Summary

- **Motivation:** Domain Constraint & Inflexible Intent Schema
 - Intents are usually predefined and inflexible to expand and transfer across domains, where re-designing intent semantic schemes requires human annotation and model re-training.
- **Approach:** Learning Intent Embedding
 - Applying CDSSM to learn high-level semantic representations to address the semantic relation across domains for intent expansion (e.g. “find movie” and “find weather” belong to different domains, but they share the semantics about “find”).
- **Result**
 - CDSSM is capable of performing zero-shot learning effectively, e.g. generating embeddings of previously unseen intents, and therefore expand to new intents without re-training, and outperforms other semantic embeddings.

1. Framework

- Training Data
 - `<change_note>`: “postpone my meeting to five pm”
 - `<change setting>`: “temperature...”
 - `<change_calender>`: “what’s the weather...”

- CDSSM
 - Embedding Generation
 - New Intent

2. Convolutional Deep Structured Semantic Models (CDSSM)

- **Model Architecture**
 - **Semantic Layer:** feed-forward neural network layers outputs the final non-linear semantic features
 - **Max Pooling Layer:** only retain the most prominent local features by applying the max operation over each dimension of I_t to keep the max activation of hidden topics across the whole word sequence

- **Convolutional Layer:** contextual features c_t for each target word
 - **Convoluation Matrix:** W_i one-hot vector \rightarrow tri-letter vector (e.g. “email” \rightarrow “emai”, “ema”, “mai”, “ail”)
 - **Word Sequence:** x user utterance / intent

3. Experiments

- Dataset: collected via the Microsoft Cortana (> 100 intents)
 - Segmented into seen and unseen intents
 - Unseen: randomly chose 7 intents with different verbs: ~100K utterances
 - Seen: ~1M annotated utterances (2/3 for training CDSSM, 1/3 for testing)
- **Intent Prediction**
 - For each utterance vector, the semantic similarity can be estimated using vectors for both seen and unseen intents.
 - The unseen intent vectors can be generated from CDSSM by feeding the tri-letter vectors of the new intent as input without model re-training.
- **Evaluation Metrics:** Mean average precision at K (MAP@K)

Conclusion

- A convolutional deep structured semantic model (CDSSM) is applied to perform zero-shot learning of intent embeddings to bridge the semantic relation across domains.
- The experiments of intent expansion show that CDSSM can
 - capture the semantics borrowed from other domains and can be used to expandly extend the intents through high-level representations
 - carry the crucial high-level semantics and can be applied to different domains for easy adaptation and extension
 - generate more flexible intent embeddings without training samples and model re-training, removing the domain constraint in dialogue systems for practical usage.