Carnegie Mellon

and model re-training.

> Approach: *Learning Intent Embedding*

➢ Result

- > Dataset: collected via the Microsoft Cortana (> 100 intents)
 - Segmented into seen and unseen intents
 - Unseen: randomly chose 7 intents with different verbs; ~100K utterances \bullet Seen: ~1M annotated utterances (2/3 for training CDSSM, 1/3 for testing)

Intent Prediction

- For each utterance vector, the semantic similarity can be estimated using vectors for both seen and unseen intents.
- The unseen intent vectors can be generated from CDSSM by feeding the tri-letter vectors of the new intent as input without model re-training.
- Evaluation Metrics: Mean average precision at K (MAP@K)

ZERO-SHOT LEARNING OF INTENT EMBEDDINGS FOR EXPANSION BY CONVOLUTIONAL DEEP STRUCTURED SEMANTIC MODELS Yun-Nung (Vivian) Chen, Dilek Hakkani-Tür, and Xiaodong He

CDSSM-		Seen	ntents			Unseen	Intents	
Expand	K=1	K=3	K=5	K=10	K=1	K=3	K=5	K=10
Predictive	58.9	65.9	67.1	67.9	5.2	18.7	23.4	26.1
Generative	44.7	52.0	53.5	54.6	6.7	23.2	26.5	28.7
Bidirectional	58.3	65.6	66.8	67.7	9.1	31.0	34.5	36.0

> Although the predictive model performs better for seen intents, the bidirectional estimation is more robust to unseen intents, which is crucial to intent expansion.

The expanded models consider without training samples, and pro similar but slightly worse than ori models for seen intents due to hi uncertainty from more intent cand For unseen intents, expanded model able to capture the correct intents achieve higher than 30% of MAP 3, which indicates the encouraging performance when considering n 100 intents.

Effectiveness of Bidirectional Estimation

new intents	 Effectiver 	 Effectiveness of Seen Intent Classification 				
roduces		Approach				
riginal higher hdidates.	Baseline	Paragraph Vector (doc2vec)				
		CDSSM-Expand: Predictive				
nodels are	Proposed	CDSSM-Expand: Generative				
ts and		CDSSM-Expand: Bidirectional				
P when K ≥						
ing	Outperform other embeddings for intent					
more than	classification, including the state-of-the-a doc2vec (Le and Mikolov, 2014).					

Microsoft Research

Conclusion

