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1. Summary 2. The Materials

> Motivations o ASR outputs are often noisy * The corpus
o Dense models might overfit to the training data o Domain: restaurant recommendation in Cambridge [1] (WER = 37%)

o Sparse models maintain a compact feature space, which is robust to noise o Dialogue act (total #act = 17):
inform, request, bye, null, affirm, hello, negate, reqalts, confirm, thankyou, others (< 0.8%)

» Feature set (N = 10)

o W,: word trigram freq. from 1-best hypothesis

» Approaches o Element-wise sparsity: lasso, ridge, elastic net
o Structured sparsity

o Hierarchical sparsit -
P y o W,: word trigram freq. from N-best hypothesis Li':'og“es 110552721 4684842
. . erances
» Results O 19.7% Improvement over a rulfe.-based baseline | o P,: phone trigram freq. from 1-best hypothesis ale-Fermale 58.31 1515
o 3.7% Improvement over a traditional non-sparse log-linear model o Py: phone trigram freq. from N-best hypothesis | Native:Non-Native 33:26 21:9
o outperformed a state-of-the-art SVM model by 2.2% o CNet: word confusion networks with context freq.

3. Log-Linear Models

* Multinomial logistic regression (MLR) » Element-wise sparsity  Structured sparsity group lasso
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o using the standard maximum likelihood estimation o Elastic net D MG M D
approach, the parametersg .~ can be set by the min ( —0(0) + AWD8,4ll + Z Z )\f,(f,%)Hﬁdez) min ( — 0(0) + Z Z A || Bgml] + Z )\%)Hﬁmd\\)
gradient ascent approach — =1 g—1 m—1 d—1
. . . . _ _ +
® usmg_the_ L-BFGS implementation for the numerical L,+L,-norm L,—norm > combines the element-wise and the group-wise lasso
optimization of sparse models group lasso

5. Conclusions

4. Empirical Evaluation

» The improvement of sparse models over MLR with W /P Is greater than with W,/P,, because using N-best hypotheses  Sparse log-linear models improve dialogue act classification
allows the sparse models to make use of more information. o absolute improvements over several baselines and a
» Both W, and P features have obtained significant improvements over MLR baseline when using sparse models, state-of-the-art SVM model (from 2.2% to 19.7%)
demonstrating the robustness of our sparse models to filter noisy features in the settings with distinct dimensionalities. o the improvements are robust across different features
» Combining three feature sets can further improve the performance. and parameter settings
 Elastic net model that balances sparsity and smoothness obtains the best performance. » Sparse models have larger gains on the word-level N-best
» The structured sparsity model using L1,-. provides better result, revealing the importance of modeling sparsity structures. ASR hypotheses than that on the 1-best hypothesis
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69 | Phoenix manual grammar 70.611.28 » The L1, structured sparsity model yields promising results
67 SVM 82.7%1.06 among structured and hierarchical sparse models.
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