
Multi-Task Learning

Efficient Multi-Task Auxiliary Learning: Selecting Auxiliary Data by Feature Similarity

Auxiliary Learning

Contributions
◉Address the efficiency issue in multi-task auxiliary learning

◉Propose data sampling to shrink auxiliary data size 

→ computing cost reduction

◉First use feature similarity to determine data usefulness

1. Background
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Using auxiliary tasks improves 

the primary task.
All tasks are important!

Q: Should we use all auxiliary data?

Stage 1: Train a proxy MT-DNN along with a task discriminator with small data and predict the similarity.

Stage 2: Use the auxiliary subset with highest similarity scores in the MT-DNN framework

A: Feature Similarity!

More tasks (data), more computing.

Treating RTE as the primary task:

MT-DNN setting → 400x computing cost 

Muppet setting  → 2000x computing cost

Data: three tasks from GLUE (benefit from MTL)

Using all auxiliary data is time-consuming.

Some auxiliary data might be useless or even harmful!

more similar feature

more beneficial

Our method can use less data to achieve better results, 

and is much faster than training with full data!
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Summary: This paper proposes a feature similarity-based approach to select beneficial auxiliary data to fasten multi-task auxiliary learning.
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RTE, MRPC, and STS-B more overlapped 

→ more benefit from MTL!

2. Two-Stage Approach

3. Experiments
Q: How to select the most beneficial data?

MNLI RTE MRPC STS-B QQP QNLI SST-2 CoLA


