.1

Conclusion

- Speech recognition and language understanding performance can be improved through an OOV expectand-learn procedure.
- A limited domain vocabulary can be utilized to effectively acquire OOVs by the word relatedness theory through web knowledge bases.
- » Local relatedness (Algo1): w* is mostly related to v*
- » Global relatedness (Algo2): w* is mostly related to the complete IV set
- 2. Repeat until the size of vocabulary satisfies a threshold
- Language Model Expansion
 - Use Kneser-Ney smoothing to estimate the unigram for the newly learned OOVs.

Relatedness Resources

- 1. Linguistically semantic relatedness
 - Defined by linguistics, e.g., WordNet (WN),
 Paraphrase Database (PPDB) (Ganitkevitch et al., 2013)
- 2. Data-driven semantic relatedness
 - Distributional semantics, e.g., continuous bag-ofword embeddings (CBOW) (Mikolov et al., 2013)

• With data-driven semantic relatedness, both the global and local learning procedures are able to successfully harvest more than 50% of OOVs, leading to better recognition and understanding performance.

This work demonstrates that

- OOV learning may benefit dialog system
- the proposed *expect-and-learn* strategy outperforms the traditional *detect-and-learn* in both higher effectiveness and no human involvement.

