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1. Background

Multi-Task Learning Auxiliary Learning

2. Two-Stage Approach
Stage 1: Train a proxy MT-DNN along with a task discriminator with small data and predict the similarity.
Stage 2: Use the auxiliary subset with highest similarity scores in the MT-DNN framework

Stage 1: Similarity Ranking Stage 2: Multi-Task Auxiliary Learning &
Fine-tuning
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Using auxiliary tasks improves
the primary task.
More tasks (data), more computing.

Treating RTE as the primary task:
MT-DNN setting - 400x computing cost
Muppet setting - 2000x computing cost

All tasks are important!
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3. Experiments

Q: Should we use all auxiliary data?

Using all auxiliary data is time-consuming.
Some auxiliary data might be useless or even harmful!

Q: How to select the most beneficial data?
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