# **Carnegie Mellon**

| Motivations  | 0<br>0<br>0 | ASR outputs are often nois<br>Dense models might overf<br>Sparse models maintain a |
|--------------|-------------|------------------------------------------------------------------------------------|
| > Approaches | 0<br>0<br>0 | Element-wise sparsity: lase<br>Structured sparsity<br>Hierarchical sparsity        |
| Results      | 0           | 19.7% improvement over a 3.7% improvement over a outperformed a state-of-the       |
|              |             |                                                                                    |

Multinomial logistic regression (MLR)

- Multiclass classification  $\hat{y} \sim \text{Mult}(\hat{\theta})$
- Kinstances, M classes Ο

$$\hat{\theta}_{im} = \frac{\exp(Z_{mi})}{\sum_{m=1}^{M} \exp(Z_{mi})} Z_{mi} = c_m + \sum_{d=1}^{D} \ell(\theta) = \sum_{i=1}^{K} \sum_{m=1}^{M} y_{im} \log \theta_{im}$$
 puts a weight predicting t

- using the standard maximum likelihood estimation Ο approach, the parameters  $\beta_{md}$ gradient ascent approach
- using the L-BFGS implementation for the numerical Ο optimization of sparse models
- The improvement of sparse models over MLR with  $W_N/P_N$  is greater than with  $W_1/P_1$ , because using N-best hypotheses allows the sparse models to make use of more information.
- Both  $W_N$  and  $P_N$  features have obtained significant improvements over MLR baseline when using sparse models, demonstrating the robustness of our sparse models to filter noisy features in the settings with distinct dimensionalities.
- Combining three feature sets can further improve the performance.
- Elastic net model that balances sparsity and smoothness obtains the best performance.





## **An Empirical Investigation of Sparse Log-Linear Models** for Improved Dialogue Act Classification Yun-Nung (Vivian) Chen, William Yang Wang, and Alexander I. Rudnicky



- Empirical results show that the elastic net model that balances sparsity and smoothness obtains the best overall performance

84.41

83.35

ACC (%)

70.6 ± 1.28

82.7 ± 1.06

81.5 ± 1.09

84.5 ± 1.02

 $L_{1,\infty}$ 

Feature

[1] M. Henderson, M. Ga'si'c, B. Thomson, P. Tsiakoulis, K. Yu, and S. Young, "Discriminative spoken language understanding using word confusion networks," in SLT, 2012.



### inform, request, bye, null, affirm, hello, negate, reqalts, confirm, thankyou, others (< 0.8%)

| sis     |                   | Training | Testing |
|---------|-------------------|----------|---------|
| ocic    | Dialogues         | 1522     | 644     |
|         | Utterances        | 10571    | 4882    |
| esis    | Male:Female       | 28:31    | 15:15   |
| esis    | Native:Non-Native | 33:26    | 21:9    |
| rt froa |                   |          |         |

| sity group las                                                                                                           | SO                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| $\sum_{m=1}^{M} \sum_{g=1}^{G} \lambda_m   \beta_{gm}   \Big)$                                                           | modeling the dependency<br>and interaction of groups<br>of local features |  |  |
| $\sum_{n=1}^{M} \max_{d} \lambda_m^{(1)}   \beta_{md}   \Big)$                                                           | reveals the important<br>features across different<br>output classes      |  |  |
| rsity                                                                                                                    |                                                                           |  |  |
| $\sum_{m=1}^{M} \sum_{m=1}^{G} \lambda_m   \beta_{am}   + \sum_{m=1}^{M} \sum_{m=1}^{D} \lambda_m^{(1)}   \beta_{md}   $ |                                                                           |  |  |

combines the element-wise and the group-wise lasso

m = 1 d = 1

## 5. Conclusions

- Sparse log-linear models improve dialogue act classification absolute improvements over several baselines and a state-of-the-art SVM model (from 2.2% to 19.7%)
  - the improvements are robust across different features and parameter settings
- Sparse models have larger gains on the word-level N-best ASR hypotheses than that on the 1-best hypothesis
- Augmenting the word-level n-gram and confusion network features with phonetic features in our sparse models performs

• The  $L_{1,\infty}$  structured sparsity model yields promising results among structured and hierarchical sparse models.