Adversarial Advantage Actor-Critic Model for Task-Completion Dialogue Policy Learning

Baolin Peng, Xiujuan Li, Jianfeng Gao, Jingjing Liu, Yun-Nung (Vivian) Chen, Kam-Fai Wong

Summary

- **Advantage Actor-Critic for Dialogue Policy Learning**
 - Find a policy π that maximizes the expected reward: $R = \sum_{t=0}^{T-1} \gamma^t r_t$
 - A parameterized probabilistic mapping function: $\tau_\theta(a|s) = P(A_t = a | s_t = s; \theta)$
 - Update θ with following gradient: $\nabla_\theta J(\theta) = E[\nabla \log \tau_\theta(a|s) Q(s,a,\theta) - Q(s,a)]$
 - Baseline function for reducing variance: $E[\nabla \log \tau_\theta(a|s) Q^r(s,a,\theta)] = E[Q^r(s,a) - V^r(s)]$
 - TD error as an unbiased estimation: $\nabla_\theta J(\theta) = E[\nabla \log \tau_\theta(a|s) Q^r(s,a,\theta)] - \nabla \log \tau_\theta(a|s) V^r(s)$

- **Adversarial Training**
 - Actor π as a generator G
 - A discriminator D identifies state-action pair (s, a) from experts or G
 - D can be viewed as a reward function extracted from experts’ trajectories
 - D is to maximize the probability of classifying each pair correctly: $\log D(s, a; \theta_D) = \log (1 - D(s, a; \theta_D))$
 - Actor π_θ (G) can be improved with $-\log (1 - D(s, a))$ as the reward function: $\nabla_\theta J(\theta) = E[\nabla \log \tau_\theta(a|s) \gamma^2 V^G_{\text{GAN}}(s) - \gamma V^G_{\text{GAN}}(s)]$
 - Combine A2C with a reward function learned from experts’ demonstrations with adversarial training.
 - The discriminator D guides actor to explore state action regions where human experts will explore.

2. Methodology

- **Discriminator Training**
 - Expert Demonstration
 - Sample (s,a) pair
 - Discriminator
 - Simulation
 - Sample (s,a) pair
 - Discriminator
 - Actor
 - TD error
 - Reward
 - User Simulator
 - Actor
 - TD error
 - Critic
 - Discriminator
 - System Action
 - a
 - Adversarial Advantage Actor-Critic

3. Experiments & Results

- **Dataset**: human-human conversations in the movie-ticket booking scenario
 - collected via AMT and annotated by human experts
 - 280 labeled dialogue with 11 average turns
 - 11 dialogue acts, 29 slots
 - Informable (narrow down search), requestable (ask info from agent)
 - Use a publicly available user simulator

- **Baselines**
 - Rule Agent: handcrafted rule-based policy that in- forms and requests a hand-picked subset of necessary slots.
 - A2C trained with a pre-defined reward function and a standard advantage actor-critic algorithm
 - BBQN-Map Agent (AAAI’18): the best agent among a set of BBQN variants that has great efficiency for policy exploration in dialogue systems

- **Evaluation**
 - Success rate
 - 10 run averaged learning curve
 - 2000 dialogues for testing

- **Adversarial A2C learns faster and more stable with better exploration.**

4. Conclusion

- **We propose an adversarial advantage actor-critic model with efficient exploration.**
 - The discriminator serves as an **additional critic** to guide policy exploration towards human-like one.
 - It also has connection with inverse reinforcement learning that learns reward function.
 - Our experiments in a movie-ticket booking domain show its superiority.