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Motivation

ConclusionExperiment 2: Synonym Selection

o Efficiency: purely sense-level 

representation learning with linear-time

sense decoding

o Modeling: single objective for modular 

unsupervised sense embedding learning

o Learning: leverage RL to model the sense 

selection process

o Exploration: introduce various exploration 

mechanisms for the sense selection for 

robustness

o Experiment: state-of-the-art performance
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 Why sense embeddings

o Words are polysemous, but their embeddings are usually not 

o The word embedding is restricted by the triangle inequality

o Sense embeddings can easily circumvent such constraint

Smartphone companies including             blackberry, and sony will be invited.apple

apple-1 apple-2
sense selection

sense embedding

 Key mechanisms

Traditional Frameworks

 Clustering based on contexts as sense ID

o Efficient sense selection

o Embedding learning involves word tokens

word vec in context

cluster 1 cluster 2 …

sense vec

word vec in context

S𝑖1 S𝑗1 S𝑘1 S𝑙1 S𝑚1

S𝑖2 S𝑗2 S𝑘2 S𝑙2 S𝑚2

S𝑖3 S𝑗3 S𝑘3 S𝑙3 S𝑚3

… … … … …
… … … … …

𝑤𝑖 𝑤𝑗 𝑤𝑘 𝑤𝑙 𝑤𝑚

 Sense selection by a distribution

o No word tokens are involved

o Inefficient EM algorithms

The Proposed Approach: MUSE

 Advantages from both worlds
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 Issue 1: impossible for a single model

 Solution: modular framework

o Distinct modules for specific mechanisms

 Issue 2: how to formulate single objective?

 Solution: Markov Decision Process (MDP)

o sense selection → state/action in MDP

o sense representation → reward in MDP

sense representationsense selection

sense selection: linear neural network

o Policy-based: 

o Value-based: 

sense representation: skip-gram

o

 Issue 3: how to optimize modules?

 Solution: Reinforcement Learning (RL)

o Policy-based: maximizes the expected rewards

o Value-based: estimates the rewards directly

 Issue 4: how to conduct sense selection?

 Solution: Exploration

o Policy gradient: sampling

o Value-based: greedy, ε-Greedy, Boltzmann sampling

Approach MaxSimC AvgSimC

Huang et al., 2012 26.1 65.7

Neelakantan et al., 2014 60.1 69.3

Tian et al., 2014 63.6 65.4

Li & Jurafsky, 2015 66.6 66.8

Bartunov et al., 2016 53.8 61.2

Qiu et al., 2016 64.9 66.1

MUSE-Policy 66.1 67.4

MUSE-Greedy 66.3 68.3

MUSE-ε-Greedy 67.4+ 68.6

MUSE-Boltzmann 67.9+ 68.7

Experiment 1: Contextual Word Similarities
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 Setup

 Dataset: April 2010 Wikipedia dump

 Context window: 5

 Embedding dim: 300

 Evaluation: similarity on contextual word pairs 

… east bank of the Des Moines River …

… basis of all money laundering …

o Compared target: human-judged similarity
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MUSE achieves the state-of-the-art on MaxSimC
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 Model architecture
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practical Approach ESL-50 RD-300 TOEFL-80

Global Context 47.73 45.07 60.87

SkipGram 52.08 55.66 66.67

IMS+SkipGram 41.67 53.77 66.67

EM 27.08 33.96 40.00

MSSG (Neelakantan et al., ‘14) 57.14 58.93 78.26

CRP (Li & Jurafsky, ‘15) 50.00 55.36 82.61

MUSE-Policy 52.38 51.79 79.71

MUSE-Greedy 57.14 58.93 79.71

MUSE-ε-Greedy 61.90+ 62.50+ 84.06+

MUSE-Boltzmann 64.29+ 66.07+ 88.41+

Retro-GlobalContext 63.64 66.20 71.01

Retro-SkipGram 56.25 65.09 73.33
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MUSE with exploration outperforms all baselines.
MUSE can effectively separate different senses in an unsupervised way.

MUSE beat some supervised systems w/o any supervision.
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Code Available:

http://github.com/MiuLab/MUSE


