Can a dialogue system automatically learn open domain knowledge?

Summary

- **Motivation**
 - Dialogue systems require a predefined semantic ontology; can it be learned from data?
 - A hierarchical ontology containing cross-slot information is crucial to SLU.
 - Word embeddings carry robust semantics.

- **Idea**
 - Frame semantics parsing generates slot candidates (Chen et al., 2013; 2014)
 - We propose a dialogue system that can automatically learn semantic knowledge.

- **Approach**
 - **1)** HAC learns a hierarchical ontology based on FrameNet-parsed slot candidates and word embeddings.
 - **2)** The slot importance estimated for different levels is integrated together to induce the ontology.
 - **3)** The induced slots are used for training an SLU model.

- **Result**
 - With high-level information, the SLU model achieves 13% relative improvement on F1.
 - The learned hierarchy aligns well with the hand-craft mapping.

Low-Level Slot Importance Estimation

- Frame semantics parsing generates slot candidates (Chen et al., 2013; 2014).
- We show in a cheap restaurant example:
 - Frame: capability
 - Frame: expensive
 - Frame: locale by use
 - Frame: restaurant

- **Idea**
 - Rank-domain specific concepts higher than generic concepts
 - \(w(s) = (1 - \alpha) \log f(s) + \alpha \log h(s) \)
 - \(f(s) \): the slot frequency in the parsed corpus
 - \(h(s) \): the coherence of slot-filler

High-Level Slot Importance Estimation

- Hierarchical Agglomerative Clustering (HAC) performs a bottom-up clustering approach by successively merging similar clusters together.
 - The distance between two clusters A and B is defined as \(\frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} d(a, b) \)

- **Word-level clustering** groups the words with closer embeddings since they have similar contexts.

- **Slot-level clustering** groups the slots with closer vectors built by the word-level clustering results.

- **Word embeddings help merge semantically similar words together.**

- **Bottom-up slot importance estimation** estimates the high-level slot importance by aggregating the low-level importance:
 - \(w^{h}(s) = \frac{1}{|C(h)|} \sum_{s_j \in C(h)} w^{l}(s_j) \)

- **Different slot candidates generated by the frame semantic parser can be merged because they share similar clustering distribution.**

- **Multi-Level Slot Ranking**
 - Idea: rank slots considering all different levels of the hierarchy
 - \(w(s) = \sum_{i} w_i^{h}(s) \)
 - The final slot importance contains hierarchical information.

Experiments

- **Domain:** restaurant recommendation in an in-car setting in Cambridge (Word Error Rate = 37%)
 - Dialogues slots: addr, area, food, phone, postcode, price range, task, and type
 - We propose an unsupervised approach unifying semantics from a hierarchical structure to improve slot induction and SLU modeling.
 - Our automatically induced semantic slots align well with reference slots.
 - We show the feasibility of training an SLU model based on automatically induced slots and its promising performance for practical usage.

- **Approach**
 - Baseline: Low-Level AUC (%): 79.50
 - High-Level: 81.28
 - Multi-Level: 82.00

- **Slot Induction**
 - Proposed
 - SLU F1 (%): 60.27
 - 67.94
 - 68.13

- **Conclusion**
 - Learned Semantic Hierarchy helps both slot induction and SLU performance, where the learned hierarchy aligns well with the manual mapping.