

## **Adversarial Advantage Actor-Critic Model for Task-Completion Dialogue Policy Learning**

## Summary

#### Motivation

- Exploiting reinforcement learning for dialogue policy learning
- Exploration in the large state-action space is challenging
- Reward is delayed and sparse with a long trajectory

#### > Approach

- Propose an Adversarial Advantage Actor-Critic algorithm
- Leverage expert-generated dialogues as priors
- Use a discriminator to differentiate responses from an agent or human experts
- The output of discriminator as intrinsic reward to explore state-action regions similar to what human experts do

#### **Results**

• Significant improvement of efficiency and performance on a movie-ticket booking domain



## 1. Task Definition

- > Natural Language Understanding (NLU) turns natural language into intents and slot-values
- > Natural Language Generation (NLG) turns system actions into natural language

#### Dialogue Manager (DM)

- tracks dialogue states and updates state accordingly
- interacts with the database
- takes state as input to output system action  $\rightarrow$  Dialogue Policy Learning



Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Yun-Nung (Vivian) Chen, Kam-Fai Wong

#### Advantage Actor-Critic for Dialogue Policy Learning

- TD error as an unbiased estimation

#### > Adversarial Training

- Actor  $\pi_{\theta}$  as a **generator** G
- A *discriminator* D identifies state-action pair (s, a) from experts or G
- D is to maximize the probability of classifying each pair correctly

> Combine A2C with a reward function learned from experts' demonstrations with adversarial training.  $\succ$  The discriminator D guides actor to explore state action regions where human experts will explore.

#### Dataset: human-human conversation

- collected via AMT and annotated
- 280 labeled dialogue with 11 ave
- 11 dialogue acts, 29 slots
- Use a publicly available user simulator

#### Baselines

- exploration in dialogue systems

| Agent           | Succ. | Turn  | Reward |
|-----------------|-------|-------|--------|
| Rule            | 41.34 | 16.00 | 0.26   |
| A2C             | 81.24 | 15.43 | 5.08   |
| <b>BBQN-MAP</b> | 81.56 | 18.75 | 5.00   |
| Adversarial A2C | 87.52 | 13.52 | 5.93   |

2. Methodology

• Find a policy  $\pi$  that maximizes the expected reward  $R = \sum_{t=1}^{T-1} \gamma^t r_t$ •  $\pi$  is a parameterized probabilistic mapping function:  $\pi_{\theta}(a \mid s) = P(A_t = a \mid s_t = s; \theta)$ • Update  $\theta$  with following gradients  $\nabla_{\theta} J(\theta) = \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a \mid s) Q^{\pi_{\theta}}(s, a)]$ • Baseline function for reducing variance  $\mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a \mid s) A^{\pi_{\theta}}(s, a)], A^{\pi_{\theta}}(s, a) = Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)$  $\mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a \mid s) \delta^{\pi_{\theta}}], \delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s)$ 

• D can be viewed as a reward function extracted from experts' trajectories  $\min \mathcal{L}_D = -\mathbb{E}_{(s,a)\sim Simu} \log D(s,a;\theta_D) - \mathbb{E}_{(s,a)\sim Demo} \log(1 - D(s,a;\theta_D))$ • Actor  $\tilde{\pi}_{\theta}^{D}$  (G) can be improved with -log(1 - D(s, a)) as the reward function  $\nabla_{\theta} J(\theta) = \mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a \mid s) \delta_{\text{GAN}}^{\pi_{\theta}}], \delta_{\text{GAN}}^{\pi_{\theta}} = r_{\text{GAN}} + \gamma V_{\text{GAN}}^{\pi_{\theta}}(s') - V_{\text{GAN}}^{\pi_{\theta}}(s)$ 

### **3. Experiments & Results**

| ons in the movie-ticket booking scenario | Evaluation                                     |
|------------------------------------------|------------------------------------------------|
| d by human experts                       | <ul> <li>Success rate</li> </ul>               |
| erage turns                              | <ul> <li>10 run averaged learning c</li> </ul> |
|                                          | <ul> <li>2000 dialogues for testing</li> </ul> |

## • Informable (narrow down search), requestable (ask info from agent)

• *Rule Agent*: handcrafted rule-based policy that in- forms and requests a hand-picked subset of necessary slots. • A2C: trained with a pre-defined reward function and a standard advantage actor-critic algorithm • BBQN-Map Agent (AAAI'18): the best agent among a set of BBQN variants that has great efficiency for policy

> Adversarial A2C learns faster and more stable with better exploration.



# Microsoft





### 4. Conclusion

ge actor-critic model with *efficient exploration*.

*tional critic* to guide policy exploration towards human-like one. reinforcement learning that *learns reward function*.

booking domain show its superiority.