

Deep Learning for Dialogue Systems

deepdialogue.miulab.tw

Break

Outline

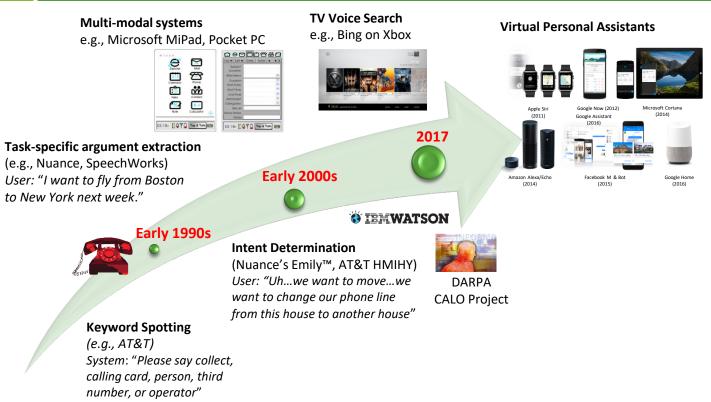
- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

³ Introduction & Background

Neural Networks

Reinforcement Learning

Brief History of Dialogue Systems



Language Empowering Intelligent Assistant

Apple Siri (2011)

Google Now (2012) Google Assistant (2016)

Microsoft Cortana (2014)

Amazon Alexa/Echo (2014)

Facebook M & Bot (2015) Google Home (2016) Apple HomePod (2017)

Challenges

- Variability in natural language
- Robustness
- Recall/Precision Trade-off
- Meaning Representation
- Common Sense, World Knowledge
- Ability to learn
- Transparency

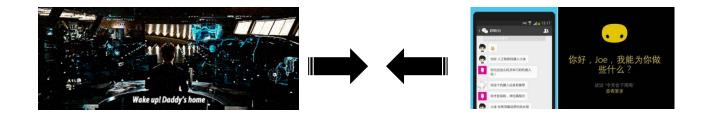
Two Branches of Dialogue Systems

Task-Oriented

- Personal assistant, helps users achieve a certain task
- Combination of <u>rules</u> and <u>statistical</u> components
- •POMDP for spoken dialog systems (Williams and Young, 2007)
- •End-to-end trainable task-oriented dialogue system (Wen et al., 2016; Li et al., 2017)
- •End-to-end reinforcement learning dialogue system (Zhao and Eskenazi, 2016)

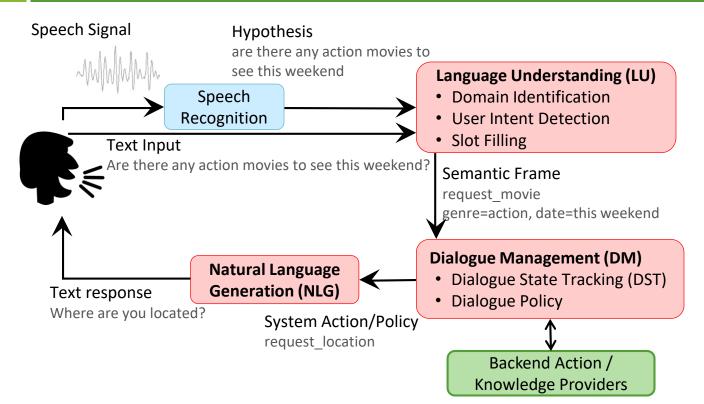
Chit-Chat

- No specific goal, focus on natural responses
- Using variants of seq2seq model
- •A neural conversation model (Vinyals and Le, 2015)
- •Reinforcement learning for dialogue generation (Li et al., 2016)
- Conversational contextual cues for response ranking (AI-Rfou et al., 2016)



Task-Oriented Dialogue System (Young, 2000)

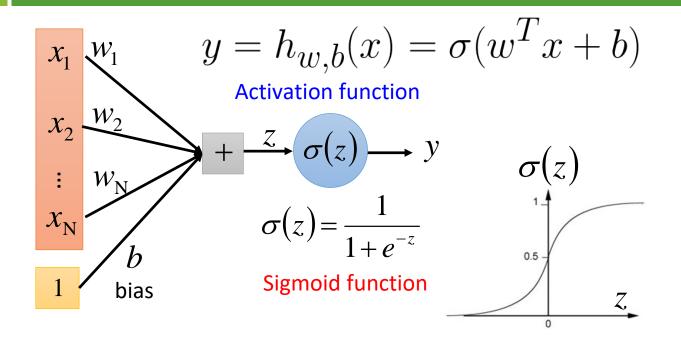
http://rsta.royalsocietypublishing.org/content/358/1769/1389.short



Outline

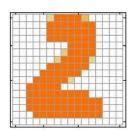
- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

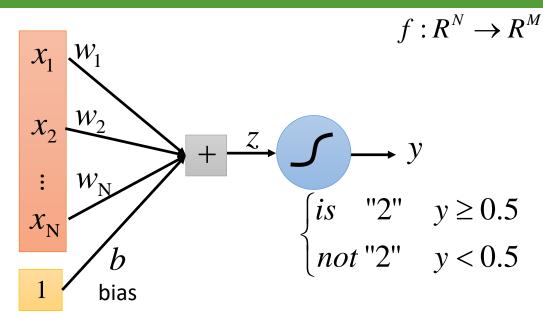
A Single Neuron



w, b are the parameters of this neuron

A Single Neuron

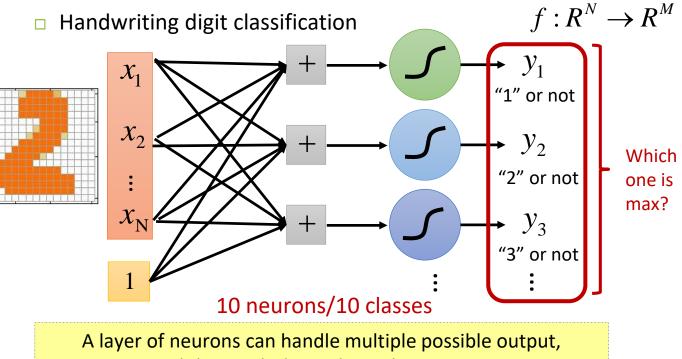




A single neuron can only handle binary classification

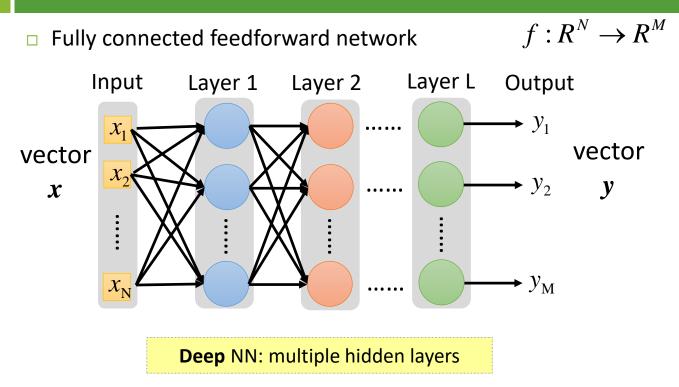
A Layer of Neurons

12

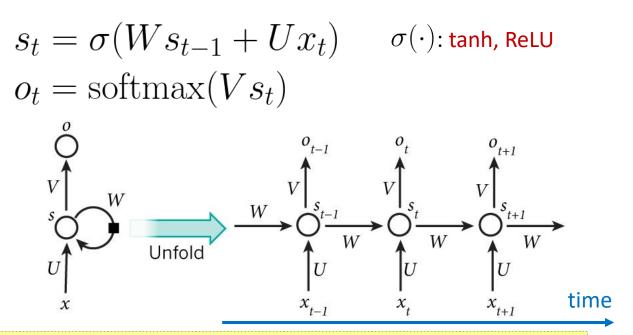


and the result depends on the max one

Deep Neural Networks (DNN)



Recurrent Neural Network (RNN)



RNN can learn accumulated sequential information (time-series)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Outline

- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

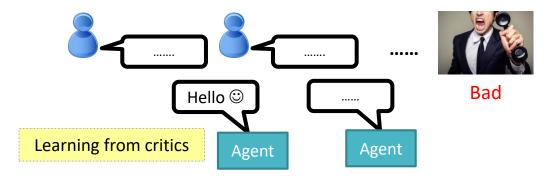
Reinforcement Learning

- 16
- RL is a general purpose framework for decision making
 - RL is for an *agent* with the capacity to *act*
 - Each action influences the agent's future state
 - Success is measured by a scalar reward signal
 - Goal: select actions to maximize future reward

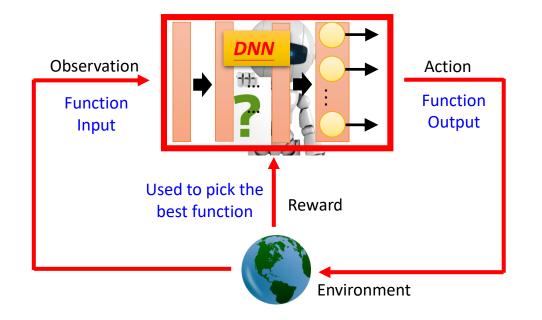
Supervised v.s. Reinforcement

Supervised Learning from teacher "Bye bye" Say "Good bye"

Reinforcement



Deep Reinforcement Learning



Reinforcing Learning

- \Box Start from state s_0
- \Box Choose action a_0
- $\Box \text{ Transit to } s_1 \sim P(s_0, a_0)$

Continue...

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} \dots$$

 \Box Total reward: $R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$

Goal: select actions that maximize the expected total reward $\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$

Reinforcement Learning Approach

- Policy-based RL
 - Search directly for optimal policy π^*

 π^* is the policy achieving maximum future reward

Value-based RL

lacksquare Estimate the optimal value function $Q^*(s,a)$

 $Q^{\ast}(s,a)$ is maximum value achievable under any policy

- Model-based RL
 - Build a model of the environment
 - Plan (e.g. by lookahead) using model

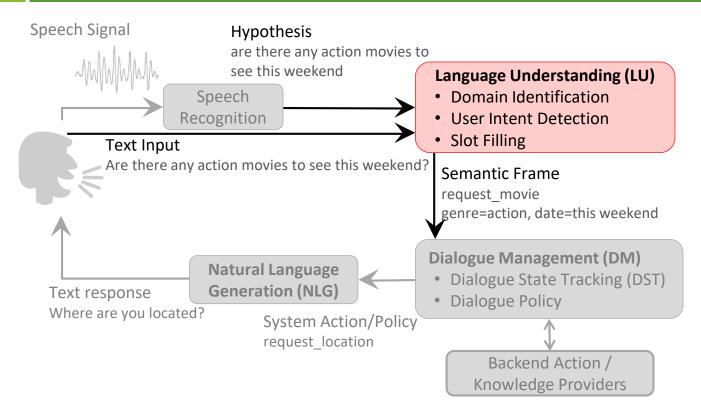
²¹ Part II

Modular Dialogue System

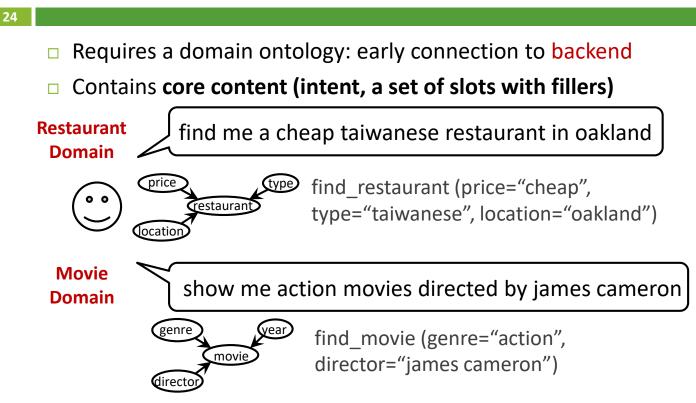
Outline

- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

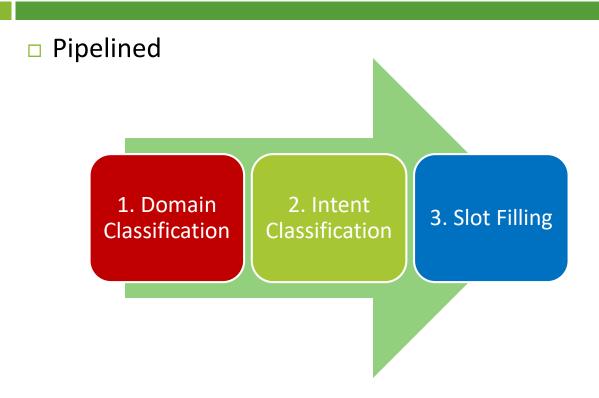
Task-Oriented Dialogue System (Young, 2000)



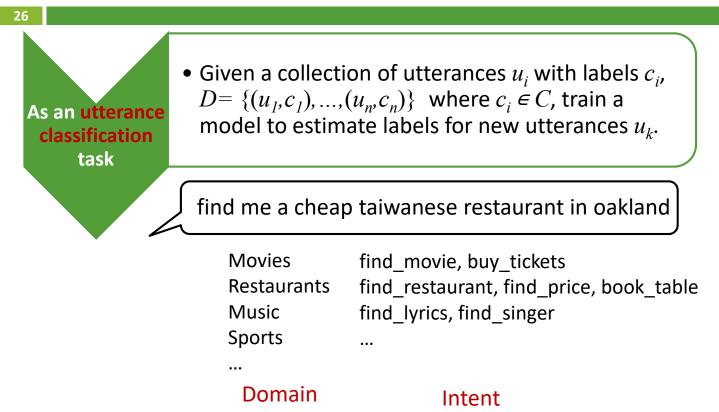
Semantic Frame Representation



Language Understanding (LU)



LU – Domain/Intent Classification



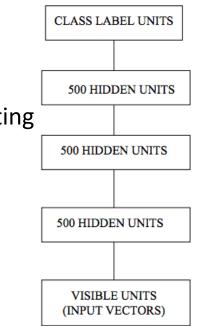
Material: http://deepdialogue.miulab.tw

Deep Neural Networks for Domain/Intent Classification – I (Sarikaya et al, 2011)

27

http://ieeexplore.ieee.org/abstract/document/5947649/

- Deep belief nets (DBN)
 - Unsupervised training of weights
 - Fine-tuning by back-propagation
 - Compared to MaxEnt, SVM, and boosting

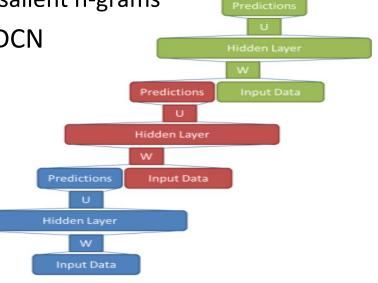


Material: http://deepdialogue.miulab.tw

Deep Neural Networks for Domain/Intent Classification – II (Tur et al., 2012; Deng et al., 2012)

http://ieeexplore.ieee.org/abstract/document/6289054/; http://ieeexplore.ieee.org/abstract/document/6424224/

- Deep convex networks (DCN)
 - Simple classifiers are stacked to learn complex functions
 - Feature selection of salient n-grams
- Extension to kernel-DCN



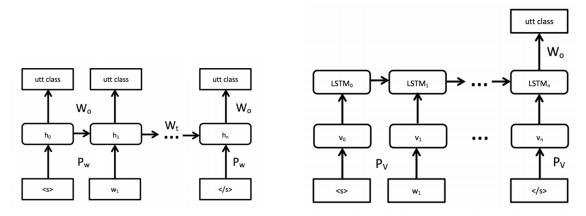
Material: http://deepdialogue.miulab.tw

Deep Neural Networks for Domain/Intent Classification – III (Ravuri & Stolcke, 2015)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/RNNLM_addressee.pdf

RNN and LSTMs for utterance classification

29



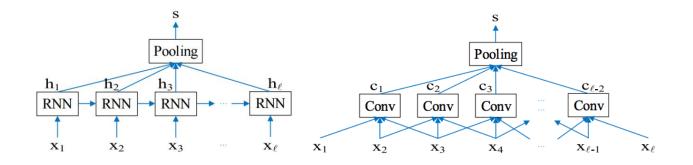
Intent decision after reading all words performs better

Material: <u>http://deepdialogue.miulab.tw</u>

Deep Neural Networks for Dialogue Act Classification – IV (Lee & Dernoncourt, 2016)

30

RNN and CNNs for dialogue act classification



LU – Slot Filling

As a sequence tagging task	• Given a collection tagged word sequences, $S = \{((w_{1,1}, w_{1,2},, w_{1,n1}), (t_{1,1}, t_{1,2},, t_{1,n1})), ((w_{2,1}, w_{2,2},, w_{2,n2}), (t_{2,1}, t_{2,2},, t_{2,n2})) \}$ where $t_i \in M$, the goal is to estimate tags for a new word sequence.

flights from Boston to New York today

	flights	from	Boston	to	New	York	today
Entity Tag	0	0	B-city	0	B-city	I-city	0
Slot Tag	0	0	B-dept	0	B -arrival	I-arrival	B-date

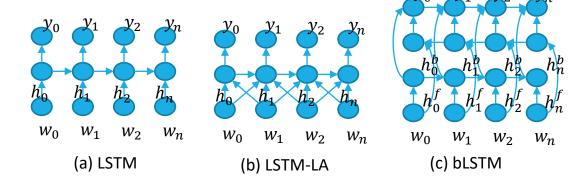
Recurrent Neural Nets for Slot Tagging – I

(Yao et al, 2013; Mesnil et al, 2015)

http://131.107.65.14/en-us/um/people/gzweig/Pubs/Interspeech2013RNNLU.pdf; http://dl.acm.org/citation.cfm?id=2876380

Variations:

- a. RNNs with LSTM cells
- b. Input, sliding window of n-grams
- c. Bi-directional LSTMs

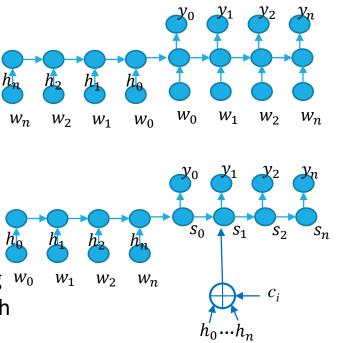


http://www.aclweb.org/anthology/D16-1223

Recurrent Neural Nets for Slot Tagging – II

(Kurata et al., 2016; Simonnet et al., 2015)

- Encoder-decoder networks
 - Leverages sentence level information
- Attention-based encoderdecoder
 - Use of attention (as in MT) in the encoder-decoder network
 - Attention is estimated using w₀
 a feed-forward network with input: h_t and s_t at time t

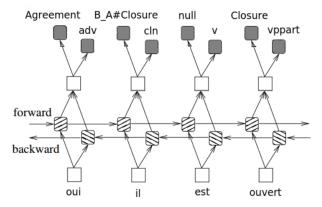


Recurrent Neural Nets for Slot Tagging – III

(Jaech et al., 2016; Tafforeau et al., 2016)

https://arxiv.org/abs/1604.00117; http://www.sensei-conversation.eu/wp-content/uploads/2016/11/favre_is2016b.pdf

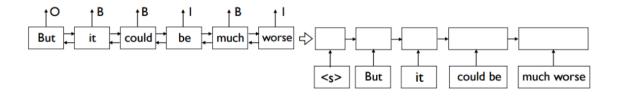
- Multi-task learning
 - Goal: exploit data from domains/tasks with a lot of data to improve ones with less data
 - Lower layers are shared across domains/tasks
 - Output layer is specific to task



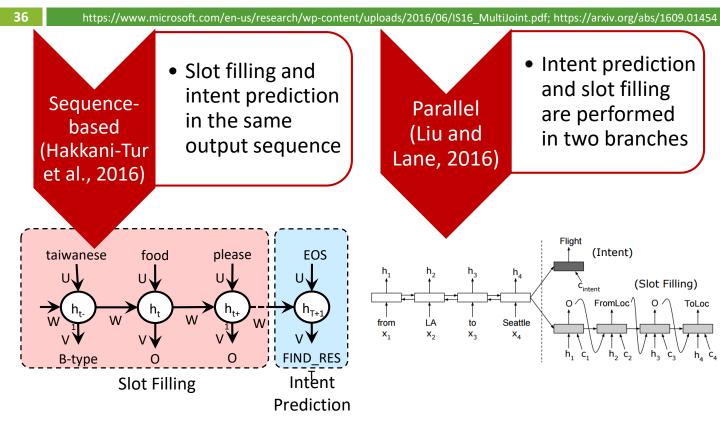
Joint Segmentation and Slot Tagging (Zhai et al., 2017)

https://arxiv.org/pdf/1701.04027.pdf

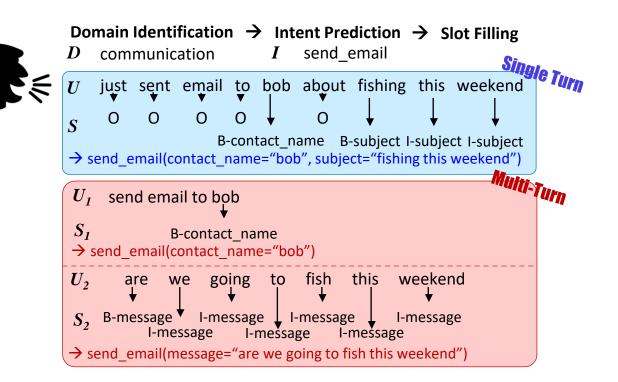
- Encoder that segments
- Decoder that tags the segments



Joint Semantic Frame Parsing



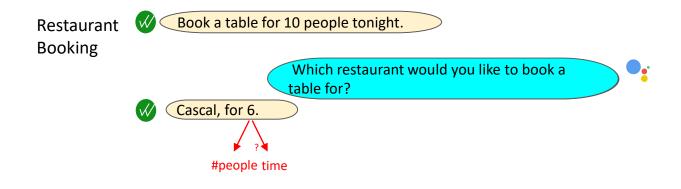
Contextual LU



Contextual LU

38

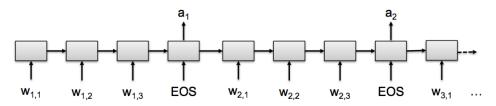
User utterances are highly ambiguous in isolation



Contextual LU (Bhargava et al., 2013; Hori et al, 2015)

https://www.merl.com/publications/docs/TR2015-134.pdf

- Leveraging contexts
 - Used for individual tasks
- Seq2Seq model
 - Words are input one at a time, tags are output at the end of each utterance

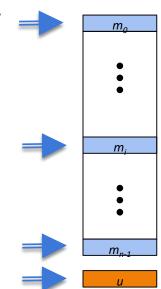


Extension: LSTM with speaker role dependent layers

End-to-End Memory Networks

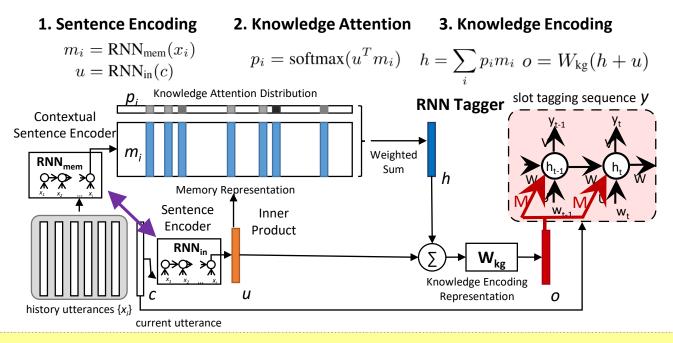
(Sukhbaatar et al, 2015)

U: "i d like to purchase tickets to see deepwater horizon" S: "for which theatre" U: "angelika" S: "you want them for angelika theatre?" U: "yes angelika" S: "how many tickets would you like ?" U: "3 tickets for saturday" S: "What time would you like ?" U: "Any time on saturday is fine" S: "okay, there is 4:10 pm, 5:40 pm and 9:20 pm" U: "Let's do 5:40"



E2E MemNN for Contextual LU (Chen et al., 2016)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/IS16_ContextualSLU.pdf



Idea: additionally incorporating contextual knowledge during slot tagging → track dialogue states in a latent way

Analysis of Attention

U: "i d like to purchase tickets to see deepwater horizon"

- S: "for which theatre"
- U: "angelika"
- S: "you want them for angelika theatre?"
- U: "yes angelika"
- S: "how many tickets would you like ?"
- U: "3 tickets for saturday"
- S: "What time would you like ?"
- U: "Any time on saturday is fine"

S: "okay, there is 4:10 pm, 5:40 pm and 9:20 pm"

0.16

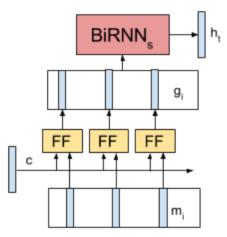
0.13

U: "Let's do 5:40"

Sequential Dialogue Encoder Network (Bapna et al., 2017)

43 Bapna et.al., SIGDIAL 2017

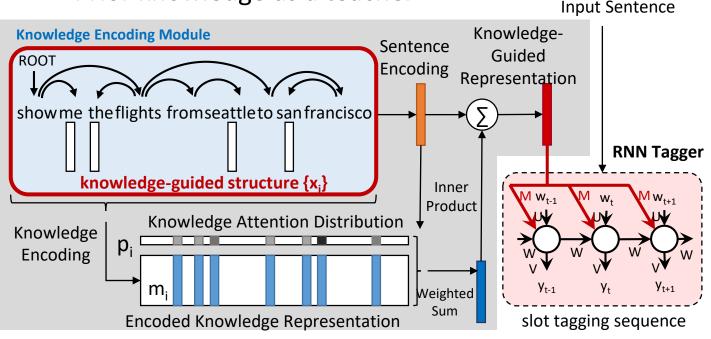
 Past and current turn encodings input to a feed forward network

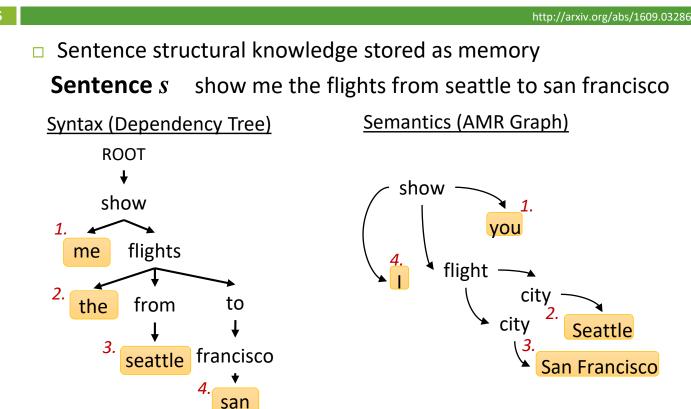


Structural LU (Chen et al., 2016)

http://arxiv.org/abs/1609.03286

Prior knowledge as a teacher

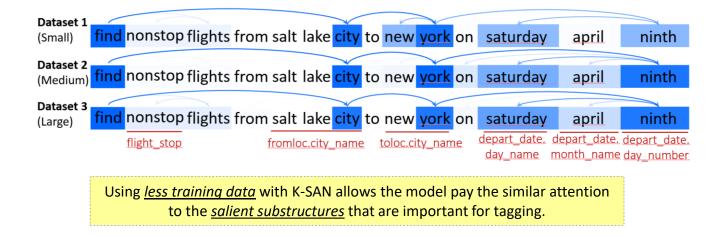




Structural LU (Chen et al., 2016)

http://arxiv.org/abs/1609.03286

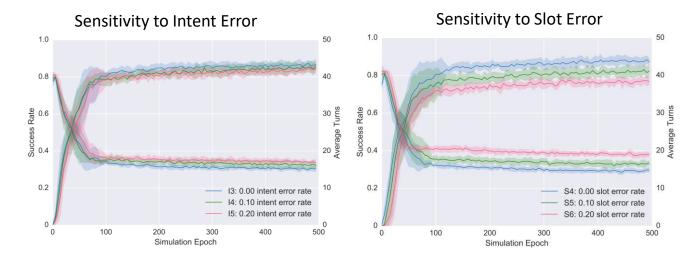
Sentence structural knowledge stored as memory



LU Importance (Li et al., 2017)

http://arxiv.org/abs/1703.07055

Compare different types of LU errors

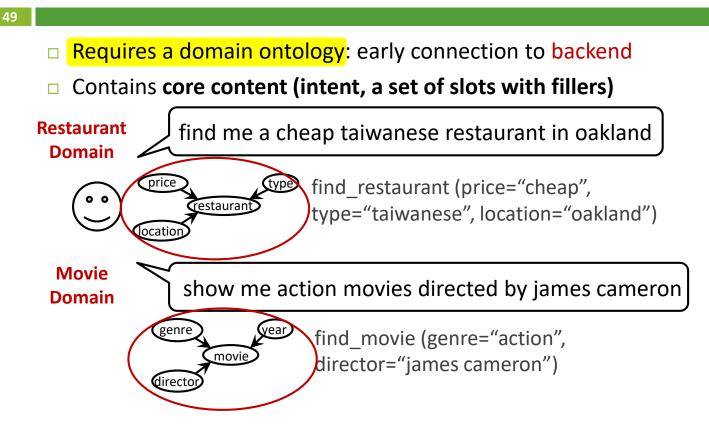


Slot filling errors have more impact on policy learning than intent detection errors.

LU Evaluation

- Metrics
 - Sub-sentence-level: intent accuracy, intent F1, slot F1
 - Sentence-level: whole frame accuracy

Semantic Frame Representation



LU – Learning Semantic Ontology

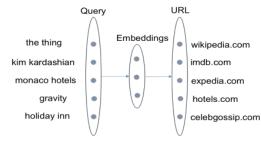
http://www.cs.cmu.edu/~ananlada/ConceptIdentificationICSLP02.pdf, http://ieeexplore.ieee.org/abstract/document/6707716/

- Learning key domain concepts from goal-oriented human-human conversations
 - Clustering with mutual information and KL divergence (Chotimongkol & Rudnicky, 2002)
 - Spectral clustering based slot ranking model (Chen et al., 2013)
 - Use a state-of-the-art frame-semantic parser trained for FrameNet
 - Adapt the generic output of the parser to the target semantic space

LU – Zero-Shot Learning (Daupin et al., 2016)

https://arxiv.org/abs/1401.0509

- Semantic utterance classification
 - Use query click logs to define a task that makes the networks learn the meaning or intent behind the queries



 $\mathcal{L}(X,Y) = -\log P(Y|X) + \lambda H(P(C|X)).$

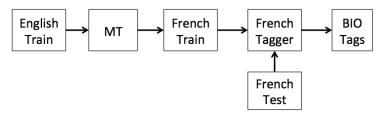
Depiction of the deep network from queries to URLs.

- The semantic features are the last hidden layer of the DNN
- Use Zero-Shot Discriminative embedding model combines *H* with the minimization of entropy of a zero-shot classifier

LU – Language Extension

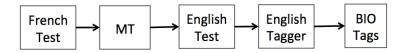
Train on target (Lefevre et al, 2010)

http://mi.eng.cam.ac.uk/~sjy/papers/lemy10.pdf



Test on source (Jabaian et al, 2011)

lia.univ-avignon.fr/fileadmin/documents/Users/Intranet/fich_art/jabaian.pdf



Combination (He et al, 2013)

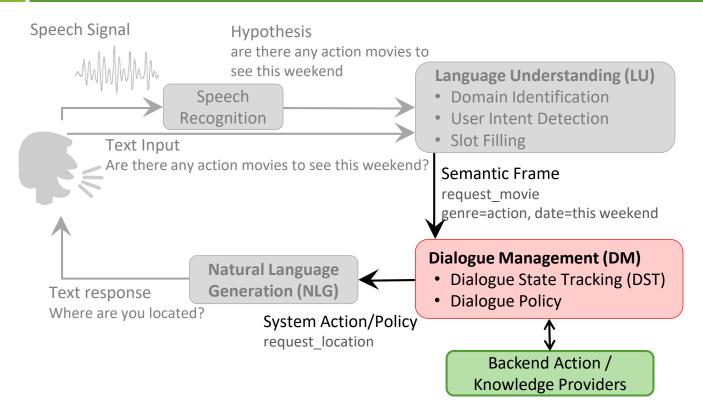
www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICASSP13-MultiLingual.pdf

(slide from Shyam Upadhyay)

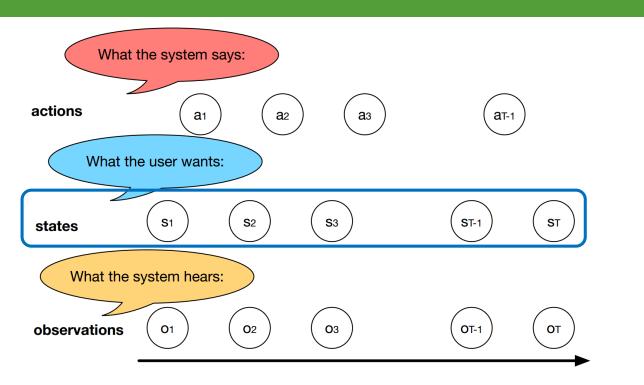
Outline

- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

Task-Oriented Dialogue System (Young, 2000)



Elements of Dialogue Management



dialogue turns

(Figure from Gašić)

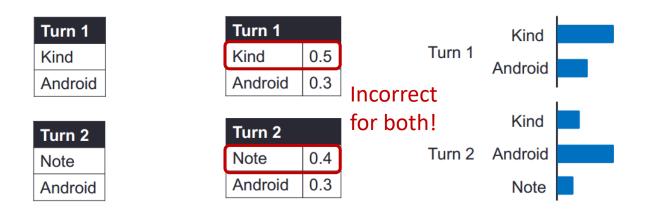
Dialogue State Tracking (DST)

- Dialogue state: a representation of the system's belief of the user's goal(s) at any time during the dialogue
- Inputs
 - Current user utterance
 - Preceding system response
 - Results from previous turns
- For
 - Looking up knowledge or making API call(s)
 - Generating the next system action/response

Dialogue State Tracking (DST)

57

 Maintain a probabilistic distribution instead of a 1-best prediction for <u>better robustness to recognition errors</u>



Dialogue State Tracking (DST)

- 58
- Maintain a probabilistic distribution instead of a 1-best prediction for <u>better robustness to SLU errors or</u> <u>ambiguous input</u>

Slot	Value
# people	5 (0.5)
time	5 (0.5)

Slot	Value
# people	3 (0.8)
time	5 (0.8)

Multi-Domain Dialogue State Tracking

59

- A full representation of the system's belief of the user's goal at any point during the dialogue
- Used for making API calls

Movies

11/15/16			
6 pm	7 pm	8 pm	9 pm
2	3		
Inferno	Trolls		
Century 16			

Restaurants

Date	11/15/16		
Time	6:30 pm	7 pm	7:30 pm
Cuisine	Mexican		
Restaurant	Vive Sol		

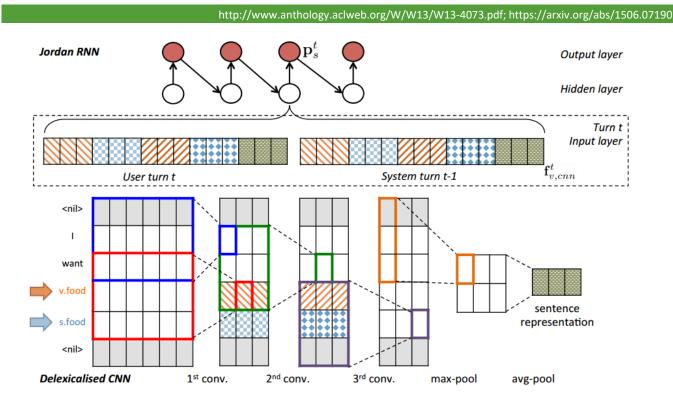
Dialog State Tracking Challenge (DSTC)

(Williams et al. 2013, Henderson et al. 2014, Henderson et al. 2014, Kim et al. 2016, Kim et al. 2016)

Challenge	Туре	Domain	Data Provider	Main Theme
DSTC1	Human- Machine	Bus Route	CMU	Evaluation Metrics
DSTC2	Human- Machine	Restaurant	U. Cambridge	User Goal Changes
DSTC3	Human- Machine	Tourist Information	U. Cambridge	Domain Adaptation
DSTC4	Human- Human	Tourist Information	I2R	Human Conversation
DSTC5	Human- Human	Tourist Information	I2R	Language Adaptation

NN-Based DST (Henderson et al., 2013; Henderson et al., 2014; Mrkšić et al., 2015)

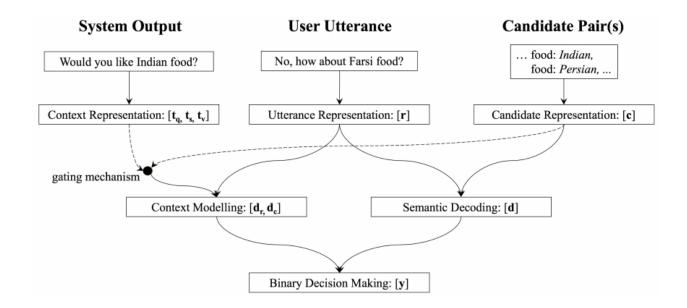
61



(Figure from Wen et al, 2016)

Neural Belief Tracker (Mrkšić et al., 2016)

https://arxiv.org/abs/1606.03777

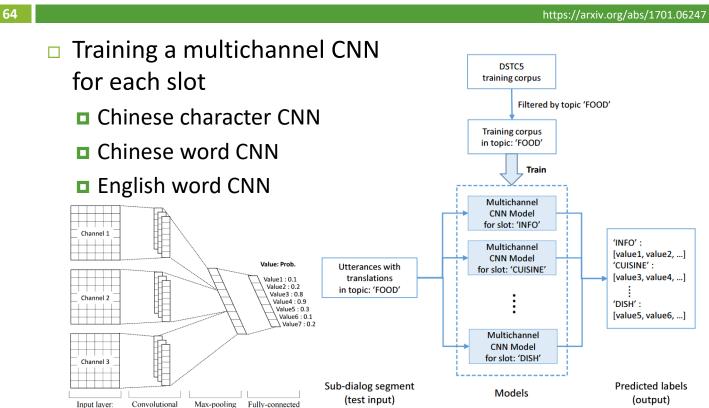


DST Evaluation

- Dialogue State Tracking Challenges
 - DSTC2-3, human-machine
 - DSTC4-5, human-human
- Metric
 - Tracked state accuracy with respect to user goal
 - Recall/Precision/F-measure individual slots

Material: http://deepdialogue.miulab.tw

DST Language Extension – Multichannel Tracker (Shi et al., 2016)



embedding matrix

layer

layer

sigmoid layer

DST – Task Lineages (Lee & Stent, 2016)

https://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=29

- Slot values shared across tasks
- Utterances with complex constraints on user goals
- Interleaved multiple task discussions

Task Frame:

Connection to Manhattan and find me a Thai restaurant, not Italian

 $\begin{bmatrix} \mathbf{Task} & \mathrm{Transit} \\ \mathbf{DAIs} & (0.8, \mathrm{inform}(\mathrm{dest}=\mathrm{MH})_{0.7}^{0.1}) \end{bmatrix} \\ \begin{bmatrix} \mathbf{Task} & \mathrm{Restaurant} \\ \mathbf{DAIs} & (0.7, \mathrm{inform}(\mathrm{food}=\mathrm{thai})_{1,2}^{0.9}) \\ & (0.6, \mathrm{deny}(\mathrm{food}=\mathrm{italian})_{1,7}^{1.4}) \end{bmatrix} \end{bmatrix}$

(confidence, dialog act item ^{Start_time})

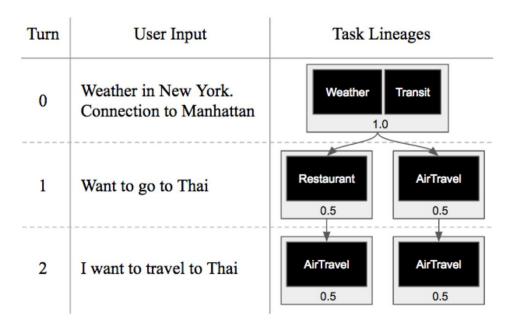
Task State:

Thai restaurant, not Italian

Task	Restaurant 7
Constraints	(0.7, food = thai)
	$(0.6, food \neq italian)$
DB	["Thai To Go", "Pa de Thai"]
Timestamps	01/01/2016 : 12-00-00

DST – Task Lineages (Lee & Stent, 2016)

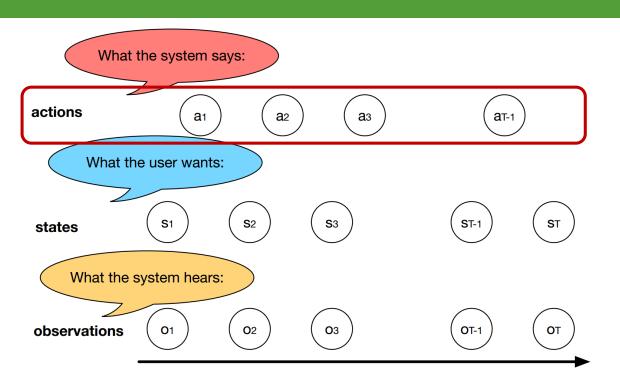
https://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=29



Outline

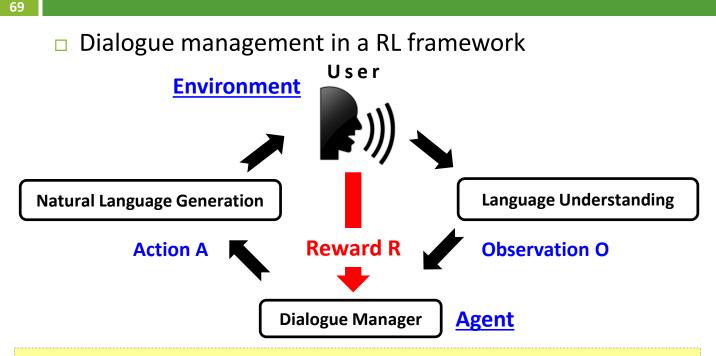
- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

Elements of Dialogue Management



dialogue turns

(Figure from Gašić)



The optimized dialogue policy selects the best action that maximizes the future reward. Correct rewards are a crucial factor in dialogue policy training

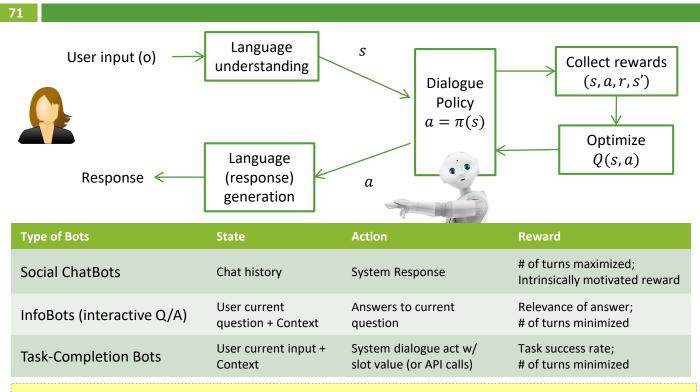
Reward for RL \cong Evaluation for System

- Dialogue is a special RL task
 - Human involves in <u>interaction</u> and <u>rating</u> (evaluation) of a dialogue
 - Fully human-in-the-loop framework
- Rating: correctness, appropriateness, and adequacy

- Expert rating	high quality, <mark>high</mark> cost
- User rating	unreliable quality, medium cost
- Objective rating	Check desired aspects, low cost

Material: http://deepdialogue.miulab.tw

Reinforcement Learning for Dialogue Policy Optimization



Goal: develop a generic deep RL algorithm to learn dialogue policy for all bot categories

Dialogue Reinforcement Learning Signal

Typical reward function

- I for per turn penalty
- Large reward at completion if successful
- Typically requires domain knowledge
 - ✓ Simulated user
 - ✓ Paid users (Amazon Mechanical Turk)
 - × Real users

The **user simulator** is usually required for dialogue system training before deployment

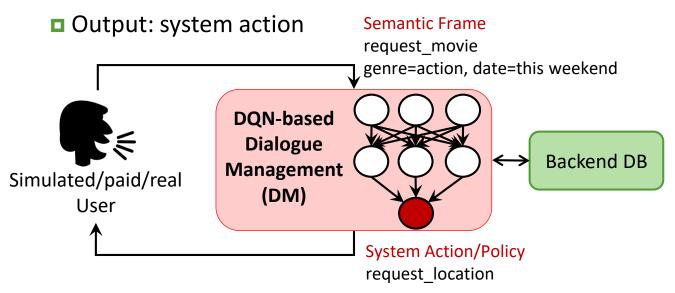
Neural Dialogue Manager (Li et al., 2017)

https://arxiv.org/abs/1703.01008

Deep RL for training DM

73

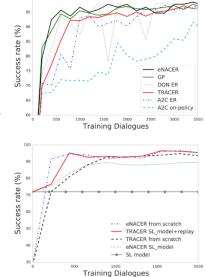
Input: current semantic frame observation, database returned results



SL + RL for Sample Efficiency (Su et al., 2017)

74 Su et.al., SIGDIAL 2017

- Issue about RL for DM
 - slow learning speed
 - cold start
- Solutions
 - Sample-efficient actor-critic
 - Off-policy learning with experience replay
 - Better gradient update
 - Utilizing supervised data
 - Pretrain the model with SL and then finetune with RL
 - Mix SL and RL data during RL learning
 - Combine both



Learning to Negotiate (Lewis et al., 2017)

https://arxiv.org/pdf/1706.05125.pdf

Task: multi-issue bargaining Each agent has its own value function

Divide these objects between you and another Turker. Try hard to get as many points as you can!

Send a message now, or enter the agreed deal!

Fellow Turker: I'd like all the balls	
	You: Ok, if I get everything else
Fellow Turker: If I get the book then you have a deal	
	You: No way - you can have one hat and all the balls
Fellow Turker: Ok deal	

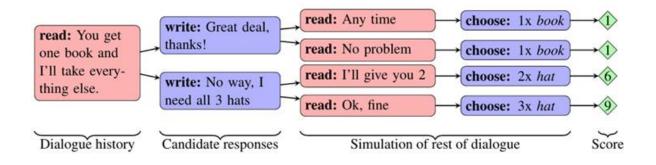
Type Message Here:

Message	Send	

Learning to Negotiate (Lewis et al., 2017)

https://arxiv.org/pdf/1706.05125.pdf

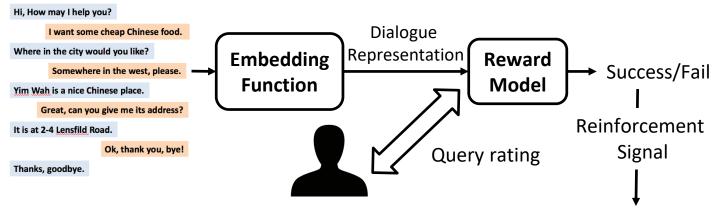
- Dialogue rollouts to simulate a future conversation
 SL + RL
 - **SL** aims to imitate human users' actions
 - RL tries to make agents focus on the goal



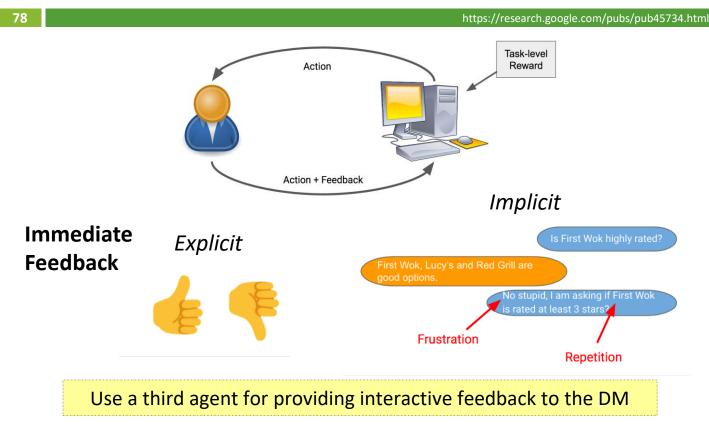
Online Training (Su et al., 2015; Su et al., 2016)

http://www.anthology.aclweb.org/W/W15/W15-46.pdf#page=437; https://www.aclweb.org/anthology/P/P16/P16-1230.pdf

- Policy learning from real users
 - Infer reward directly from dialogues (Su et al., 2015)
 - User rating (Su et al., 2016)
- Reward modeling on user binary success rating



Interactive RL for DM (Shah et al., 2016)



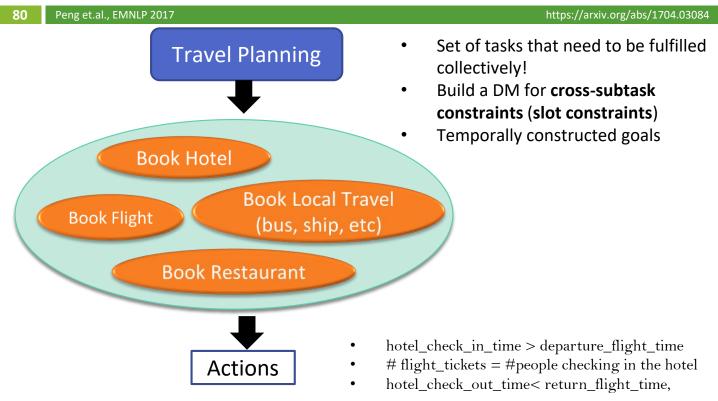
https://research.google.com/pubs/pub45734.html

Interpreting Interactive Feedback (Shah et al., 2016)

a_{T-1} a_{t} a_{t+1} Agent policy S_{t+1} **S**_{T-1} S_T optimizes \mathbf{S}_{t} **Reward value** combined reward R, + F, **Reward Shaping** $\mathsf{F}_{_{\mathsf{T}\text{-}\mathsf{1}}}$ **F**_{t+1} Agent policy is: a_{t+1} , Label on a_t а_{т-1} $\pi \propto \pi_R imes \pi_F$ previous S_t S_{t+1} **S**_{T-1} s_T action Reward Feedback **Policy Shaping** R_T Policy Policy

Material: http://deepdialogue.miulab.tw

Multi-Domain Policy – Hierarchical RL for Composite Tasks (Peng et al., 2017)



Material: http://deepdialogue.miulab.tw

Multi-Domain Policy – Hierarchical RL for Composite Tasks (Peng et al., 2017)

81 Peng et.al., EMNLP 2017

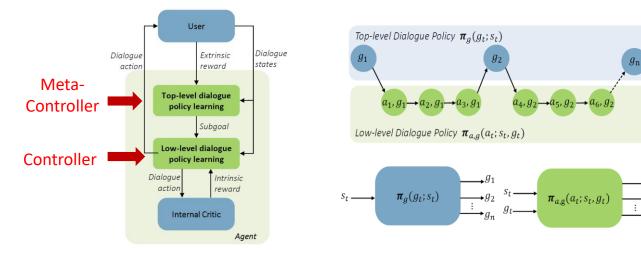
https://arxiv.org/abs/1704.03084

 a_1

 a_2

 a_m

- Model makes decisions over two levels: meta-controller & controller
- The agent learns these policies simultaneously
 - the policy of optimal sequence of goals to follow $\pi_g(g_t, s_t; \theta_1)$
 - Policy $\pi_{a,g}(a_t, g_t, s_t; \theta_2)$ for each sub-goal g_t



(mitigate reward sparsity issues)

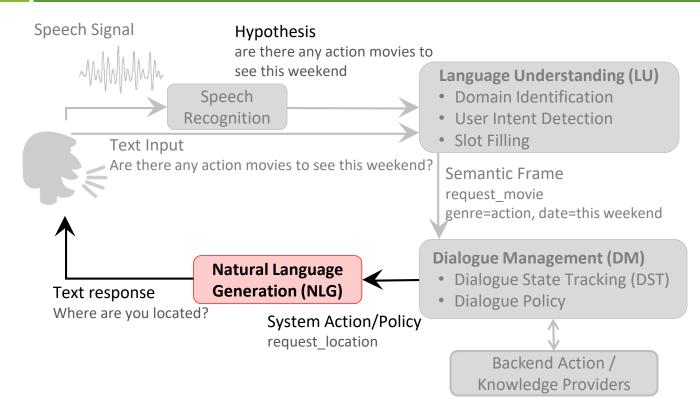
Dialogue Management Evaluation

- Metrics
 - Turn-level evaluation: system action accuracy
 - Dialogue-level evaluation: task success rate, reward

Outline

- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

Task-Oriented Dialogue System (Young, 2000)



Natural Language Generation (NLG)

Mapping dialogue acts into natural language

inform(name=Seven_Days, foodtype=Chinese)

Seven Days is a nice Chinese restaurant

Template-Based NLG

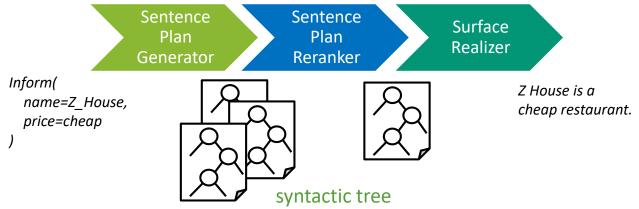
Define <u>a set of rules</u> to map frames to NL

Semantic Frame	Natural Language
confirm()	"Please tell me more about the product your are looking for."
confirm(area=\$V)	"Do you want somewhere in the \$V?"
confirm(food=\$V)	"Do you want a \$V restaurant?"
confirm(food=\$V,area=\$W)	"Do you want a \$V restaurant in the \$W."

Pros: simple, error-free, easy to control *Cons:* time-consuming, rigid, poor scalability

Plan-Based NLG (Walker et al., 2002)

Divide the problem into pipeline



Statistical sentence plan generator (Stent et al., 2009)

□ Statistical surface realizer (Dethlefs et al., 2013; Cuayáhuitl et al., 2014; ...)

Pros: can model complex linguistic structures **Cons:** heavily engineered, require domain knowledge

Class-Based LM NLG (Oh and Rudnicky, 2000)

http://dl.acm.org/citation.cfm?id=1117568

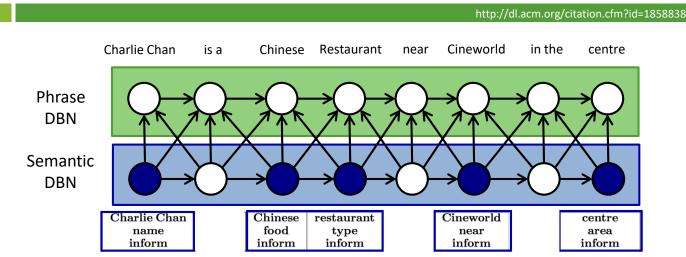
□ Class-based language modeling $P(X | c) = \sum_{t} \log p(x_t | x_0, x_1, \dots, x_{t-1}, c)$ □ NLG by decoding $X^* = \arg \max_X P(X | c)$ $X^* = \arg \max_X P(X | c)$

Generation Language Models **Dialog Manager** Candidate Utterances What time on {depart_date} At what time would you be leaving {depart_city} Input Frame act query Scoring content depart_time Tagged depart_date 20000501 Corpora **Best Utterance** What time on {depart_date} Complete Utterance TTS Slot Filling What time on Mon, May 8th?

Pros: easy to implement/
understand, simple rules
Cons: computationally inefficient

88

Phrase-Based NLG (Mairesse et al, 2010)



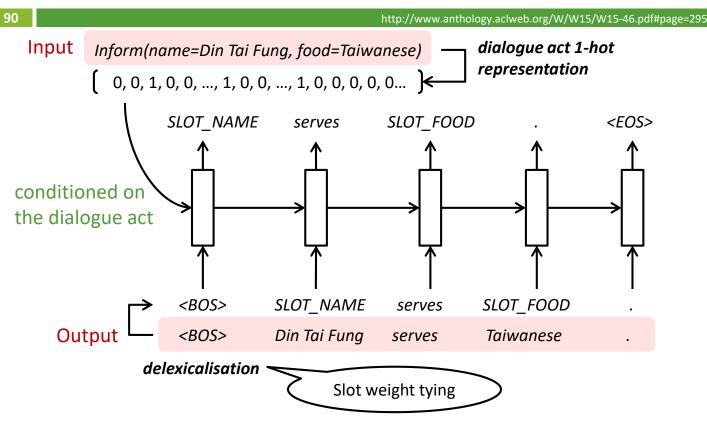
Inform(name=Charlie Chan, food=Chinese, type= restaurant, near=Cineworld, area=centre)

realization phrase semantic stack

r_t	St	h_t	l_t	
<s></s>	START	START	START	
The Rice Boat	inform(name(X))	X	inform(name)	
is a	a inform		EMPTY	
restaurant	inform(type(restaurant))	restaurant	inform(type)	
in the	inform(area)	area	inform	
riverside	inform(area(riverside))	riverside	inform(area)	
area	inform(area)	area	inform	
that	inform	inform	EMPTY	
serves	inform(food)	food	inform	
French	inform(food(French))	French	inform(food)	
food	inform(food)	food	inform	
	END	END	END	

Pros: efficient, good performance **Cons:** require semantic alignments

RNN-Based LM NLG (Wen et al., 2015)



Handling Semantic Repetition

- Issue: semantic repetition
 - Din Tai Fung is a great Taiwanese restaurant that serves Taiwanese.
 - Din Tai Fung is a child friendly restaurant, and also allows kids.
- Deficiency in either model or decoding (or both)
- Mitigation
 - Post-processing rules (Oh & Rudnicky, 2000)
 - **Gating mechanism** (Wen et al., 2015)
 - Attention (Mei et al., 2016; Wen et al., 2015)

Semantic Conditioned LSTM (Wen et al., 2015)

- Original LSTM cell
 - $\mathbf{i}_{t} = \sigma(\mathbf{W}_{wi}\mathbf{x}_{t} + \mathbf{W}_{hi}\mathbf{h}_{t-1})$ $\mathbf{f}_{t} = \sigma(\mathbf{W}_{wf}\mathbf{x}_{t} + \mathbf{W}_{hf}\mathbf{h}_{t-1})$ $\mathbf{o}_{t} = \sigma(\mathbf{W}_{wo}\mathbf{x}_{t} + \mathbf{W}_{ho}\mathbf{h}_{t-1})$ $\hat{c}_{t} = \tanh(\mathbf{W}_{wc}\mathbf{x}_{t} + \mathbf{W}_{hc}\mathbf{h}_{t-1})$ $\mathbf{c}_{t} = \mathbf{f}_{t}\odot\mathbf{c}_{t-1} + \mathbf{i}_{t}\odot\hat{c}_{t}$

 $\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$

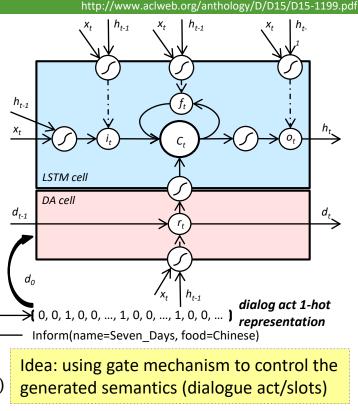
Dialogue act (DA) cell

$$\mathbf{r}_t = \sigma(\mathbf{W}_{wr}\mathbf{x}_t + \mathbf{W}_{hr}\mathbf{h}_{t-1})$$

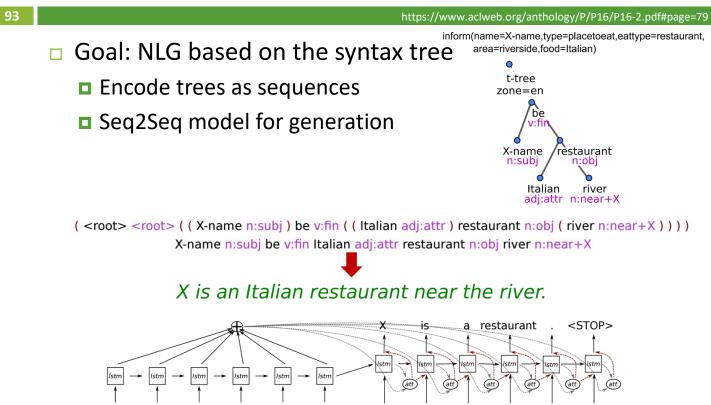
 $\mathbf{d}_t = \mathbf{r}_t \odot \mathbf{d}_{t-1}$

Modify Ct

 $\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t + \tanh(\mathbf{W}_{dc} \mathbf{d}_t)$



Structural NLG (Dušek and Jurčíček, 2016)



inform name X-name inform eattype restaurant <GO> X is a restaurant .

Structural NLG (Sharma et al., 2017; Nayak et al., 2017)

94 Nayak et al., Interspeech 2017

https://arxiv.org/pdf/1606.03632.pdf

Delexicalized slots do not consider the word level information

Generated output: There are no restaurants around which serve INFORM-FOOD food.

Delexicalized slot input: Lexicalized value input: INFORM-FOOD chinese INFORM-FOOD pizza

Slot value-informed sequence to sequence models

Mention rep.	Input sequence					
SEQ	x _i	x_{i+1}	x_{i+2}	x_{i+3}	x_{i+4}	
SEQ	decor	decent	service	good	cuisine	
	xi		x_{i+1}		x_{i+2}	
JOINT	\langle decor, decent \rangle		\langle service, good \rangle		\langle cuisine, null \rangle	
CONCAT	$x_{i,1}$	<i>x</i> _{<i>i</i>,2}	$x_{i+1,1}$	$x_{i+1,2}$	$x_{i+2,1}$	$x_{i+2,2}$
CONCAL	decor	decent	service	good	cuisine	null

Structural NLG (Nayak et al., 2017)

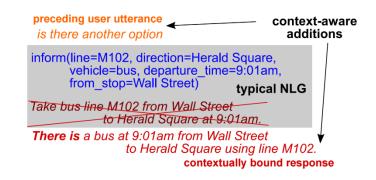
Nayak et al., Interspeech 2017

Sentence plans as part of the input sequence

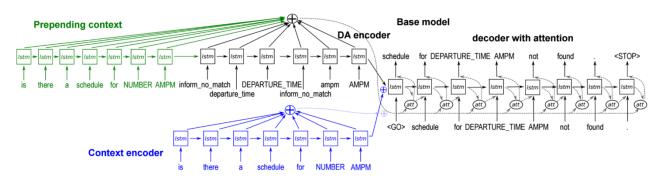
Plan sup.	Input tol	kens				
NONE	decor	decent	service	decent	quality	good
FLAT	decor	decent	service	decent		
	quality	good				
POSITIONAL		decor	decent	service	decent	
	<i></i>	quality	good			

Contextual NLG (Dušek and Jurčíček, 2016)

- Goal: adapting users' way of speaking, providing contextaware responses
 - Context encoder
 - Seq2Seq model



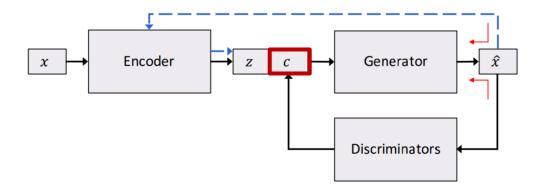
https://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=203



Controlled Text Generation (Hu et al., 2017)

https://arxiv.org/pdf/1703.00955.pdf

- Idea: NLG based on generative adversarial network (GAN) framework
 - **c**: targeted sentence attributes



NLG Evaluation

- Metrics
 - Subjective: human judgement (Stent et al., 2005)
 - Adequacy: correct meaning
 - Fluency: linguistic fluency
 - Readability: fluency in the dialogue context
 - Variation: multiple realizations for the same concept
 - Objective: automatic metrics
 - Word overlap: BLEU (Papineni et al, 2002), METEOR, ROUGE
 - Word embedding based: vector extrema, greedy matching, embedding average

There is a gap between human perception and automatic metrics

Dialogue System Evaluation

- Dialogue model evaluation
 - Crowd sourcing
 - User simulator
- Response generator evaluation
 - Word overlap metrics
 - Embedding based metrics

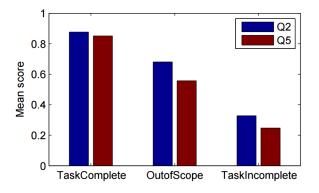
Material: http://deepdialogue.miulab.tw

Crowd Sourcing for Dialogue System Evaluation (Yang et.al. 2012)

101

http://www-scf.usc.edu/~zhaojuny/docs/SDSchapter_final.pdf

QI	Do you think you understand from the dialog
	what the user wanted?
Opt	1) No clue 2) A little bit 3) Somewhat
	4) Mostly 5) Entirely
Aim	elicit the Worker's confidence in his/her ratings.
Q2	Do you think the system is successful in providing
	the information that the user wanted?
Opt	1) Entirely unsuccessful 2) Mostly unsuccessful
	3) Half successful/unsuccessful
	4) Mostly successful 5) Entirely successful
Aim	elicit the Worker's perception of whether the dialog
	has fulfilled the informational goal of the user.
Q3	Does the system work the way you expect it?
Opt	1) Not at all 2) Barely 3) Somewhat
	4) Almost 5) Completely
Aim	elicit the Worker's impression of whether the dialog
	flow suits general expectations.
Q4	
Opt	1) Very poor 2) Poor 3) Fair 4) Good 5) Very good
Aim	elicit the Worker's overall impression of the SDS.
Q5	What category do you think the dialog belongs to?
Opt	1) Task is incomplete 2) Out of scope
	3) Task is complete
Aim	elicit the Worker's impression of whether the
	dialog reflects task completion.

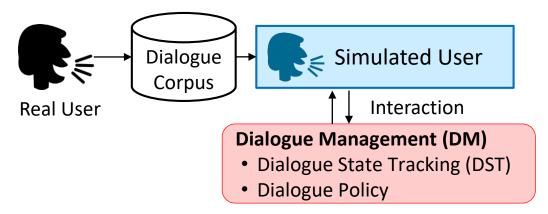


The normalized mean scores of Q2 and Q5 for approved ratings in each category. A higher score maps to a higher level of task success

User Simulation

102

- Goal: Generate natural and reasonable conversations to enable reinforcement learning for exploring the policy space
- Conventional corpora cannot be used to train RL agents.
- Simulator is replaced by crowd users to replicate real environment.



keeps a list of its goals and actions randomly generates an agenda updates its list of goals and adds new ones

User Simulation

103

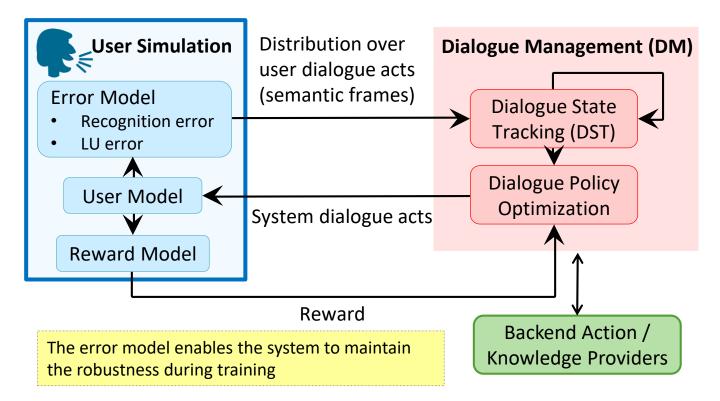
- First, generate a user goal.
- The user goal contains:
 - Dialog act
 - Inform slots
 - Request slots

start-time="4 pm"Are there any
tickets available
for 4 pm ?date="today"'Hidden Figures' is playing
at 4pm and 6 pm.City="Birmingham"What is playing in
Birmingham
theaters today ?

```
"request_slots": {
  "ticket": "UNK",
  "theater": "UNK"
},
"diaact": "request",
"inform_slots": {
  "city": "birmingham",
  "numberofpeople": "2",
  "state": "al".
  "starttime": "4 pm",
  "date": "today",
  "moviename": "deadpool"
}
```

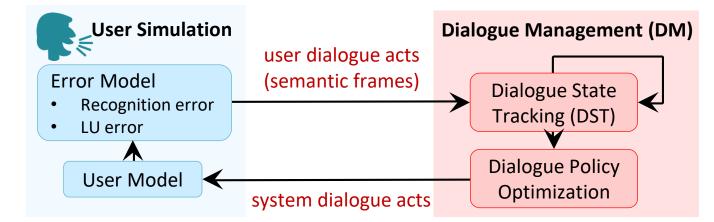
Elements of User Simulation

104



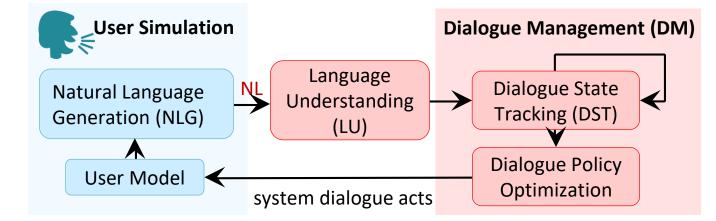
Frame-Level Interaction

DM receives frame-level information
 No error model: perfect recognizer and LU
 Error model: simulate the possible errors



Natural Language Level Interaction

- User simulator sends natural language
 - No recognition error
 - Errors from NLG or LU



Rule-Based Simulator for RL Based System (Li et.al., 2016)

http://arxiv.org/abs/1612.05688

- rule-based simulator + collected data
- starts with sets of goals, actions, KB, slot types
- publicly available simulation framework
- movie-booking domain: ticket booking and movie seeking
- provide procedures to add and test own agent

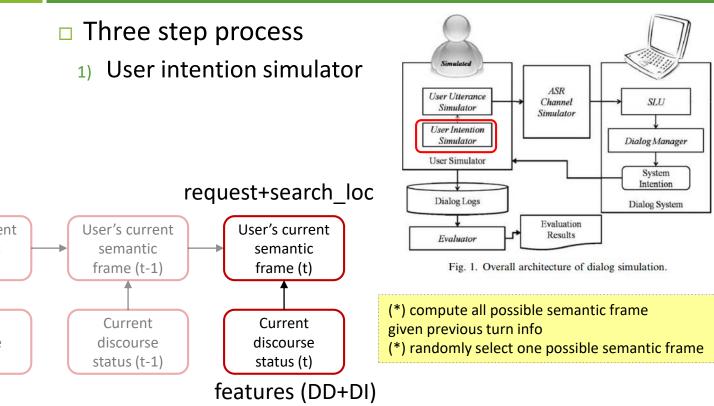
```
class AgentDQN(Agent):
       def run_policy(self, representation):
           """ epsilon-greedy policy """
           if random.random() < self.epsilon:</pre>
               return random.randint(0, self.num_actions - 1)
           else:
8
               if self.warm_start == 1:
9
                   if len(self.experience_replay_pool) > self.experience_replay_pool_size:
10
                       self.warm.start = 2
11
                   return self.rule_policy()
               else:
                   return self.dqn.predict(representation, {}, predict_model=True)
14
15
       def train(self. batch_size=1. num_batches=100):
16
           """ Train DQN with experience replay ""
           for iter_batch in range(num_batches):
18
19
               self.cur_bellman_err = 0
               for iter in range(len(self.experience_replay_pool)/(batch_size));
20
                   batch = [random.choice(self.experience_replay_pool) for i in xrange(batch_size)]
                   batch_struct = self.dqn.singleBatch(batch, {'gamma': self.gamma}, self.clone_dqn)
```

Model-Based User Simulators

- □ Bi-gram models (Levin et.al. 2000)
- Graph-based models (Scheffler and Young, 2000)
- Data Driven Simulator (Jung et.al., 2009)
- Neural Models (deep encoder-decoder)

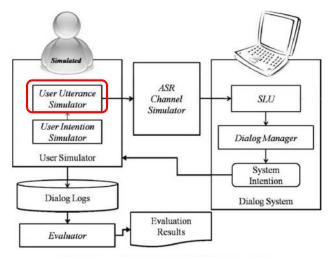
Data-Driven Simulator for Automated Evaluation (Jung et.al., 2009)

109



Data-Driven Simulator for Automated Evaluation (Jung et.al., 2009)

- □ Three step process
 - 1) User intention simulator
 - 2) User utterance simulator



request+search_loc I want to go to the city hall PRP VB TO VB TO [loc_name]

Fig. 1. Overall architecture of dialog simulation.

Given a list of POS tags associated with the semantic frame, using LM+Rules they generate the user utterance.

Data-Driven Simulator for Automated Evaluation (Jung et.al., 2009)

- □ Three step process:
 - 1) User intention simulator
 - 2) User utterance simulator
 - 3) ASR channel simulator
- Evaluate the generated sentences using BLUElike measures against the reference utterances collected from humans (with the same goal)

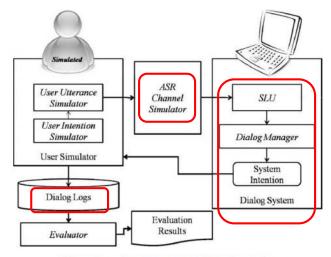
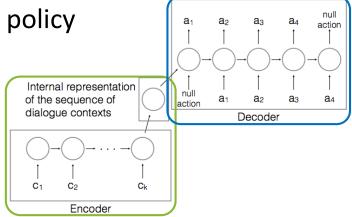


Fig. 1. Overall architecture of dialog simulation.

Seq2Seq User Simulation (El Asri et al., 2016)

https://arxiv.org/abs/1607.00070

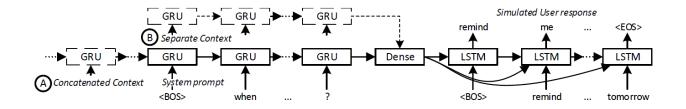
- Seq2Seq trained from dialogue data
 - Input: c_i encodes contextual features, such as the previous system action, consistency between user goal and machine provided values
 - Output: a dialogue act sequence form the user
- Extrinsic evaluation for policy



Seq2Seq User Simulation (Crook and Marin, 2017)

Seq2Seq trained from dialogue data

- No labeled data
- Trained on just human to machine conversations



User Simulator for Dialogue Evaluation Measures

Understanding Ability

- whether **constrained values** specified by users can be understood by the system
- agreement percentage of system/user understandings over the entire dialog (averaging all turns)

Efficiency

- Number of dialogue turns
- Dissimilarity between the dialogue turns (larger is better)

Action Appropriateness

- an explicit **confirmation** for an uncertain user utterance is an appropriate system action
- providing information based on misunderstood user requirements

How NOT to Evaluate Dialogue System (Liu et.al., 2017)

- How to evaluate the quality of the generated response ?
 - Specifically investigated for chat-bots
 - Crucial for task-oriented tasks as well
- Metrics:
 - Word overlap metrics, e.g., BLEU, METEOR, ROUGE, etc.
 - Embeddings based metrics, e.g., contextual/meaning representation between target and candidate

https://arxiv.org/pdf/1603.08023.pdf

Dialogue Response Evaluation (Lowe et al., 2017)

- Problems of existing automatic evaluation
 - can be biased
 - correlate poorly with human judgements of response quality
 - using word overlap may be misleading
- Solution
 - collect a dataset of accurate human scores for variety of dialogue responses (e.g., coherent/uncoherent, relevant/irrelevant, etc.)
 - use this dataset to train an automatic dialogue evaluation model – learn to compare the reference to candidate responses!
 - Use RNN to predict scores by comparing against human scores!

Towards an Automatic Turing Test

Context of Conversation

Speaker A: *Hey, what do you want to do tonight?*

Speaker B: *Why don't we go see a movie?*

Model Response

Nah, let's do something active.

Reference Response

Yeah, the film about Turing looks great!

¹¹⁷ Recent Trends and Challenges

End-to-End Learning for Dialogues Dialogue Breadth Dialogue Depth

Outline

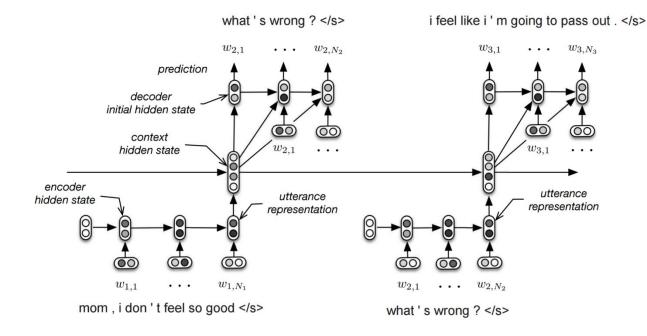
- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

ChitChat Hierarchical Seq2Seq

(Serban et.al., 2016)

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957

A hierarchical seq2seq model for generating dialogues



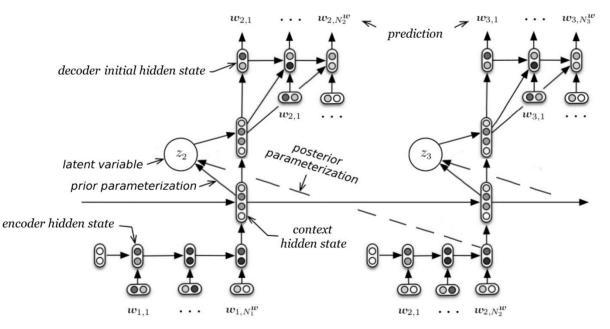
ChitChat Hierarchical Seq2Seq

(Serban et.al., 2017)

120

https://arxiv.org/abs/1605.06069

 A hierarchical seq2seq model with Gaussian latent variable for generating dialogues



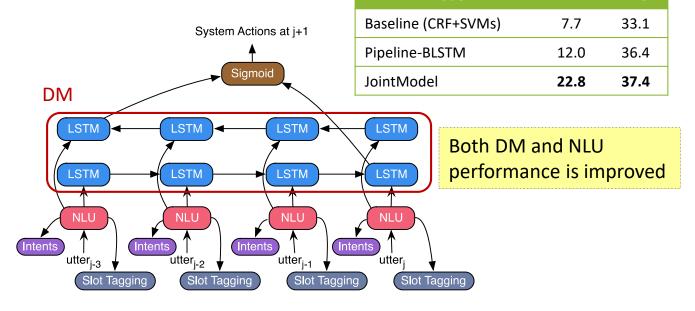
E2E Joint NLU and DM (Yang et al., 2017)

121

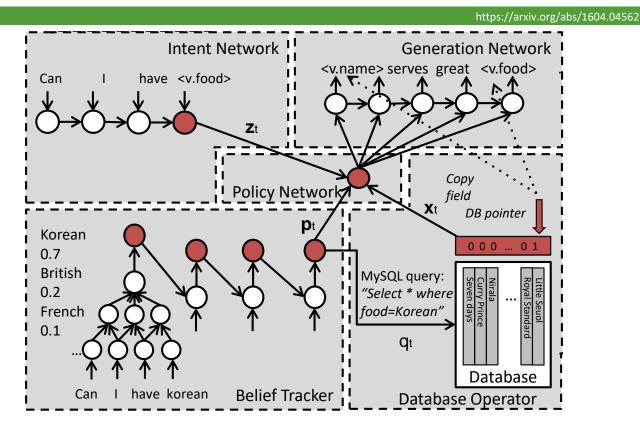
https://arxiv.org/abs/1612.00913

NLU

Idea: errors from DM can be propagated to NLU for better robustness Model DM

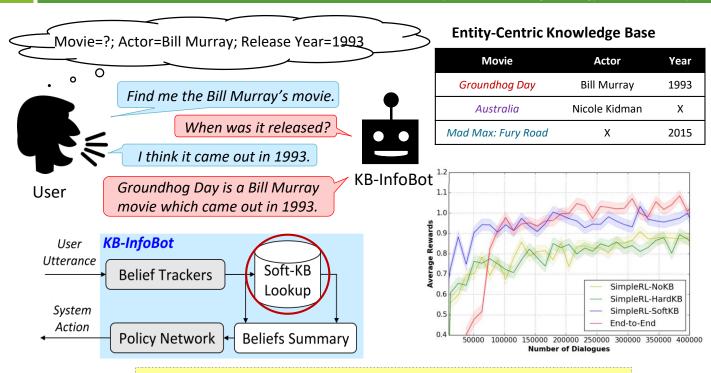


E2E Supervised Dialogue System (Wen et al., 2016)



E2E RL-Based Info-Bot (Dhingra et al., 2016)

http://www.aclweb.org/anthology/P/P17/P17-1045.pdf

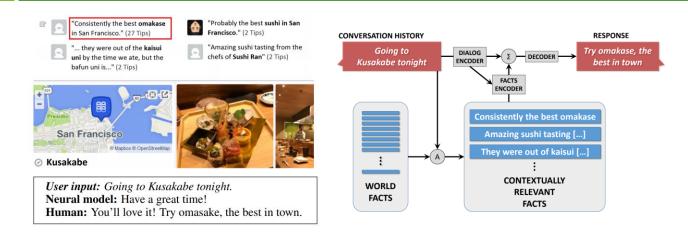


Idea: differentiable database for propagating the gradients

Knowledge Grounded Neural Conv. Model

(Ghazvininejad et al., 2017)

124



- A: Looking forward to trying @pizzalibretto tonight! my expectations are high.
- B: Get the rocco salad. Can you eat calamari?

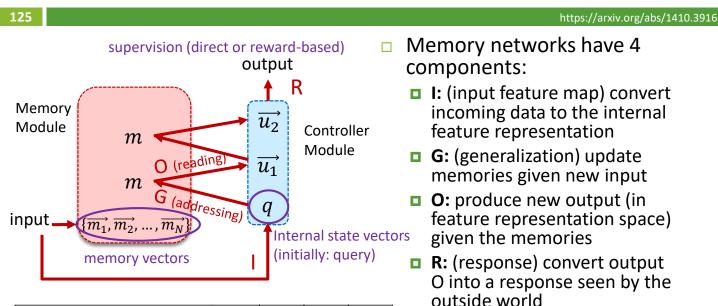
A: Anyone in *Chi* have a *dentist office* they recommend? I'm never going back to [...] and would love a reco! B: Really looved *Ora* in *Wicker Park.*

- A: I'm at California Academy of Sciences
- B: Make sure you catch the show at the Planetarium. Tickets are usually limited.

A: I'm at New Wave Cafe.

- B: Try to get to Dmitri's for dinner. Their pan fried scallops and shrimp scampi are to die for.
- A: I just bought: [...] 4.3-inch portable GPS navigator for my wife, shh, don't tell her.
- B: I heard this brand loses battery power.

Memory Networks (Weston et al., 2014)



Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	ye s	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	ye s	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	ye s	0.76	0.02	0.00
What color is Greg? Answer: yellow	Prediction: yellow			

Memory module stores the history to make the model find the supporting facts

E2E MemNN for Dialogues (Bordes et al., 2016)

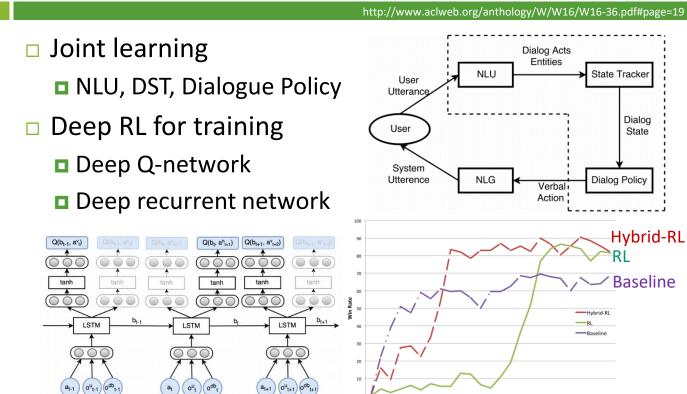
https://arxiv.org/abs/1605.07683

- Split dialogue system actions into subtasks
 - API issuing
 - API updating
 - Option displaying

Information informing

Task	Memory Networks		
	no match type	+ match type	
T1: Issuing API calls	99.9 (99.6)	100 (100)	
T2: Updating API calls	100 (100)	98.3 (83.9)	
T3: Displaying options	74.9 (2.0)	74.9 (0)	
T4: Providing information	59.5 (3.0)	100 (100)	
T5: Full dialogs	96.1 (49.4)	93.4 (19.7)	
T1(OOV): Issuing API calls	72.3 (0)	96.5 (82.7)	
T2(OOV): Updating API calls	78.9 (0)	94.5 (48.4)	
T3(OOV): Displaying options	74.4 (0)	75.2 (0)	
T4(OOV): Providing inform.	57.6 (0)	100 (100)	
T5(OOV): Full dialogs	65.5 (0)	77.7 (0)	
T6: Dialog state tracking 2	41.1 (0)	41.0 (0)	

E2E RL-Based System (Zhao and Eskenazi, 2016)



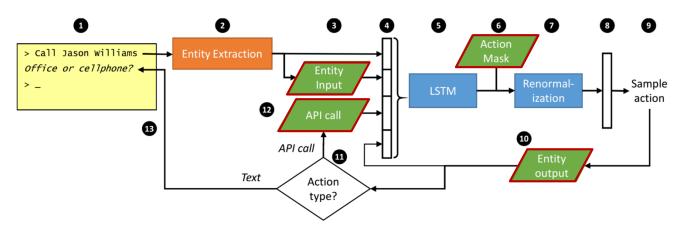
Step

E2E LSTM-Based Dialogue Control

(Williams and Zweig, 2016)

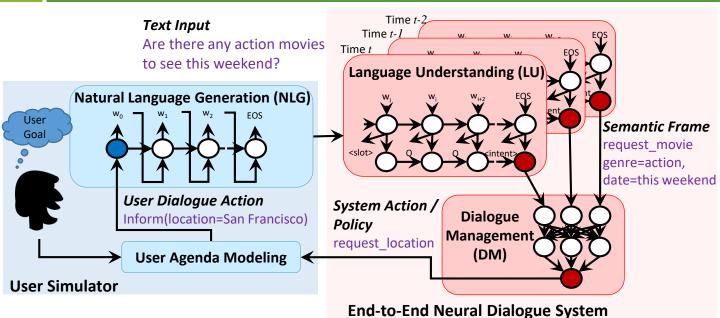
https://arxiv.org/abs/1606.01269

- Idea: an LSTM maps from <u>raw dialogue history</u> directly to a distribution over <u>system actions</u>
 - Developers can provide software including business rules & programmatic APIs
 - \rightarrow LSTM can take actions in the real world on behalf of the user
 - The LSTM can be optimized using SL or RL



E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

https://arxiv.org/abs/170<u>3.01008</u>



Idea: supervised learning for each component and reinforcement learning for end-to-end training the neural dialogue system

E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

https://arxiv.org/abs/1703.01008

User goal: Two tickets for "the witch" tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM

User: Can I get 2 tickets for the witch? Agent: Which theater do you want? User: Regal meridian 16 Agent: What time would you like to see it? User: 9:30 pm Agent: What date would you like to see it? User: Tomorrow! Agent: How many people are you? User: Just two adults. Agent: What is your location? User: Seattle! Agent: What kind of video format do you like? User: Oh, any kind is okay. Agent: Do you have any price constraint? User: No, I don't care. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thank you. Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM

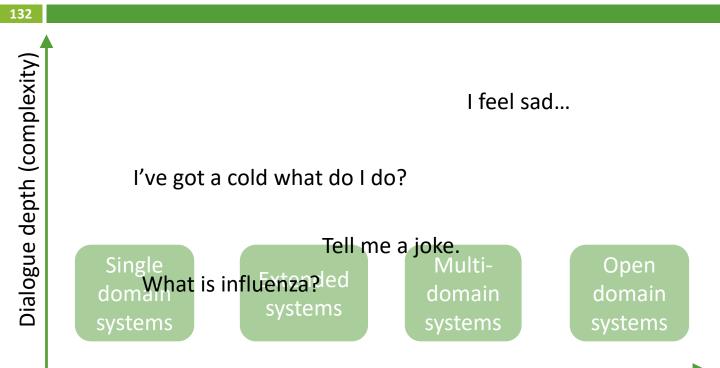
User: Can I get 2 tickets for the witch? Agent: What date would you like to see it? User: Tomorrow Agent: Which theater do you prefer? User: Regal meridian 16 Agent: What is your location? User: Seattle Agent: What time would you like to see it? User: 9:30 pm. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thanks. Agent: Thanks! 8.0 Rate RL Agent

The system can learn how to efficiently interact with users for task completion

Outline

- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

Evolution Roadmap

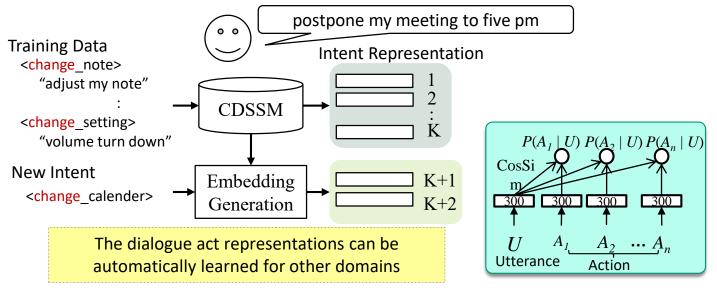


Dialogue breadth (coverage)

Intent Expansion (Chen et al., 2016)

http://ieeexplore.ieee.org/abstract/document/7472838/

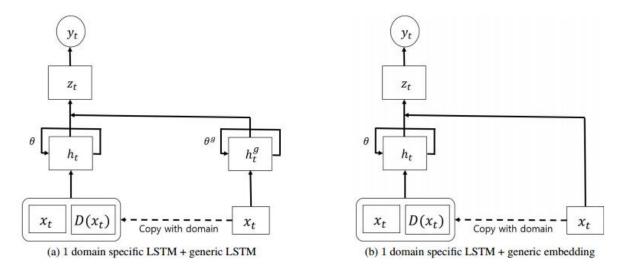
- Transfer dialogue acts across domains
 - Dialogue acts are similar for multiple domains
 - Learning new intents by information from other domains



Domain Adaptation for SLU (Kim et al., 2016)

http://www.aclweb.org/anthology/C/C16/C16-1038.pdf

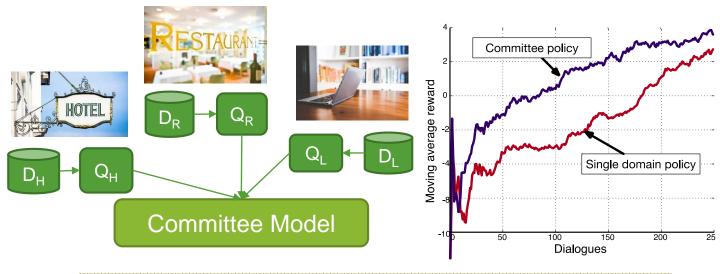
- Frustratingly easy domain adaptation
- Novel neural approaches to domain adaptation
- Improve slot tagging on several domains



Policy for Domain Adaptation (Gašić et al., 2015)

http://ieeexplore.ieee.org/abstract/document/7404871/

Bayesian committee machine (BCM) enables estimated
 Q-function to share knowledge across domains

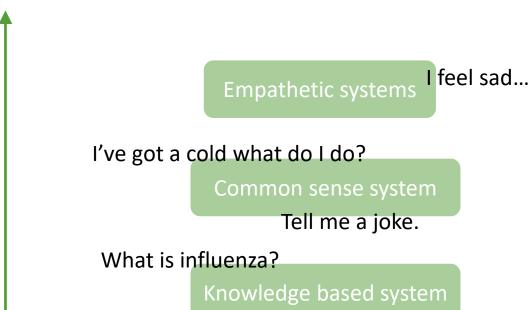


The policy from a new domain can be boosted by the committee policy

Outline

- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Modular Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue Management (DM)
 - Dialogue State Tracking (DST)
 - Dialogue Policy Optimization
 - Natural Language Generation (NLG)
- System Evaluation
- Recent Trends on Learning Dialogues
 - End-to-End Neural Dialogue Systems
 - Dialogue Breadth
 - Dialogue Depth

Evolution Roadmap



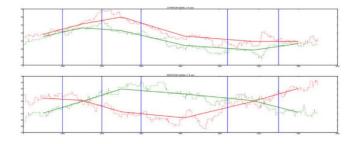
Dialogue breadth (coverage)

137

Brain Signal for Understanding

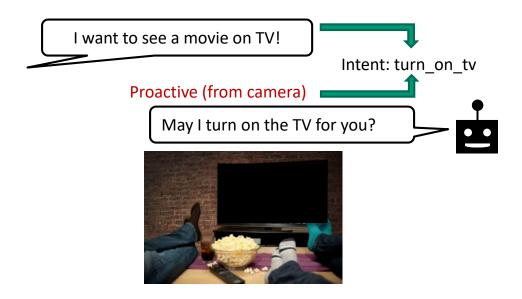
http://dl.acm.org/citation.cfm?id=2388695

- Misunderstanding detection by brain signal
 - Green: listen to the correct answer
 - Red: listen to the wrong answer



Detecting misunderstanding via brain signal in order to correct the understanding results

Video for Intent Understanding



Proactively understanding user intent to initiate the dialogues.

App Behavior for Understanding

http://dl.acm.org/citation.cfm?id=2820781

- Task: user intent prediction
- Challenge: language ambiguity

Email?

Message?

① User preference

- Some people prefer "Message" to "Email"
- Some people prefer "Ping" to "Text"

2 App-level contexts

- "Message" is more likely to follow "Camera"
- "Email" is more likely to follow "Excel"

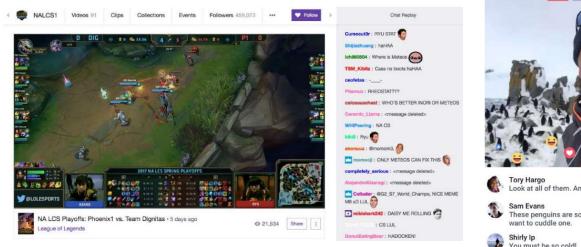
Considering behavioral patterns in history to model understanding for intent prediction.

Video Highlight Prediction Using Audience Chat Reactions

141	Fu et.al.,	EMNLP	201
-----	------------	-------	-----

https://arxiv.org/pdf/1707.08559.pdf

LIVE ● 13



 Sam Evans
 Image: Sam Evans

 These penguins are so cute! I just want to cuddle one.
 Image: Shirly lp

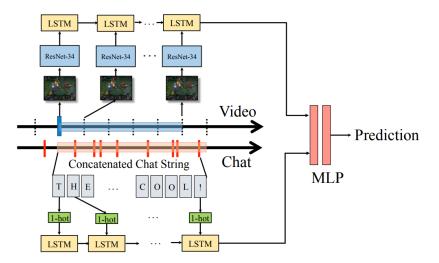
 You must be so cold!
 Image: Shirly lp

Video Highlight Prediction Using Audience Chat Reactions

142 Fu et.al., EMNLP 2017

https://arxiv.org/pdf/1707.08559.pdf

- Goal: predict highlight from the video
- Input : multi-modal and multi-lingual (real time text commentary from fans)
- Output: tag if a frame part of a highlight or not



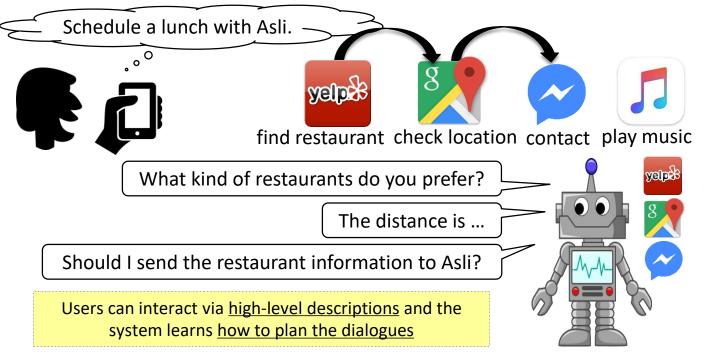
High-Level Intention for Dialogue Planning

(Sun et al., 2016; Sun et al., 2016)

143

http://dl.acm.org/citation.cfm?id=2856818; http://www.lrec-conf.org/proceedings/lrec2016/pdf/75_Paper.pdf

High-level intention may span several domains



(index):1728

(index):1729

Empathy in Dialogue System (Fung et al., 2016)

144 https://arxiv.org/abs/1605.04072 Zara - The Empathetic Supergirl Embed an empathy module Recognize emotion using multimodality Generate emotion-aware responses USER: Awful. The hotel was EMOS: Sorry to hear that. Hope EMOS: How was your bad and it was raining all your next vacation is more last vacation? the time. excitina! awful ASR text the hotel was bad Long Short Term Memory Нарру Time domain raw audio Sneech USFR 1643.816.9.-246.-383. OUFRY speech Feature map and Facial Expressions image convolution "recognition": "Race: Asian Confidence: 65.4275000000001 Smiling: 3.95896 Gender: Female Confidence: 88.9369", vision "race": "Asian", "race confidence": "65.4275000000001", "smiling": "3.95896", "gender": "Female". **Emotion Recognizer** "gender confidence": "88.9369"

Visual Object Discovery through Dialogues (Vries et al., 2017)

https://arxiv.org/pdf/1611.08481.pdf

 Recognize objects using "Guess What?" game
 Includes "spatial", "visual", "object taxonomy" and "interaction"

Is it a person?	No
Is it an item being worn or held?	Yes
Is it a snowboard?	Yes
Is it the red one?	No
Is it the one being held by the person in blue?	Yes

Is it a cow?	Yes
Is it the big cow in the middle?	No
Is the cow on the left?	No
On the right ?	Yes
First cow near us?	Yes

Challenge Summary

147

Human-machine interfaces is a hot topic but several components must be integrated!

- Most state-of-the-art technologies are based on DNN
- •Requires huge amounts of labeled data
- •Several frameworks/models are available

Fast domain adaptation with scarse data + re-use of rules/knowledge

Handling reasoning

Data collection and analysis from un-structured data

Complex-cascade systems requires high accuracy for working good as a whole

Brief Conclusions

- Introduce recent deep learning methods used in dialogue models
- Highlight main components of dialogue systems and new deep learning architectures used for these components
- Talk about challenges and new avenues for current state-of-the-art research
- Provide all materials online!

http://deepdialogue.miulab.tw

Thanks to Tsung-Hsien Wen, Pei-Hao Su, Li Deng, Jianfeng Gao, Sungjin Lee, Milica Gašić, Lihong Li, Xiujin Li, Abhinav Rastogi, Ankur Bapna, Pararth Shah, Shyam Udaphyay and Gokhan Tur for sharing their slides.

THANKS FOR YOUR ATTENTION!

deepdialogue.miulab.tw

