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Abstract
This paper proposes an improved approach of summarization
for spoken multi-party interaction, in which intra-speaker and
inter-speaker topics are modeled in a graph constructed with
topical relations. Each utterance is represented as a node of the
graph, and the edge between two nodes is weighted by the simi-
larity between the two utterances, which is the topical similarity,
as evaluated by probabilistic latent semantic analysis (PLSA).
We model intra-speaker topics by sharing the topics from the
same speaker and inter-speaker topics by partially sharing the
topics from the adjacent utterances based on temporal informa-
tion. For both manual transcripts and ASR output, experiments
confirmed the efficacy of combining intra- and inter-speaker
topic modeling for summarization.
Index Terms: summarization, multi-party meeting, topic
model, probabilistic latent semantic analysis (PLSA), topic
transition, temporal information, random walk

1. Introduction
Speech summarization is important [1] for spoken or even mul-
timedia documents, which are more difficult to browse than
text, and has therefore been investigated in the past. While
most work focused primarily on news content, recent effort
has been increasingly directed towards new domains such as
lectures [2, 3] and multi-party interaction [5, 6, 7]. In this
work, we perform extractive summarization on the output of
automatic speech recognition (ASR) and corresponding manual
transcripts [8] of multi-party “meeting” recordings.

Many approaches to text summarization focus on graph-
based methods to compute lexical centrality of each utterance,
in order to extract summaries [9]. Speech summarization car-
ries intrinsic difficulties due to the presence of recognition er-
rors, spontaneous speech effects, and lack of segmentation. A
general approach has been found to be very successful [10], in
which each utterance in the document d, U = t1t2...ti...tn,
represented as a sequence of terms ti, is given an importance
score

I(U, d) =
1

n

n∑
i=1

[λ1s(ti, d) + λ2l(ti) (1)

+ λ3c(ti) + λ4g(ti)] + λ5b(U),

where s(ti, d), l(ti), c(ti), and g(ti) respectively are some
statistical measure (such as TF-IDF), some linguistic measure
(e.g., different part-of-speech tags are given different weights),
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Figure 1: A simplified example of the graph considered.

a confidence score, and an N-gram score for the term ti; b(U)
is calculated from the grammatical structure of the utterance U ,
and λ1, λ2, λ3, λ4 and λ5 are weighting parameters. For each
document, the utterances to be used in the summary are then
selected based on this score.

In recent work, we proposed a graphical structure to rescore
I(U, d) above in (1), which can model the topical coherence
between utterances using a random walk process within docu-
ments [3, 6]. Unlike lecture and news summarization, meeting
recordings contain spoken multi-party interactions, so that the
relations such as topic distribution within a single speaker or
between speakers can be considered. Thus, this paper models
intra- and inter-speaker topics together in the graph, by partially
sharing topics with the utterances from the same speaker or ad-
jacent utterances, to improve meeting summarization [11].

2. Proposed Approach
We first preprocess the utterances in all meetings by applying
word stemming1 and noise utterance filtering. Then we con-
struct a graph to compute the importance of all utterances. We
formulate the utterance selection problem as a random walk on
a directed graph, in which each utterance is a node and the edges
between these are weighted by topical similarity. The basic idea
is that an utterance similar to more important utterances should
be more important [3, 4]. We then keep only the topN outgoing
edges with the highest weights from each node, while consid-
ering incoming edges to each node for importance propagation
in the graph. Figure 1 shows a simplified example for such a

1http://www.tartarus.org/ martin/PorterStemmer



graph, in which Ai and Bi are the sets of neighbors of the node
Ui, connected by outgoing and incoming edges respectively.

2.1. Parameters from Topic Model

Probabilistic latent semantic analysis (PLSA) [12] has been
widely used to analyze the semantics of documents based on
a set of latent topics. Given a set of documents {dj , j =
1, 2, ..., J} and all terms {ti, i = 1, 2, ...,M} they include,
PLSA uses a set of latent topic variables, {Tk, k = 1, 2, ...,K},
to characterize the “term-document” co-occurrence relation-
ships. The PLSA model can be optimized using the EM al-
gorithm, by maximizing a likelihood function [12]. We utilize
two parameters from PLSA, latent topic significance (LTS) and
latent topic entropy (LTE) [13]. The parameters can also be
computed by other topic models, such as latent dirichilet allo-
cation (LDA) [14] in a similar way.

Latent topic significance (LTS) for a given term ti with re-
spect to a topic Tk can be defined as

LTSti(Tk) =

∑
dj∈D n(ti, dj)P (Tk | dj)∑

dj∈D n(ti, dj)[1− P (Tk | dj)]
, (2)

where n(ti, dj) is the occurrence count of term ti in a document
dj . Thus, a higher LTSti(Tk) indicates that the term ti is more
significant for the latent topic Tk.

Latent topic entropy (LTE) for a given term ti can be calcu-
lated from the topic distribution P (Tk | ti),

LTE(ti) = −
K∑

k=1

P (Tk | ti) logP (Tk | ti), (3)

where the topic distribution P (Tk | ti) can be estimated from
PLSA. LTE(ti) is a measure of how the term ti is focused on
a few topics, so a lower latent topic entropy implies the term
carries more topical information.

2.2. Statistical Measures of a Term

In this work, the statistical measure of a term ti, s(ti, d) in (1)
can be defined based on LTE(ti) in (3) as

s(ti, d) =
γ · n(ti, d)
LTE(ti)

, (4)

where γ is a scaling factor such that s(ti, d) lies within the inter-
val [0, 1], so the score s(ti, d) is inversely proportion to the la-
tent topic entropy LTE(ti). In [13], this measure outperformed
the very successful “significance score” [10] in speech summa-
rization, so we use the LTE-based statistical measure, s(ti, d),
as our baseline.

2.3. Topical Similarity between Utterances

Within a document d, we can first compute the probability that
the topic Tk is addressed by an utterance Ui,

P (Tk | Ui) =

∑
t∈Ui

n(t, Ui)P (Tk | t)∑
t∈Ui

n(t, Ui)
. (5)

Then an asymmetric topical similarity Sim(Ui, Uj) for utter-
ances Ui to Uj (with direction Ui → Uj) can be defined by
accumulating LTSt(Tk) in (2) weighted by P (Tk | Ui) for all
terms t in Uj over all latent topics,

Sim(Ui, Uj) =
∑
t∈Uj

K∑
k=1

LTSt(Tk)P (Tk | Ui), (6)
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Figure 2: The inter-speaker topic sharing weights,winter, related
to the li-th utterance in terms of different topic sharing range
parameters σ. Smaller σ means utterances share their topic
distribution to less temporally adjacent utterances.

where the idea is similar to generative probability in information
retrieval. We call it generative significance of Ui given Uj .

2.4. Intra/Inter-Speaker Topic Modeling

We additionally consider speaker information to model topics
more accurately,

Sim′(Ui, Uj) = Sim(Ui, Uj)
w, (7)

w = 1 + wintra(Ui, Uj) + winter(Ui, Uj), (8)
wherew is the weight for modeling intra- and inter-speaker top-
ics. wintra is the intra-speaker topic sharing weight and winter is
the inter-speaker topic sharing weight, as described below.

2.4.1. Intra-Speaker Topic Sharing Weight

Since we assume that the utterances from the same speaker
in the dialogue usually focus on similar topics, this means
that if an utterance is important, the other utterances from
the same speaker are more likely to be important in the dia-
logue [6] as well. We can then estimate Sim′(Ui, Uj) by setting
wintra(Ui, Uj) as

wintra(Ui, Uj) =

{
+δ , if Ui ∈ Sk and Uj ∈ Sk

−δ , otherwise (9)

Sk is the set including all utterances from speaker k, and δ is
a weighting parameter for modeling the speaker relation. The
topics from the same speaker can be partially shared.

2.4.2. Temporal-Based Inter-Speaker Topic Sharing Weight

Topic transition between temporally adjacent utterances should
be slow, so that temporally adjacent utterances should have sim-
ilar topic distribution [15], even though they are not from the
same speaker. We can then increase Sim′(Ui, Uj) if Ui and Uj

have a closer position in the dialogue. Thus, we compute the
weight for inter-speaker topic sharing as

winter(Ui, Uj) =
1

σ
√
2π

exp(− (lj − li)2

2σ2
), (10)

where li is the position of the utterance Ui in the dialogue,
which means Ui is the li-th utterance in the dialogue. In our
implementation, the boundary of an utterance is set by Smart-
Note [5]. (10) assumes that topic sharing is based on a normal
distribution with a standard deviation σ.



Figure 2 shows the topic sharing weights related to the li-
th utterance based on normal distribution with different σ. If
|li − lj | is smaller, which means Ui and Uj are closer to each
other, they may share their topics so that winter(Ui, Uj) is larger
in (10). σ is a topic sharing range parameter, which can be tuned
on the development set.

We normalize the similarity summed over the top N utter-
ance Uk with edges outgoing from Ui, or the set Ai, to produce
the weight p(i, j) for the edge from Ui to Uj in the graph,

p(i, j) =
Sim′(Ui, Uj)∑

Uk∈Ai
Sim′(Ui, Uk)

. (11)

2.5. Random Walk

We use random walk [3, 16] to integrate the two types of scores
over the graph obtained above. v(i) is the new score for node
Ui, which is the interpolation of two scores, the normalized ini-
tial importance, r(i), for node Ui and the score contributed by
all neighboring nodes Uj of node Ui weighted by p(j, i),

v(i) = (1− α)r(i) + α
∑

Uj∈Bi

p(j, i)v(j), (12)

where α is the interpolation weight, Bi is the set of neighbors
connected to node Ui via incoming edges, and

r(i) =
I(Ui, d)∑
Uj
I(Uj , d)

(13)

is the normalized importance scores of utterance Ui, I(Ui, d) in
(1).

(12) can be iteratively solved with an approach very sim-
ilar to the PageRank algorithm [17]. Let v = [v(i), i =
1, 2, ..., L]T and r = [r(i), i = 1, 2, ..., L]T be the column
vectors for v(i) and r(i) for all utterances in the document,
where L is the total number of utterances in the document d,
and T represents a transposition. (12) then has a vector form
below,

v = (1− α)r+ αPv (14)

=
(
(1− α)reT + αP

)
v = P′v,

where the P areL×Lmatrices of p(j, i), and e = [1, 1, ..., 1]T.
Because

∑
i v(i) = 1 from (12), eTv = 1. It has been shown

that the closed-form solution v of (14) is the dominant eigen-
vector of P′ [18], or the eigenvector corresponding to the largest
absolute eigenvalue of P′. The solution v(i) can then be ob-
tained.

3. Experiments
3.1. Corpus

The corpus used in this research is a sequences of natural meet-
ings, which features largely overlapping participant sets and
topics of discussion. For each meeting, SmartNotes [5] was
used to record both the audio from each participant, as well
as his notes. The meetings were transcribed both manually
and using a speech recognizer; the word error rate is around
44%. In this paper we use 10 meetings held from April to June
of 2006. On average, each meeting had about 28 minutes of
speech. Across these 10 meetings, there were 6 unique partic-
ipants; each meeting featured between 2 and 4 of these partici-
pants (average: 3.7). Total number of utterances is 9837 across

10 meetings. In this paper, we use a separate development set
(2 meetings) and test set (8 meetings). The development set is
used to tune the parameters such as α, σ, and δ.

The reference summaries are given by the set of “notewor-
thy utterances”: two annotators manually labelled the degree
(three levels) of “noteworthiness” for each utterance, and we
extract the utterances with the highest level of “noteworthiness”
to form the summary of each meeting. In the following exper-
iments, for each meeting, we extract about 30% of the number
of terms as the summary.

3.2. Evaluation Metrics

Our automated evaluation utilizes the standard DUC evaluation
metric, ROUGE [19], which represents recall over various n-
grams statistics from a system-generated summary against a set
of human generated summaries. F-measures for ROUGE-1 (un-
igram) and ROUGE-L (longest common subsequence) can be
evaluated in exactly the same way.

3.3. Results

Table 1 shows the performance achieved from all proposed ap-
proaches. Row (a) is the baseline, which uses an LTE-based
statistical measure to compute the importance of utterances
I(U, d). Row (b) is the result after applying random walk with
only topical similarity. Row (c) is the result additionally includ-
ing intra-speaker topic modeling (wintra 6= 0). Row (d) includes
inter-speaker topic modeling (winter 6= 0). Row (e) is the re-
sult performed by integrating two types of speaker information
(with wintra 6= 0 and winter 6= 0).

Note that the performance of ASR is better than manual
transcripts. Because a higher percentage of errors is on “unim-
portant” words, incorrectly recognized words find it harder
to obtain high scores; so utterances with more errors tend to
get excluded from the summarization results. Other recent
work also shows better performance for ASR than manual tran-
scripts [3, 6].

3.3.1. Graph-Based Approach

We can see the performance after graph-based re-computation
(row (b)) is significantly better than baseline (row (a)) for both
ASR and manual transcripts. The improvement for ASR is
larger than for manual transcripts, because ASR output con-
tains recognition errors, which makes determination of original
scores inaccurate, and random walk is used to propagate impor-
tance based on topical similarity, which can effectively com-
pensate recognition errors. Thus, graph-based approaches can
significantly improve on the baseline results.

3.3.2. Intra-Speaker Information Modeling

We find that modeling intra-speaker topics improves perfor-
mance (see row (b) and row (c)), which means the utterances
from the speakers who speak more important utterances tend to
be more important. Thus, propagating the importance scores
between the utterances from the same speaker can improve the
results. The experiment shows intra-speaker modeling can help
include the important utterances for both ASR and manual tran-
scripts.

3.3.3. Inter-Speaker Topic Modeling

We also find that only modeling inter-speaker topics cannot of-
fer significant improvement for ASR transcripts (row (b) and



Table 1: The results of all proposed approaches and maximum relative improvement with respect to the baseline (%).

F-measure ASR Transcripts Manual Transcripts
ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

(a) Baseline: LTE 46.816 46.256 44.987 44.162
(b) Random Walk 49.058 48.436 46.199 45.392
(c) Random Walk + Intra-Speaker 49.212 48.351 47.104 46.299
(d) Random Walk + Inter-Speaker 48.927 48.305 46.291 45.481
(e) Random Walk + Inter-Speaker + Intra-Speaker 49.640 48.865 48.091 47.364

Max Relative Improvement +6.032 +5.640 +6.900 +7.251

row (d)), probably because sharing topics with temporally ad-
jacent utterances may decrease the centrality especially for the
utterances with recognition errors. For manual transcripts, the
improvement of inter-speaker topic model is not significant.

3.3.4. Integration Intra- and Inter-Speaker Topic Modeling

Row (e) shows the result from the proposed approach, which
integrates intra-speaker and inter-speaker topic modeling into a
single graph, considering two types of relations together. For
ASR transcripts, row (e) is better than row (c) and row (d),
which means intra- and inter-speaker information cover differ-
ent types of relations, and the relations can be additive. Note
that only using inter-speaker topic modeling cannot improve
the performance, but integration with intra-speaker topic mod-
eling can offer better results. The reason may be that intra-
speaker topic modeling enhances centrality of important utter-
ances, and additionally involving inter-speaker topic modeling
slightly decreases centrality, but successfully smoothes topic
transitions between temporally adjacent utterances. For manual
transcripts, row (e) also performs better by combing two types
of speaker information, and the improvement is larger than for
ASR transcripts. Since in the absence of recognition errors topi-
cal similarity can model the relations accurately, integrating two
types of speaker information can effectively improve the perfor-
mance.

On the same corpus, Banerjee and Rudnicky [5] used su-
pervised learning to detect noteworthy utterances in the same
corpus, achievieng ROUGE-1 scores of 43% (ASR) and 47%
(manual). In comparison, our unsupervised approach performs
better, especially for ASR transcripts.

4. Conclusions and Future Work
Extensive experiments and evaluation with ROUGE metrics
showed that inter- and intra-speaker topics can be modeled to-
gether in one single graph, and that random walk can combine
the advantages from two types of speaker information for both
ASR and manual transcripts, where we achieved more than 6%
relative improvement. In the future, we plan to modify the graph
into a two-level graph to model speakers’ topics and utterances’
topics in different levels.
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