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ABSTRACT

This paper presents a graph-based approach for spoken term detec-
tion. Each first-pass retrieved utterance is a node on a graph and
the edge between two nodes is weighted by the similarity between
the two utterances evaluated in feature space. The score of each
node is then modified by the contributions from its neighbors by
random walk or its modified version, because utterances similar to
more utterances with higher scores should be given higher relevance
scores. In this way the global similarity structure of all first-pass
retrieved utterances can be jointly considered. Experimental results
show that this new approach offers significantly better performance
than the previously proposed pseudo-relevance feedback approach,
which considers primarily the local similarity relationship between
first-pass retrieved utterances, and these two different approaches
can be cascaded to provide even better results.

Index Terms— spoken term detection, re-ranking, pseudo-
relevance feedback (PRF)

1. INTRODUCTION

Spoken term detection is to return a list of spoken utterances con-
taining the term requested by the user. Conventional spoken term
detection usually includes two stages: the speech recognition system
first transcribes spoken utterances into lattices, and then the search
engine looks through all lattices for possible presence of the query
term [1, 2]. However, in this process much of the information in the
acoustic signals may be lost in the stage of speech recognition, es-
pecially when the acoustic and language models used are not well
matched to the speech signals in the archive to be retrieved, which
naturally results in degraded recognition accuracy and poor detection
performance. Although many efficient approaches [3, 4] have been
proposed to enhance the detection performance due to the relatively
poor recognition output, proper use of the feature space information
which may be lost during recognition is definitely useful.

Pseudo-relevance feedback (PRF) has been previously borrowed
from text information retrieval and successfully applied to the spo-
ken term detection [5, 6]. In this approach, after the first-pass re-
trieval, a pseudo-relevant utterance set is selected from the first-pass
returned list and assumed to be relevant, and the similarity between
each first-pass retrieved utterance and this pseudo-relevant utterance
set is computed in the feature space and integrated with the origi-
nal relevance scores for re-ranking the first-pass retrieved utterances.
This paper moves one step forward with graph-based re-ranking in
feature space. The basic idea is that utterances similar to more ut-
terances with higher relevance scores should be given higher scores,

Query Q 

Archive of Spoken 
Utterances 

Feature Extraction 

Speech Recognition 

MFCC 

Retrieval Engine 

Re-ranking 

Approaches 

Lattices 

Final 
Results 

First-pass Retrieved 
Utterance Set 

Pseudo-Relevance 
Feedback (PRF) 

   Selection 

Graph-based Re-ranking 

User 

Fig. 1. The complete framework for the proposed approach

and this concept can be realized by re-ranking over a graph. In this
way the global structural information of the first-pass retrieved utter-
ances can be better considered. This approach is similar to the very
successful PageRank [7] used to rank the text pages, which considers
the relation between every two pages and computes a converged rel-
evance score for each page. Similar concept has been formed useful
in video search, in which the similarity between each pair of videos
was used to formulate the ranking problem over a graph [8].

2. PROPOSED FRAMEWORK

The proposed framework is shown on the Fig. 1. The left half of Fig.
1 is the conventional spoken term detection. We extract MFCC from
the spoken utterances in the archive, and translate them into lattices
by speech recognition. When the user enters a query Q, the retrieval
engine searches over all lattices to find those utterances containing
the queryQ as the first-pass returned listXQ ranked by the relevance
score SQ(x). The relevance score SQ(x) of an utterance x with
respect to the query Q is defined as

SQ(x) =
∑

word(a)=Q

P (a|x), (1)

where a is any arc in the lattice of x,word(a) is the word hypothesis
of a and P (a|x) is the posterior probability. The first-pass returned
list is not shown to user at this stage.

The right half part of Fig. 1 is the proposed approach. We
evaluate the similarity between each pair of first-pass retrieved ut-
terances and use it to construct a graph for the first-pass retrieved



Fig. 2. The definition of ”hit region” (the red part) of an utterance
xi and the distance d(xi, xj) between two utterances xi and xj .
The hit region of an utterance xi is the corresponding time span of a
word arc in the lattice whose word hypothesis is exactly the query Q
with the highest posterior probability in the lattice.

utterances, on which re-ranking is performed . First we define the
”hit region”, the most possible occurrence of query Q in the utter-
ance, as the corresponding time span of a word arc in the lattice
whose word hypothesis is exactly the query term Q with the highest
posterior probability in the lattice. The basic idea here is that if an
utterance has a ”hit region” very similar to those of utterances with
higher relevance scores, it is more likely to be relevant, so its rele-
vance score should be increased. Therefore, we define the distance
d(xi, xj) between two utterances xi and xj given a queryQ between
the ”hit regions” of xi and xj , as shown on Fig. 2 [9]. The similar-
ity sim(xi, xj) between xi and xj is then defined accordingly in
Section 3. With the similarity between each pair of utterances in
the first-pass returned list XQ, we then construct a graph for the
utterances and apply the graph-based algorithm on the graph to eval-
uate the new relevance scores for the utterances by considering the
relevance scores of similar utterances. Note that different from the
previous pseudo-relevance feedback method, the global structure of
similarity between the utterances is better considered with the help
of the graph in this approach.

3. GRAPH-BASED RE-RANKING

Unlike the pseudo-relevance feedback, the proposed method doesn’t
need the pseudo-relevant utterance set, because it uses the global
structure of all first-pass retrieved utterances. We formulate the re-
ranking problem on a directed graph, in which each first-pass re-
trieved utterance is a node and the edges between them are weighted
by the similarity evaluated in the feature space. We initially define
two directed edges between each pair of nodes with two directions,
both weighted by the similarity between them. We then delete some
directed edges by keeping only the top K outgoing edges with the
highest weights for each node. A simplified example for such a
graph is in Fig. 3. In the above, the similarity between the utter-
ances xi and xj is defined as

sim(xi, xj) = 1− d(xi, xj)− dmin
dmax − dmin

, (2)

where d(xi, xj) is obtained with DTW [9] as in Fig. 2 mentioned
above, and dmax and dmin are the largest and smallest values of
d(xi, xj) for all pairs of first-pass retrieved utterances for the query
Q. We normalize this similarity for an utterance xi (node i) by the
total similarity for xi and all its neighbors connected by outgoing
edges from xi to produce the weight p(i, j),

p(i, j) =
sim(xi, xj)∑

xk∈Ai
sim(xi, xk)

, (3)
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Fig. 3. A simplified example of the graph considered. Each first-pass
retrieved utterance is represented as a node on the graph. Ai andBi
are the neighbors of the node xi connected respectively by outgoing
and incoming edges.

whereAi is the set of the topK neighbors connected to xi by the top
K outgoing edges of xi. With this directed graph constructed, we
then consider the global structure of the graph to compute the new
relevance scores for each utterance (node) by properly integrating
the scores of its neighbors (similar utterances). This can be done
with at least two different approaches below.

3.1. Random Walk

This approach has been applied to video re-ranking [8]. v1(i) is
the new score defined for node i, which is the interpolation of two
scores, the normalized relevance score r(i) for node i and the score
contributed by all neighbors j of node i weighted by p(j, i) as de-
fined in (3),

v1(i) = (1− α)r(i) + α
∑
xj∈Bi

p(j, i)v1(j), (4)

where α is the interpolation weight, Bi is the set of neighbors con-
nected to node i via incoming edges, and

r(i) =
SQ(xi)∑

xj∈XQ
SQ(xj)

(5)

is the normalized relevance score of utterance xi, SQ(x) is as de-
fined in (1), and XQ is the first-pass retrieved utterance set. Equa-
tion (4) can be solved with the approach very similar to that for the
PageRank problem [7]. Let v1 = [v1(i), i = 1, 2, ..., L]T and
r = [r(i), i = 1, 2, ..., L]T be the column vectors for v1(i) and
r(i) for all utterances xi in the first-pass retrieved set XQ, where L
is the total number of utterances in XQ and T represents transpose.
Equation (4) then has a vector from below,

v1 = (1− α)r+ αPv1

= ((1− α)reT + αP)v1 = P1v1, (6)

where P is an L×Lmatrix of p(j, i), and e = [1, 1, ..., 1]T is an L-
dimension vector with all components being 1. Because

∑
i v1(i) =

1 from (4) and (5), eTv1 = 1.
It has been shown that the solution v1 of (6) is the dominant

eigenvector of P1 [10], or the eigenvector corresponding to the
largest absolute eigenvalue (which is 1) of P1. The solution v(i)
can then be integrated with the original relevance score SQ(x) for
re-ranking,

ŜQ(xi) = SQ(xi)(v1(i))
δ, (7)

where δ is a weighting parameter.



Table 1. The MAP results for the first-pass baseline, pseudo-relevance feedback (PRF), the proposed graph-based re-ranking and cascade
approach, respectively for three sets of acoustic models. (N = 7,M = 15 for PRF1, PRF2, and α = 0.9 for G1, G2)

Methods SI MLLR SD
MAP Impr. MAP Impr. MAP Impr.

(a) First-Pass 45.47 - 55.54 - 73.52 -
(b) Pseudo-Relevance Feedback with Direct Selection (PRF1) 52.10 6.63 61.59 6.05 75.78 2.26
(c) Pseudo-Relevance Feedback with Min-distance Selection (PRF2) 52.63 7.16 64.07 8.53 76.30 2.78
(d) Graph-based with Random Walk (G1) 53.42 7.95 63.78 8.24 76.71 3.19
(e) Graph-based with Modified Random Walk (G2) 54.37 8.90 66.82 11.28 78.44 4.92
(f) Cascade 1: PRF2 + G1 53.39 7.92 64.36 8.82 76.27 2.75
(g) Cascade 2 : PRF2 + G2 57.75 12.28 67.38 11.84 77.47 3.95
(h) Max Relative Improvement (%) +27.01 +22.04 +6.69

3.2. Modified Random Walk

This approach is very similar to the Random Walk approach pre-
sented above, except p(j, i) in (4) is replaced by p(i, j) and the set
Bi for all neighbors connected by incoming edges is replaced by Ai
for neighbors connected by outgoing edges. Because

∑
i v2(i) = 1

is not necessarily true in general, we add the normalizing factor λ,
and have

v2(i) =
1

λ
((1− α)r(i) + α

∑
j∈Ai

p(i, j)v2(j)). (8)

Equation (8) can be similarly represented as above,

v2 =
1

λ
((1− α)r+ αPTv2)

=
1

λ
((1− α)reT + αPT)v2 = P2v2. (9)

According to Perron-Frobenius Theory, it can be shown that
adding a normalized factor λ here leads to the unique solution of (9),
the dominant eigenvector of P2, very similar to Random Walk. We
then similarly integrate the scores v2(i) with the original relevance
scores as in (1) and re-rank the utterances.

4. EXPERIMENTS

4.1. Experimental Setup

We used a corpus of 33 hours of recorded lectures for a course of-
fered in National Taiwan University produced by a single instructor
primarily in Mandarin Chinese as the testing archive to be retrieved,
which is quite noisy and spontaneous. A lexicon of 10.7K words
and a tri-gram language model trained with 600M of news data were
used in speech recognition. Mean average precision (MAP) was used
as the measure for retrieval performance evaluation. 162 Chinese
queries were manually selected in the tests, each being a single word.

In order to test the performance of the proposed approach with
respect to acoustic models of different matched conditions, we used
three sets of acoustic models:

1. The Speaker Independent model (SI) trained by 24.6 hours of
read speech produced by 100 male and 100 female speakers.

2. The MLLR model (MLLR) adapted from the above SI model
with 500 utterances taken from the training set of the lecture
corpus used here.

3. The Speaker Dependent model (SD) trained with 12 hours of
the training set of the lecture corpus used here, all produced
by the same speaker as those to be retrieved.

In all the three sets of acoustic models, we trained 4602 state-
tied triphone models. Each triphone model had 5 states, each with 24
Gaussian mixtures. The recognition accuracy was 50.26%, 62.55%
and 81.34% respectively for the SI, MLLR and SD models described
above.

4.2. Evaluation Results

The results for the first-pass retrieval for the three sets of acoustic
models are listed in row (a) of Table 1 as the first baseline. Clearly
the performance is heavily dependent on the quality of the acoustic
models.

4.2.1. Pseudo-Relevance Feedback (PRF)

The pseudo-relevance feedback (PRF) approach proposed earlier [5]
was used as the second set of baselines. In this approach, a pseudo-
relevant utterance set YQ was selected out of the first-pass retrieval
results XQ for a query Q, and the similarity between each utterance
in the first-pass returned list and this set was computed and integrated
with the original relevance score. Two versions were tested here.

• Direct Selection: It simply used the top N utterances in XQ
as YQ, and the results are listed in row (b) of Table 1 (PRF1).

• Minimum-distance Selection: It was more complicated. Top
M utterances (M > N ) in XQ were first picked up to form
a set, and the distance between each utterance in XQ and this
set was evaluated. The N utterances with minimum distance
obtained in this way was YQ. The results are listed in row (c)
of Table 1 (PRF2).

In both cases the similarity between an utterance xi and the set YQ
is evaluatd by

D(xi, YQ) =
∑
xj∈YQ

d(xi, xj)
2, (10)

SIM(xi, YQ) = 1− D(xi, YQ)−Dmin
Dmax −Dmin

, (11)

where D(xi, YQ) is the total distance between xi and all utterances
in YQ, and (11) is very similar to (2).

We see that both approaches in rows (b)(c) are much better
than the first-pass results in row (a) regardless of the quality of the
acoustic models. Also, the second approach of Pseudo-Relevance
Feedback with Minimum-distance Selection (PRF2) in row (c) per-
formed always better than the first approach of Pseudo-Relevance
Feedback with Direct Selection (PRF1), obviously because the
pseudo-relevant utterance set is more reliable for PRF2. Rows (b)(c)
serve as the next two baselines to be compared.



Fig. 4. Performance improvement for Graph-based Modified Ran-
dom Walk (G2) compared to first-pass results for values of α in a
wide range for the three sets of acoustic models.

4.2.2. Graph-Based Re-Ranking

The results for the two graph-based re-ranking approaches are pro-
posed here, with random walk (G1) as presented in section 3.1 and
modified random walk (G2) in section 3.2 are respectively listed in
rows (d)(e). The results show that the two graph-based re-ranking
methods were significantly better than the first-pass results for all
acoustic models, especially when the acoustic models were rela-
tively poorer (SI and MLLR), or the original relevance scores were
less precise. They also clearly outperformed the pseudo-relevance
feedback approaches (PRF1 and PRF2) in rows (b)(c). This veri-
fied the global similarity considered by the graph-based approaches
is really useful. Moreover, the modified random walk (G2) is better
than random walk (G1). The reason why G2 was better than G1 is
probably that for G2 the score contribution from neighboring nodes
were based on outgoing edges (Ai) as in (8), exactly matched to the
way the edge weights were normalized (also based on Ai) as in (3).
However, for G1 (4) was based on Bi; thus slightly mismatched.

4.2.3. Cascade Approach

We then cascaded the better approach of pseudo-relevance feedback
(PRF2) with the proposed graph-based approaches (G1 and G2). We
applied PRF2 first and then on the retrieved set of PRF2 performed
the graph-based re-ranking (G1 or G2), and we re-ranked the utter-
ances according to the final scores. The results are listed in rows
(f)(g). We see the performance of PRF2 + G2, cascade of the two
better approaches, was always better than PRF2 or G2 individually
for the relatively poorer acoustic models (SI and MLLR). Thus, the
two approaches are clearly additive. The results of PRF2 + G2 were
not better for SD model, probably because the local similarity the
pseudo-relevance feedback considers was already not far from global
optimum, and the additional graph-based re-ranking thus simply per-
turbed the results.

It is reasonable that the proposed graph-based approach and the
previous approach of pseudo-relevance feedback approach are addi-
tive, especially for mismatched acoustic models. The former con-
siders the global structure of similarities among all utterances over
the graph, while the latter considers primarily the local similarity
between the pseudo-relevant utterance set YQ and each retrieved ut-
terance.

4.3. Performance Sensibility with α

The results in Table 1 are for α = 0.9. It is important to analyze the
dependence of the performance on the choice of the value of α. The
achievable improvements in MAP compared to row (a) in Table 1 for
the better graph-based approach (G2) as in row (e) and its cascade
with PRF2 (PRF2 + G2) as in row (g), except with different values
of α, are plotted respectively in Fig. 4 and Fig. 5 for the three sets

Fig. 5. Performance improvement for Cascade 2 (PRF2 + G2) com-
pared to first-pass results for values of α in a wide range for the
three sets of acoustic models.

of acoustic models. We can see from the figures that the achievable
improvements were relatively stable for a wide range of values of α,
and the improvements were maximized when α = 0.9 in Fig. 4 and
α = 0.9, 0.8, 0.7 respectively for SI, MLLR, SD models in Fig. 5.
From (4) and (8) such values of α close to 1 indicate that better re-
trieval relies primarily on global similarity (weighted 0.7−0.9), and
the original relevance scores in (1) are really not reliable (weighted
0.1 − 0.3). This also explains why significant improvements were
achieved with the proposed approach.

Note that in Fig. 4 the performance was optimized at α = 0.9
for all three models. Thus, the graphic structure provided significant
information to improve the ranking. However, in Fig. 5, the trends
were slightly different. With better acoustic models the pseudo-
relevant utterance set YQ was easier to select; therefore the original
scores were more reliable, and the best value of α was smaller. The
results here also show that the proposed approaches are especially
useful for mismatched models, which is a highly desired property.

5. CONCLUSIONS

In this paper, we propose graph-based approaches to re-rank the
first-pass retrieved utterances to improve the performance of spo-
ken term detection by representing the feature-space similarities as
a graph and considering the global structure of these utterances over
the graph. Very encouraging results were obtained in the experi-
ments.
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