

Deep Learning for Dialogue Systems

deepdialogue.miulab.tw

² Part I

Introduction & Background

Brief History of Dialogue Systems



Language Empowering Intelligent Assistant

Apple Siri (2011)

Google Now (2012) Google Assistant (2016)

Microsoft Cortana (2014)

Amazon Alexa/Echo (2014)

Facebook M & Bot (2015)

Google Home (2016)

Challenges

- Variability in natural language
- Robustness
- Recall/Precision Trade-off
- Meaning Representation
- Common Sense, World Knowledge
- Ability to learn
- Transparency

Dialogue Systems

Task-Oriented

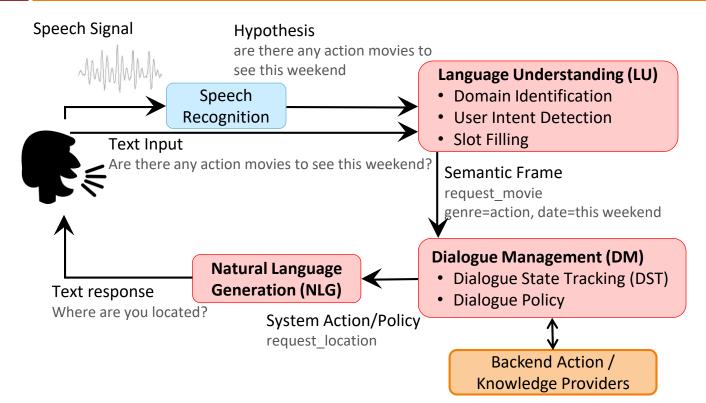
- Personal assistant, helps users achieve a certain task
- Combination of <u>rules</u> and <u>statistical</u> components
- Examples:
 - POMDP for spoken dialog systems (Williams and Young, 2007)
 - End-to-end trainable taskoriented dialogue system (Wen et al., 2016)
 - End-to-end reinforcement learning dialogue system (Zhao and Eskenazi, 2016)

Chit-Chat

- No specific goal, focus on natural responses
- Using variants of seq2seq model
- Examples:
 - A neural conversation model (Vinyals and Le, 2015)
 - Reinforcement learning for dialogue generation (Li et al., 2016)
 - Conversational contextual cues for response ranking (AI-Rfou et al., 2016)

Task-Oriented Dialogue System (Young, 2000)

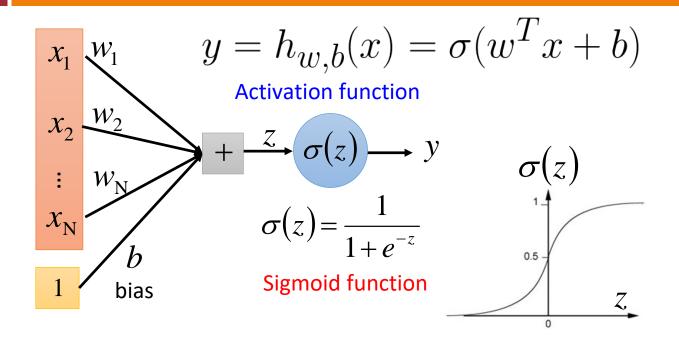
http://rsta.royalsocietypublishing.org/content/358/1769/1389.short



Outline

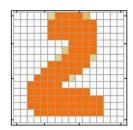
- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

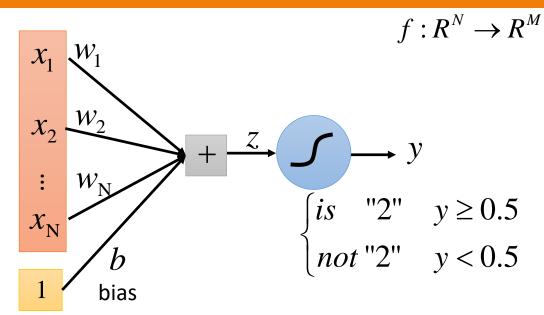
A Single Neuron



w, b are the parameters of this neuron

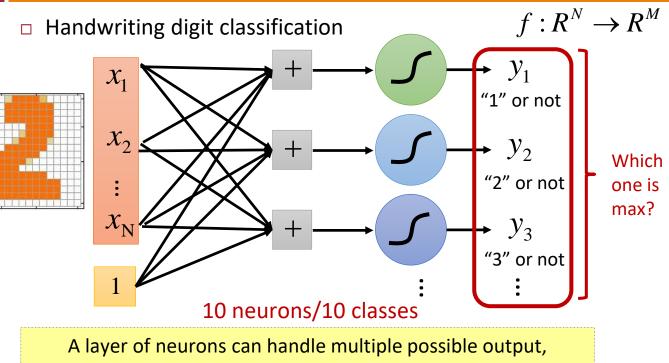
A Single Neuron





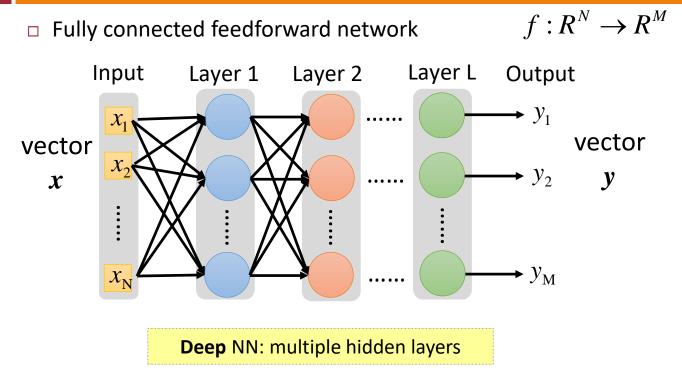
A single neuron can only handle binary classification

A Layer of Neurons



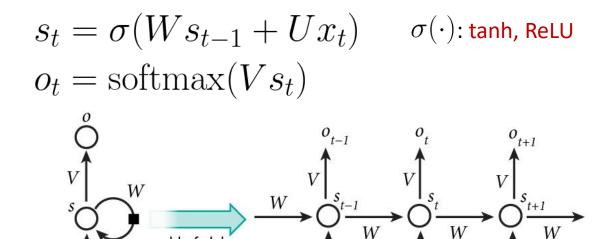
and the result depends on the max one

Deep Neural Networks (DNN)



12_

Recurrent Neural Network (RNN)



RNN can learn accumulated sequential information (time-series)

U

 x_{t-1}

time

 x_{t+1}

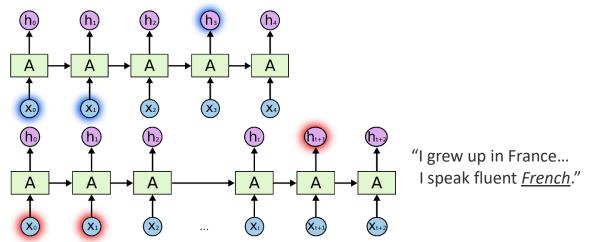
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Unfold

Vanishing Gradient: Gating Mechanism

14

RNN: keeps temporal sequence information



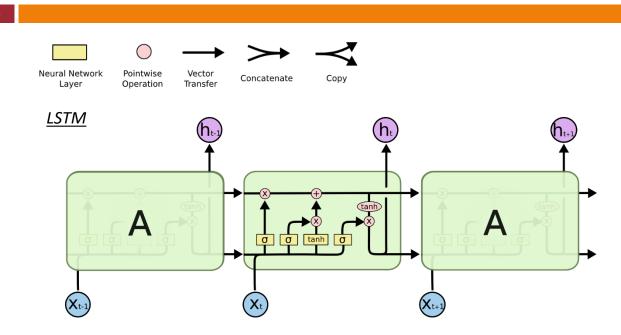
Issue: in theory, RNNs can handle "long-term" info , but cannot in practice

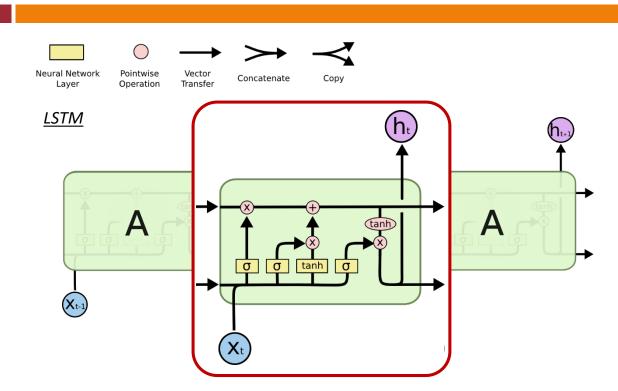
 \rightarrow use gates to directly encode the long-distance information

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

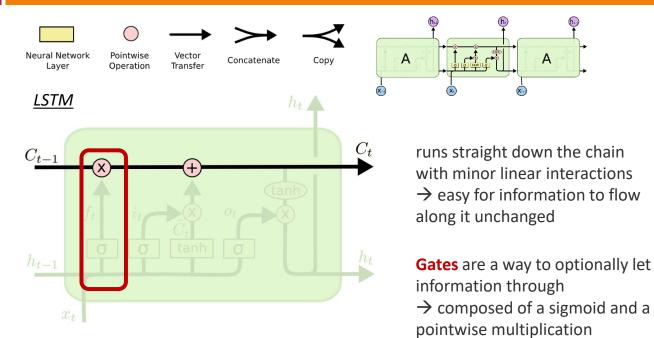
 LSTMs are explicitly designed to avoid the long-term dependency problem

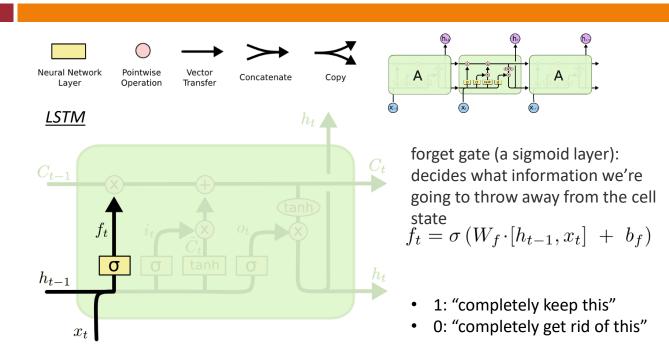


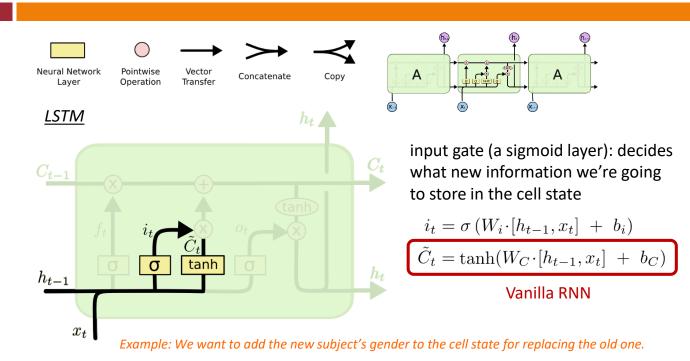




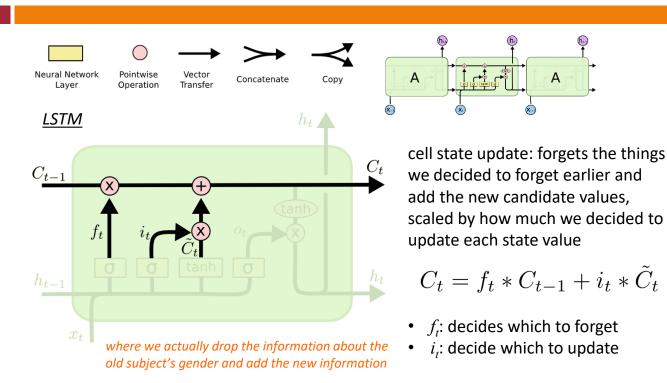
18

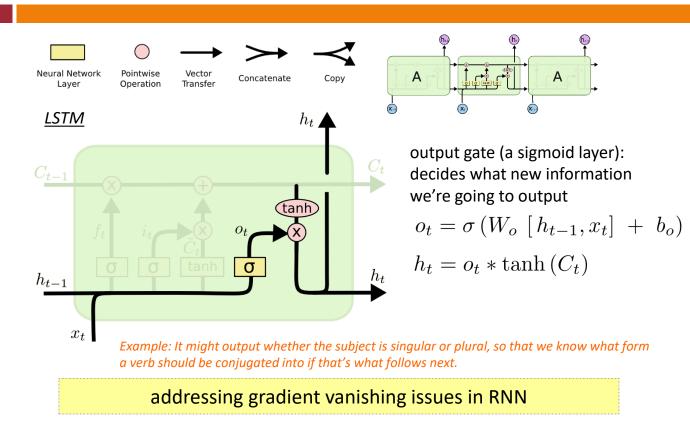






21

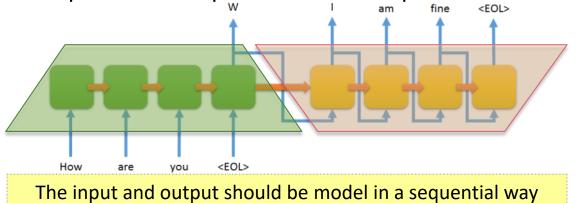




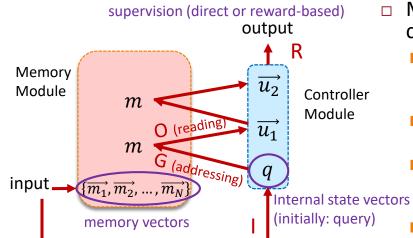
Seq2Seq Model (Sutskever et al., 2014)

http://papers.nips.cc/paper/5346-information-based-learning-by-agents-in-unbounded-state-spaces.pdf

- Encode source into a fixed length vector, use it as initial recurrent state for target decoder model
- Cascade two RNNs, "encoder-decoder model"
 - Input: word sequences in the question
 - Output: word sequences in the response



Memory Networks (Weston et al., 2014)



Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3	
Brian is a frog.	yes	0.00	0.98	0.00	
Lily is gray.		0.07	0.00	0.00	
Brian is yellow.	ye s	0.07	0.00	1.00	
Julius is green.		0.06	0.00	0.00	
Greg is a frog.	ye s	0.76	0.02	0.00	
What color is Greg? Answer: yello	w Predict	Prediction: yellow			

https://arxiv.org/abs/1410.3916

- Memory networks have 4 components:
 - I: (input feature map) convert incoming data to the internal feature representation
 - G: (generalization) update memories given new input
 - O: produce new output (in feature representation space) given the memories
 - R: (response) convert output
 O into a response seen by the outside world

Memory module stores the history to make the model find the supporting facts

Outline

- Introduction & Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

Reinforcement Learning

- RL is a general purpose framework for decision making
 - **RL** is for an *agent* with the capacity to *act*
 - Each action influences the agent's future state
 - Success is measured by a scalar *reward* signal
 - Goal: select actions to maximize future reward

Reinforcing Learning

- Markov decision process (MDP)
 - □ S: State set
 - A: Action set
 - $\square R: S \rightarrow \mathbb{R} \text{ (Reward)}$
 - □ P_{sa} : transition probabilities ($p(s,a,s') \in R$)
 - **γ**: discount factor
- $\square \mathsf{MDP} = (S, A, R, P_{sa}, \gamma)$
 - AlphaGo improves by self-playing
 - Car autonomously learns driving up!

Reinforcing Learning

- \Box Start from state s_0
- \Box Choose action a_0
- $\Box \text{ Transit to } s_1 \sim P(s_0, a_0)$

□ Continue...

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} \dots$$

 \Box Total reward: $R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$

Goal: select actions that maximize the expected total reward $\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots]$

Reinforcement Learning Approach

- Policy-based RL
 - Search directly for optimal policy π^*

 π^* is the policy achieving maximum future reward

- Value-based RL
 - lacksquare Estimate the optimal value function $Q^*(s,a)$

 $Q^st(s,a)$ is maximum value achievable under any policy

- Model-based RL
 - Build a model of the environment
 - Plan (e.g. by lookahead) using model

Q-Networks (Sutton et al., 1998)

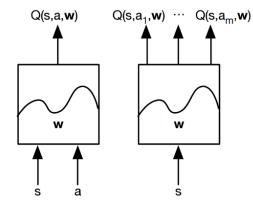
http://ieeexplore.ieee.org/abstract/document/126844/

 \square Q-networks represent value functions with weights w

$$Q(s,a,w) \approx Q^*(s,a)$$

generalize from seen states to unseen states (#states is large)

 $\hfill\square$ update parameter w for function approximation



Q-Learning

Goal: estimate optimal Q-values

Optimal Q-values obey a Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'} r + \gamma \max_{a'} Q^*(s',a') | s,a]$$

learning target

Value iteration algorithms solve the Bellman equation

$$Q_{\underline{i}}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_{\underline{i}}(s',a') \mid s,a]$$

Deep Q-Networks (DQN) (Minh et al., 2013)

https://arxiv.org/abs/1312.5602

- $\hfill\square$ Represent value function by deep Q-network with weights w $Q(s,a,{\color{black}w})\approx Q^*(s,a)$
- Objective is to minimize MSE loss by SGD

$$L(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^2\right]$$

Leading to the following Q-learning gradient

$$\frac{\partial L(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

Issue: naïve Q-learning oscillates or diverges using NN due to: 1) correlations between samples 2) non-stationary targets

Stability by DQN

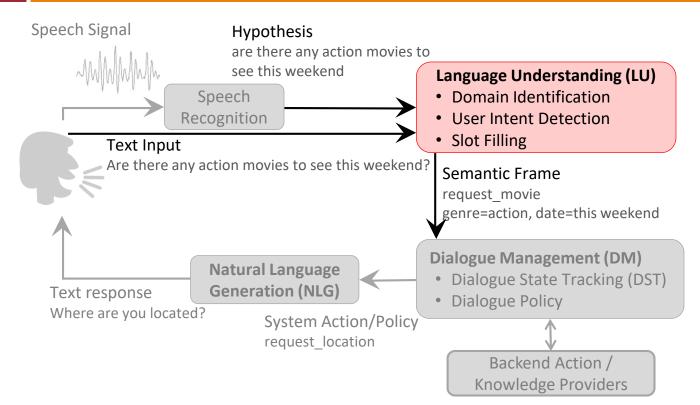
- □ Naive Q-learning oscillates or diverges with neural nets
 - Sequential data: correlated, non-independent and identically distributed → use experience replay
 - Policy oscillation: changes rapidly with slight changes to Q-values → freeze target Q-network
 - 3) Unknown scale of rewards and Q-values → clip rewards or normalize network adaptively to sensible range, double Q-learning

Deep Learning Based Dialogue System

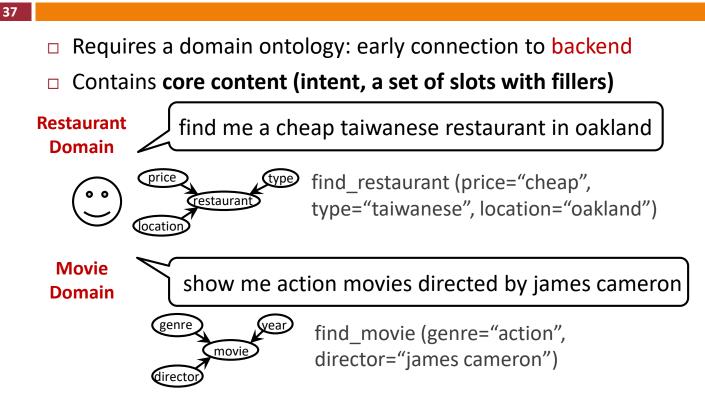
Outline

- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

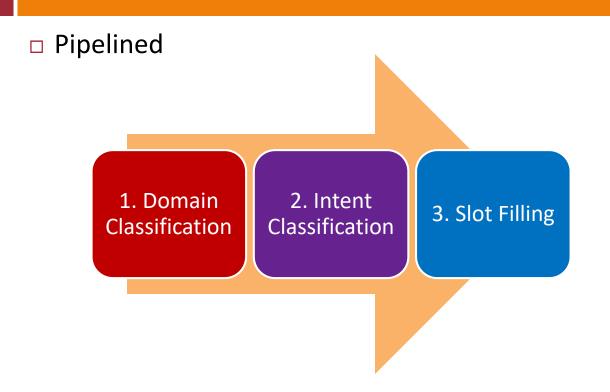
Task-Oriented Dialogue System (Young, 2000)



Semantic Frame Representation



Language Understanding (LU)



LU – Domain/Intent Classification

As an utterance classification task

39

 Given a collection of utterances u_i with labels c_i, D = {(u₁,c₁),...,(u_n,c_n)} where c_i ∈ C, train a model to estimate labels for new utterances u_k.

find me a cheap taiwanese restaurant in oakland

Movies Restaurants Music Sports find_movie, buy_tickets
find_restaurant, find_price, book_table
find_lyrics, find_singer

Domain

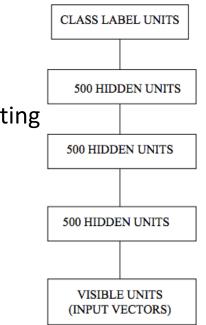
...

Intent

Deep Neural Networks for Domain/Intent Classification – I (Sarikaya et al, 2011)

http://ieeexplore.ieee.org/abstract/document/5947649/

- Deep belief nets (DBN)
 - Unsupervised training of weights
 - Fine-tuning by back-propagation
 - Compared to MaxEnt, SVM, and boosting

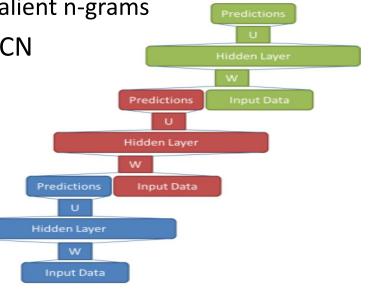


Deep Neural Networks for Domain/Intent Classification – II (Tur et al., 2012; Deng et al., 2012)

41

http://ieeexplore.ieee.org/abstract/document/6289054/; http://ieeexplore.ieee.org/abstract/document/6424224/

- Deep convex networks (DCN)
 - Simple classifiers are stacked to learn complex functions
 - Feature selection of salient n-grams
- Extension to kernel-DCN



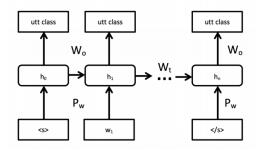
Deep Neural Networks for Domain/Intent Classification – III (Ravuri and Stolcke, 2015)

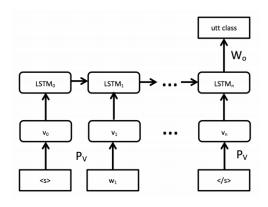
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/RNNLM_addressee.pdf

 RNN and LSTMs for utterance classification

42

- Word hashing to deal with large number of singletons
 - Kat: #Ka, Kat, at#
 - Each character n-gram is associated with a bit in the input encoding





LU – Slot Filling

As a sequence	• Given a collection tagged word sequences,
tagging task	$S = \{((w_{1,1}, w_{1,2},, w_{1,n1}), (t_{1,1}, t_{1,2},, t_{1,n1})), ((w_{2,1}, w_{2,2},, w_{2,n2}), (t_{2,1}, t_{2,2},, t_{2,n2})) \}$ where $t_i \in M$, the goal is to estimate tags for a new word sequence.

flights from Boston to New York today

	flights	from	Boston	to	New	York	today
Entity Tag	0	0	B-city	0	B-city	I-city	0
Slot Tag	0	0	B-dept	0	B -arrival	I-arrival	B-date

Recurrent Neural Nets for Slot Tagging – I

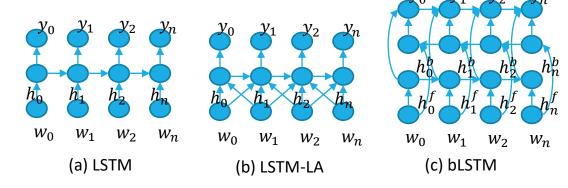
(Yao et al, 2013; Mesnil et al, 2015)

http://131.107.65.14/en-us/um/people/gzweig/Pubs/Interspeech2013RNNLU.pdf; http://dl.acm.org/citation.cfm?id=2876380

- Baseline: conditional random fields on ATIS corpus
- Variations:

44

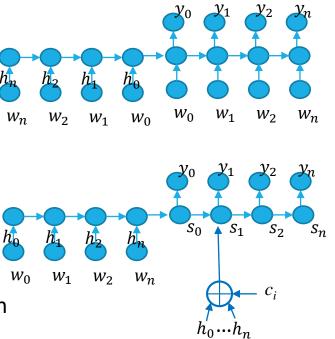
- a. RNNs with LSTM cells
- b. Input, sliding window of n-grams
- c. Bi-directional LSTMs



Recurrent Neural Nets for Slot Tagging – II

(Kurata et al., 2016; Simonnet et al., 2015)

- Encoder-decoder networks
 - Leverages sentence level information
- Attention-based encoderdecoder
 - Use of attention (as in MT) in the encoder-decoder network
 - Attention is estimated using w₀
 a feed-forward network with input: h_t and s_t at time t



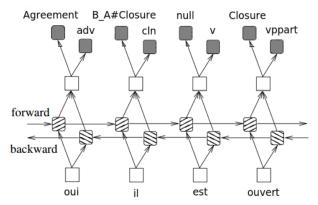
http://www.aclweb.org/anthology/D16-1223

Recurrent Neural Nets for Slot Tagging – III

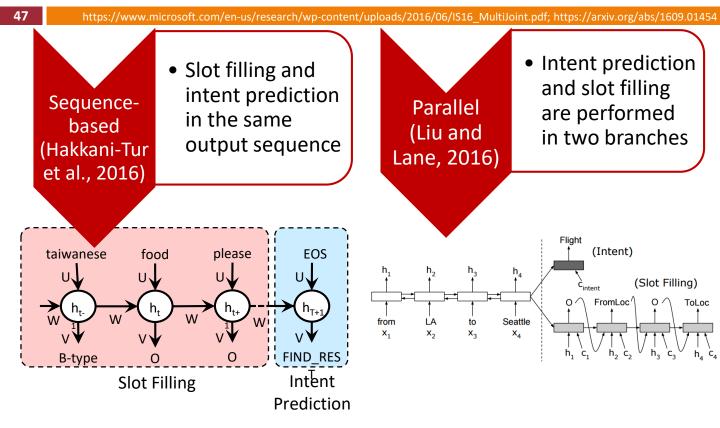
(Jaech et al., 2016; Tafforeau et al., 2016)

https://arxiv.org/abs/1604.00117; http://www.sensei-conversation.eu/wp-content/uploads/2016/11/favre_is2016b.pdf

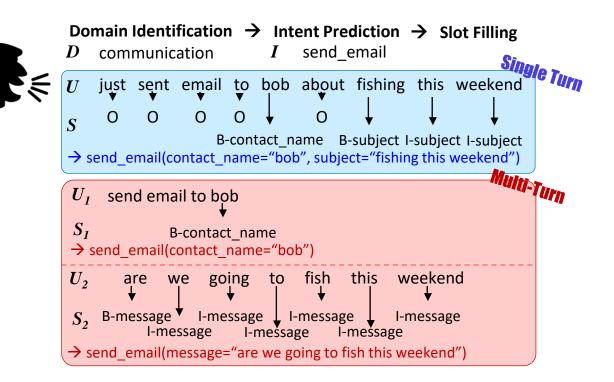
- Multi-task learning
 - Goal: exploit data from domains/tasks with a lot of data to improve ones with less data
 - Lower layers are shared across domains/tasks
 - Output layer is specific to task



Joint Semantic Frame Parsing



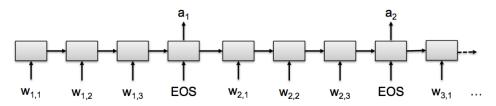
Contextual LU



Contextual LU (Bhargava et al., 2013; Hori et al, 2015)

https://www.merl.com/publications/docs/TR2015-134.pdf

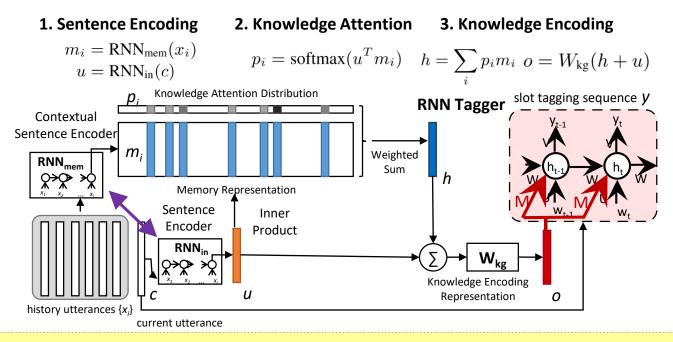
- Leveraging contexts
 - Used for individual tasks
- Seq2Seq model
 - Words are input one at a time, tags are output at the end of each utterance



Extension: LSTM with speaker role dependent layers

E2E MemNN for Contextual LU (Chen et al., 2016)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/IS16_ContextualSLU.pdf

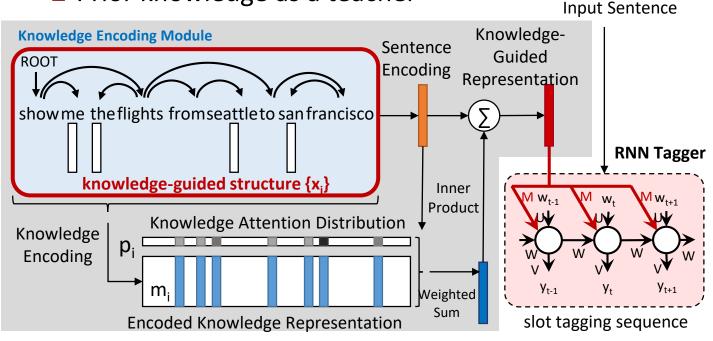


Idea: additionally incorporating contextual knowledge during slot tagging → track dialogue states in a latent way

Structural LU (Chen et al., 2016)

http://arxiv.org/abs/1609.03286

Prior knowledge as a teacher



Structural LU (Chen et al., 2016)

sar

52

http://arxiv.org/abs/1609.03286 Sentence structural knowledge stored as memory Sentence *s* show me the flights from seattle to san francisco Semantics (AMR Graph) Syntax (Dependency Tree) ROOT show show 1. flights me fligh 2. from to the Seattle 3. francisco seattle

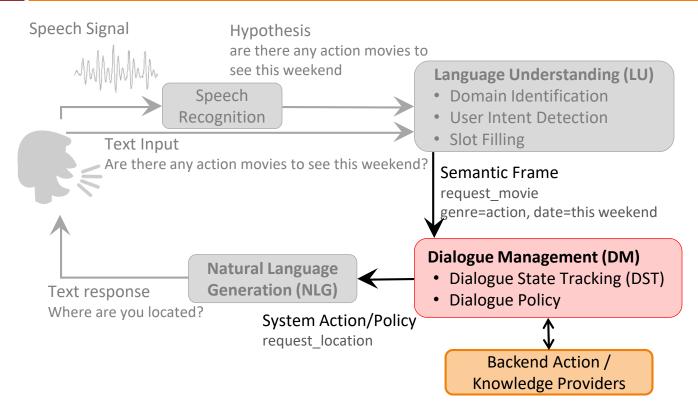
LU Evaluation

- Metrics
 - Sub-sentence-level: intent accuracy, slot F1
 - Sentence-level: whole frame accuracy

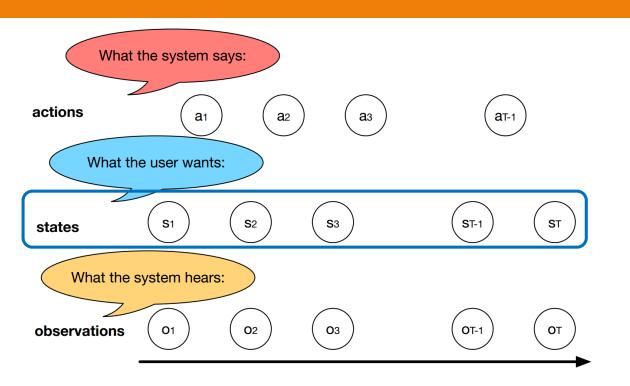
Outline

- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

Task-Oriented Dialogue System (Young, 2000)



Elements of Dialogue Management



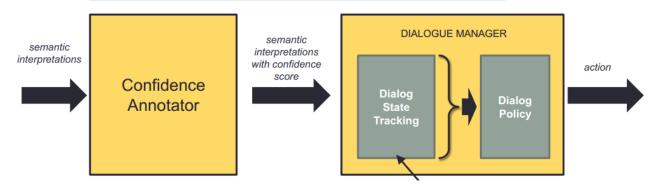
dialogue turns

(Figure from Gašić)

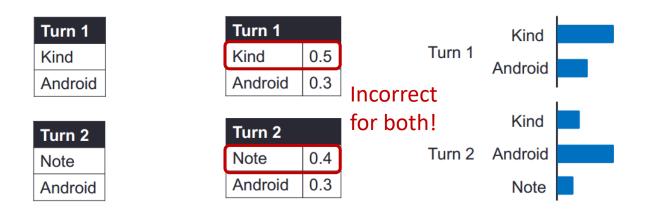
- Dialogue state: a representation of the system's belief of the user's goal(s) at any time during the dialogue
- Inputs
 - Current user utterance
 - Preceding system response
 - Results from previous turns
- For
 - Looking up knowledge or making API call(s)
 - Generating the next system action/response

- S: where would you like to fly from?
- U: [Boston/0.45]; [Austin/0.30]
- S: sorry, did you say you wanted to fly from Boston?
- U: [No/0.37] + [Aspen / 0.7]

Updated belief = ?
 [Boston/?; Austin/?; Aspen/?]



Maintain a probabilistic distribution instead of a 1-best prediction for better robustness to recognition errors



- 60
- Maintain a probabilistic distribution instead of a 1-best prediction for <u>better robustness to SLU errors or</u> <u>ambiguous input</u>

Slot	Value
# people	5 (0.5)
time	5 (0.5)

Slot	Value
# people	3 (0.8)
time	5 (0.8)

Dialog State Tracking Challenge (DSTC)

(Williams et al. 2013, Henderson et al. 2014, Henderson et al. 2014, Kim et al. 2016, Kim et al. 2016)

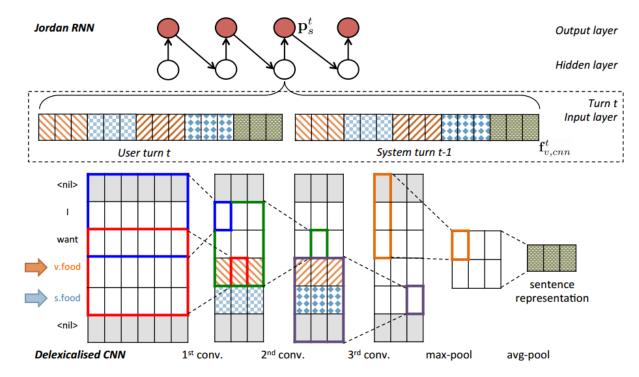
Challenge	Туре	Domain	Data Provider	Main Theme
DSTC1	Human- Machine	Bus Route	CMU	Evaluation Metrics
DSTC2	Human- Machine	Restaurant	U. Cambridge	User Goal Changes
DSTC3	Human- Machine	Tourist Information	U. Cambridge	Domain Adaptation
DSTC4	Human- Human	Tourist Information	I2R	Human Conversation
DSTC5	Human- Human	Tourist Information	I2R	Language Adaptation

Neural Belief Tracker (Henderson et al., 2013;

Henderson et al., 2014; Mrkšić et al., 2015)

62

http://www.anthology.aclweb.org/W/W13/W13-4073.pdf; https://arxiv.org/abs/1506.07190



(Figure from Wen et al, 2016)

Neural Belief Tracker (Mrkšić et al., 2016)

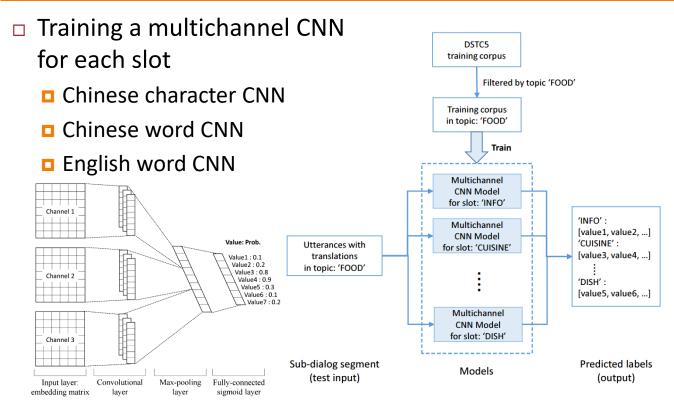
System OutputUser UtteranceCandidate Pair(s)Would you like Indian food?No, how about Farsi food?... food: Indian,
food: Persian, ...Context Representation: $[t_q, t_s, t_v]$ Utterance Representation: [r]Candidate Representation: [c]gating mechanismContext Modelling: $[d_r, d_e]$ Semantic Decoding: [d]

Binary Decision Making: [y]

https://arxiv.org/abs/1606.03777

Multichannel Tracker (Shi et al., 2016)

https://arxiv.org/abs/1701.06247



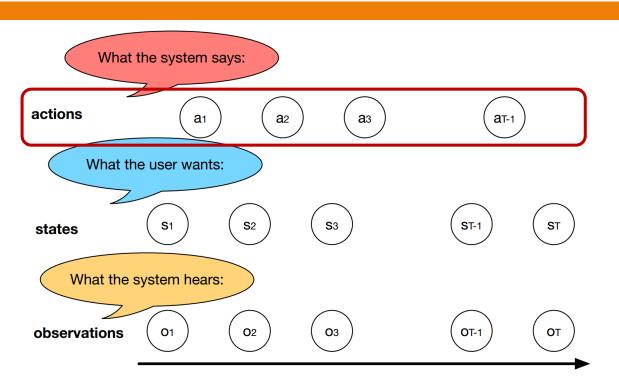
DST Evaluation

- Dialogue State Tracking Challenges
 - DSTC2-3, human-machine
 - DSTC4-5, human-human
- Metric
 - Tracked state accuracy with respect to user goal
 - Recall/Precision/F-measure individual slots

Outline

- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

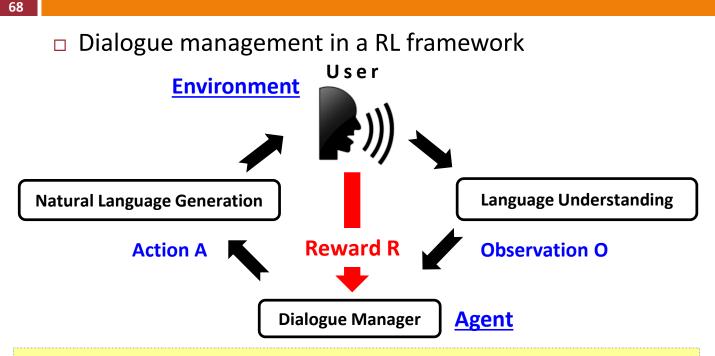
Elements of Dialogue Management



dialogue turns

(Figure from Gašić)

Dialogue Policy Optimization



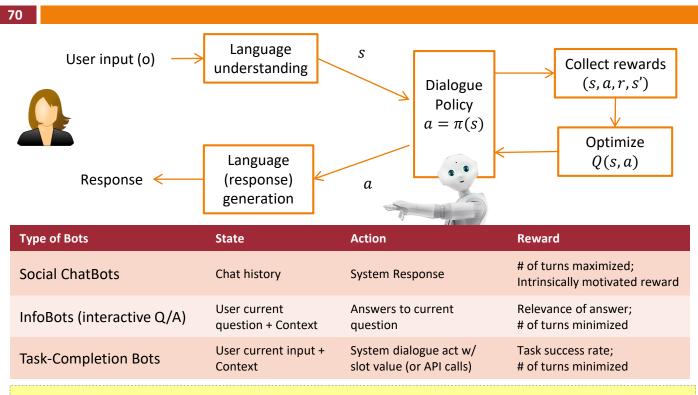
The optimized dialogue policy selects the best action that maximizes the future reward. Correct rewards are a crucial factor in dialogue policy training

Reward for RL \cong Evaluation for System

- Dialogue is a special RL task
 - Human involves in <u>interaction</u> and <u>rating</u> (evaluation) of a dialogue
 - Fully human-in-the-loop framework
- Rating: correctness, appropriateness, and adequacy

- Expert rating	high quality, <mark>high</mark> cost
- User rating	unreliable quality, medium cost
- Objective rating	Check desired aspects, low cost

Reinforcement Learning for Dialogue Policy Optimization



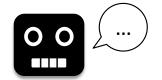
Goal: develop a generic deep RL algorithm to learn dialogue policy for all bot categories

Dialogue Reinforcement Learning Signal

Typical reward function

- -1 for per turn penalty
- Large reward at completion if successful
- Typically requires domain knowledge
 - ✓ Simulated user
 - ✓ Paid users (Amazon Mechanical Turk)
 - × Real users

The user simulator is usually required for dialogue system training before deployment



DQN for Dialogue Management (Li et al., 2017)

72

https://arxiv.org/abs/1703.01008 Deep RL for training DM Input: current semantic frame observation, database returned results Output: system action Semantic Frame request movie genre=action, date=this weekend **DQN-based** Dialogue **Backend DB** Management Simulated/paid/real (DM) User

System Action/Policy request_location

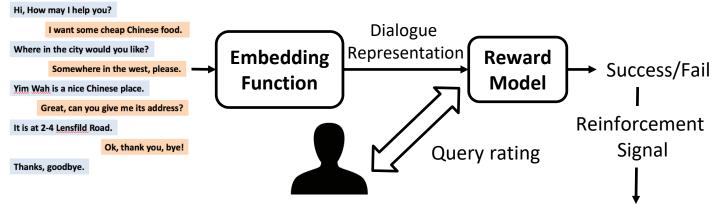
Online Training (Su et al., 2015; Su et al., 2016)

http://www.anthology.aclweb.org/W/W15/W15-46.pdf#page=437; https://www.aclweb.org/anthology/P/P16/P16-1230.pdf

- Policy learning from real users
 - Infer reward directly from dialogues (Su et al., 2015)
 - User rating (Su et al., 2016)

73

Reward modeling on user binary success rating



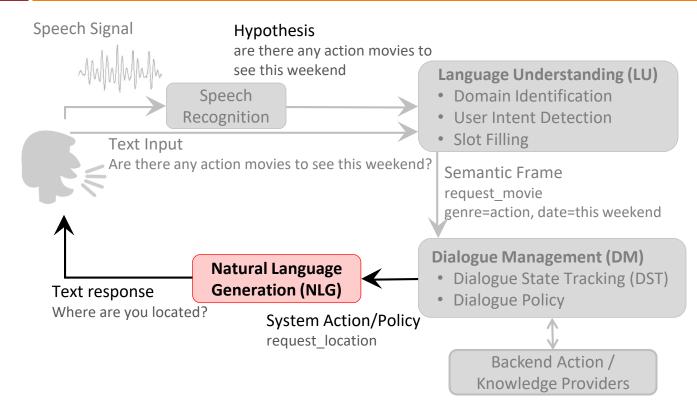
Dialogue Management Evaluation

- Metrics
 - Turn-level evaluation: system action accuracy
 - Dialogue-level evaluation: task success rate, reward

Outline

- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

Task-Oriented Dialogue System (Young, 2000)



Natural Language Generation (NLG)

77

Mapping dialogue acts into natural language

inform(name=Seven_Days, foodtype=Chinese)

Seven Days is a nice Chinese restaurant

Template-Based NLG

Define <u>a set of rules</u> to map frames to NL

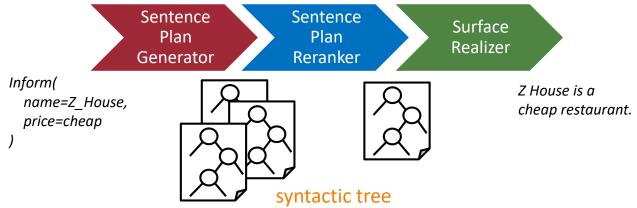
Semantic Frame	Natural Language
confirm()	"Please tell me more about the product your are looking for."
confirm(area=\$V)	"Do you want somewhere in the \$V?"
confirm(food=\$V)	"Do you want a \$V restaurant?"
confirm(food=\$V,area=\$W)	"Do you want a \$V restaurant in the \$W."

Pros: simple, error-free, easy to control *Cons:* time-consuming, rigid, poor scalability

Plan-Based NLG (Walker et al., 2002)

79

Divide the problem into pipeline



- Statistical sentence plan generator (Stent et al., 2009)
- **Statistical surface realizer** (Dethlefs et al., 2013; Cuayáhuitl et al., 2014; ...)

Pros: can model complex linguistic structures **Cons:** heavily engineered, require domain knowledge

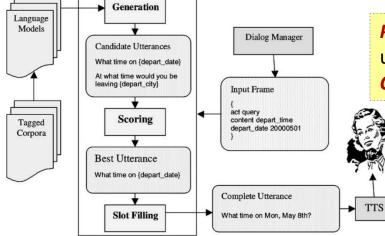
Class-Based LM NLG (Oh and Rudnicky, 2000)

http://dl.acm.org/citation.cfm?id=1117568

□ Class-based language modeling

$$P(X \mid c) = \sum_{t} \log p(x_t \mid x_0, x_1, \cdots, x_{t-1}, c)$$
□ NLG by decoding $X^* = \arg \max_X P(X \mid c)$

$$\begin{array}{c} \text{Classes:} \\ \text{inform_area} \\ \text{inform_address} \\ \dots \\ \text{request_area} \\ \text{request_postcode} \end{array}$$



Pros: easy to implement/ understand, simple rules **Cons:** computationally inefficient

Phrase-Based NLG (Mairesse et al, 2010)

http://dl.acm.org/citation.cfm?id=1858838 Charlie Chan Chinese Restaurant Cineworld in the is a centre near Phrase DBN Semantic DBN Charlie Chan Cineworld Chinese restaurant centre food name type near area inform inform inform inform inform

Inform(name=Charlie Chan, food=Chinese, type= restaurant, near=Cineworld, area=centre)

realization phrase semantic stack

r_t	St	h_t	l_t
<s></s>	START	START	START
The Rice Boat	inform(name(X))	X	inform(name)
is a	inform	inform	EMPTY
restaurant	inform(type(restaurant))	restaurant	inform(type)
in the	inform(area)	area	inform
riverside	inform(area(riverside))	riverside	inform(area)
area	inform(area)	area	inform
that	inform	inform	EMPTY
serves	inform(food)	food	inform
French	inform(food(French))	French	inform(food)
food	inform(food)	food	inform
	END	END	END

Pros: efficient, good performance **Cons:** require semantic alignments

RNN-Based LM NLG (Wen et al., 2015)

82 http://www.anthology.aclweb.org/W/W15/W15-46.pdf#page=295 Input dialogue act 1-hot Inform(name=Din Tai Fung, food=Taiwanese) representation 0, 0, 1, 0, 0, ..., 1, 0, 0, ..., 1, 0, 0, 0, 0, 0... } SLOT NAME SLOT_FOOD <EOS> serves conditioned on the dialogue act <BOS> SLOT_NAME SLOT_FOOD serves Output <BOS> Din Tai Fung Taiwanese serves delexicalisation Slot weight tying

Handling Semantic Repetition

- Issue: semantic repetition
 - Din Tai Fung is a great Taiwanese restaurant that serves Taiwanese.
 - Din Tai Fung is a child friendly restaurant, and also allows kids.
- Deficiency in either model or decoding (or both)
- Mitigation
 - Post-processing rules (Oh & Rudnicky, 2000)
 - Gating mechanism (Wen et al., 2015)
 - Attention (Mei et al., 2016; Wen et al., 2015)

Semantic Conditioned LSTM (Wen et al., 2015)

- Original LSTM cell
 - $i_{t} = \sigma(\mathbf{W}_{wi}\mathbf{x}_{t} + \mathbf{W}_{hi}\mathbf{h}_{t-1})$ $f_{t} = \sigma(\mathbf{W}_{wf}\mathbf{x}_{t} + \mathbf{W}_{hf}\mathbf{h}_{t-1})$ $o_{t} = \sigma(\mathbf{W}_{wo}\mathbf{x}_{t} + \mathbf{W}_{ho}\mathbf{h}_{t-1})$ $\hat{c}_{t} = \tanh(\mathbf{W}_{wc}\mathbf{x}_{t} + \mathbf{W}_{hc}\mathbf{h}_{t-1})$ $c_{t} = f_{t}\odot c_{t-1} + i_{t}\odot \hat{c}_{t}$

 $\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t)$

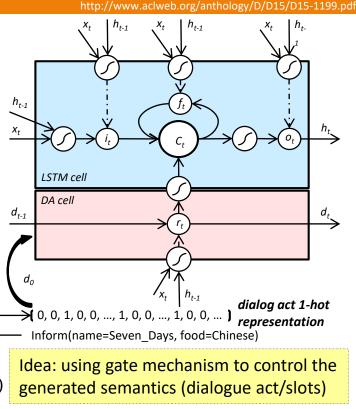
Dialogue act (DA) cell

$$\mathbf{r}_t = \sigma(\mathbf{W}_{wr}\mathbf{x}_t + \mathbf{W}_{hr}\mathbf{h}_{t-1})$$

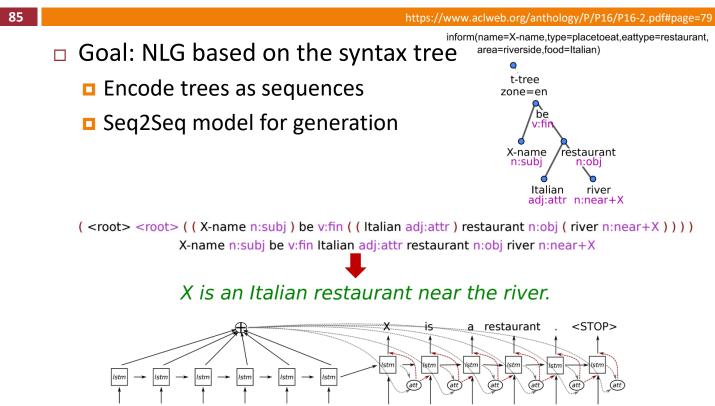
 $\mathbf{d}_t = \mathbf{r}_t \odot \mathbf{d}_{t-1}$

Modify Ct

 $\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \hat{\mathbf{c}}_t + \tanh(\mathbf{W}_{dc} \mathbf{d}_t)$



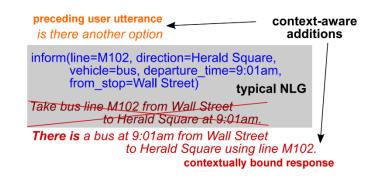
Structural NLG (Dušek and Jurčíček, 2016)



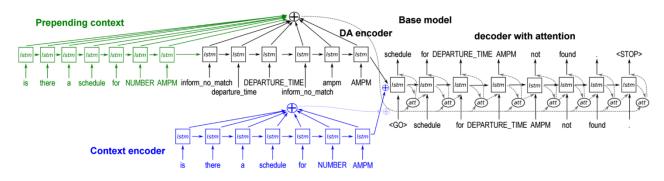
inform name X-name inform eattype restaurant <GO> X is a restaurant

Contextual NLG (Dušek and Jurčíček, 2016)

- Goal: adapting users' way of speaking, providing contextaware responses
 - Context encoder
 - Seq2Seq model



https://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=203



NLG Evaluation

Metrics

Subjective: human judgement (Stent et al., 2005)

- Adequacy: correct meaning
- Fluency: linguistic fluency
- Readability: fluency in the dialogue context
- Variation: multiple realizations for the same concept
- Objective: automatic metrics
 - Word overlap: BLEU (Papineni et al, 2002), METEOR, ROUGE
 - Word embedding based: vector extrema, greedy matching, embedding average

There is a gap between human perception and automatic metrics

Outline

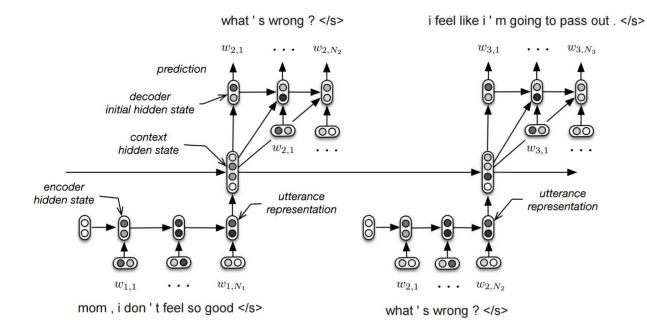
- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

ChitChat Hierarchical Seq2Seq

(Serban et.al., 2016)

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957

A hierarchical seq2seq model for generating dialogues



89

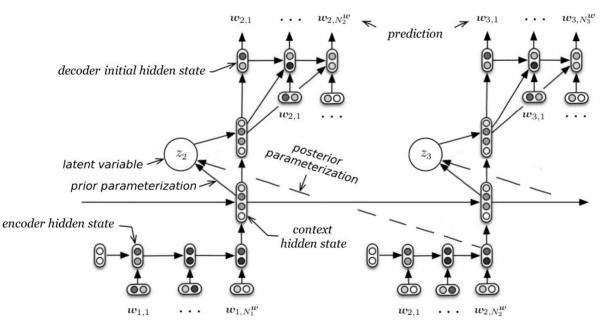
ChitChat Hierarchical Seq2Seq

(Serban et.al., 2017)

90

https://arxiv.org/abs/1605.06069

 A hierarchical seq2seq model with Gaussian latent variable for generating dialogues



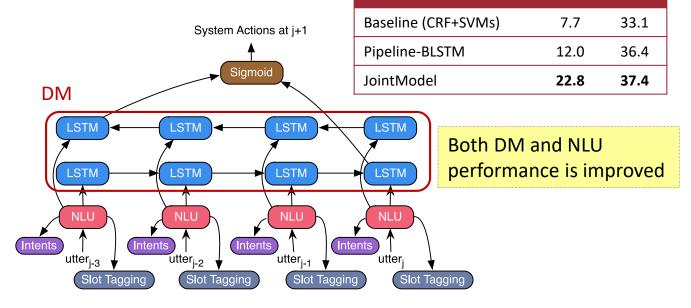
E2E Joint NLU and DM (Yang et al., 2017)

91

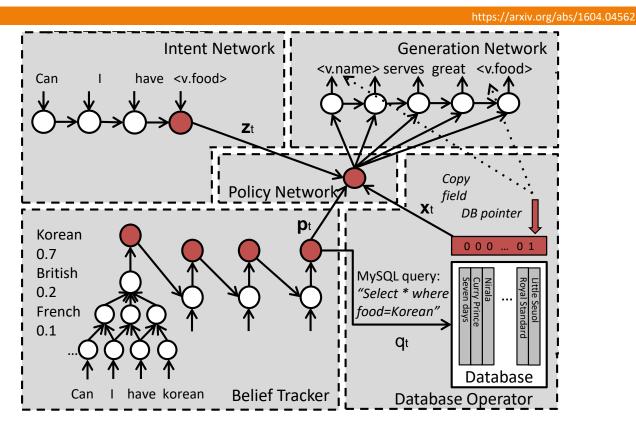
https://arxiv.org/abs/1612.00913

NLU

 Idea: errors from DM can be propagated to NLU for better robustness



E2E Supervised Dialogue System (Wen et al., 2016)

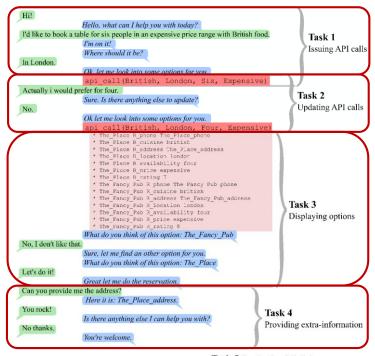


E2E MemNN for Dialogues (Bordes et al., 2016)

- Split dialogue system actions into subtasks
 - API issuing
 - API updating
 - Option displaying

Information informing

Task	Memory Networks		
	no match type + match typ	e	
T1: Issuing API calls	99.9 (99.6) 100 (100))	
T2: Updating API calls	100 (100) 98.3 (83.9)	
T3: Displaying options	74.9 (2.0) 74.9 (0)		
T4: Providing information	59.5 (3.0) 100 (100))	
T5: Full dialogs	96.1 (49.4) 93.4 (19.7)	
T1(OOV): Issuing API calls	72.3 (0) 96.5 (82.7)	
T2(OOV): Updating API calls	78.9 (0) 94.5 (48.4)	
T3(OOV): Displaying options	74.4 (0) 75.2 (0)		
T4(OOV): Providing inform.	57.6 (0) 100 (100))	
T5(OOV): Full dialogs	65.5 (0) 77.7 (0)		
T6: Dialog state tracking 2	41.1 (0) 41.0 (0)		



Task 5 Conducting full dialogs

https://arxiv.org/abs/1605.07683

E2E RL-Based Info-Bot (Dhingra et al., 2016)

https://arxiv.org/abs/1609.00777 _Movie=?; Actor=Bill Murray; Release Year=1993 Knowledge Base (head, relation, tail) 0 (Groundhog Day, actor, Bill Murray) Find me the Bill Murray's movie. (Groundhog Day, release year, 1993) When was it released? (Australia, actor, Nicole Kidman) (Mad Max: Fury Road, release year, 2015) I think it came out in 1993. **KB-InfoBot** Groundhog Day is a Bill Murray User movie which came out in 1993. 1.1 1.0 **KB-InfoBot** User Utterance Feature Belief Average 0.2 Extractor Trackers Soft-KB Svstem SimpleRL-NoKB 0.6 Lookup SimpleRL-HardKB Action Beliefs Policv SimpleRL-SoftKB 0.5 End-to-End Summary Network 0.4 50000 100000 150000 200000 250000 300000 350000 400000 Number of Dialogues

Idea: differentiable database for propagating the gradients

E2E RL-Based System (Zhao and Eskenazi, 2016)

Joint learning **Dialog Acts** Entities NLU State Tracker NLU, DST, Dialogue Policy User Utterance Dialog Deep RL for training User State Deep Q-network System **Dialog Policy** Utterence NLG Verbal Deep recurrent network Action ! 100 Hybrid-RL Q(b_{t+1}, a^v_{t+2}) Q(bt-1, avt) Q(b_t, a^h_{t+1}) RL 80 $\overline{000}$ 00 0 70 **Baseline** tanh tanh tanh $\overline{000}$ (000)(000)

Win

20000

40000

60000

Step

LSTM

(o^u_{t+1}) (o^{db}_{t+1}

a_{t+1}

http://www.aclweb.org/anthology/W/W16/W16-36.pdf#page=19

Hybrid-Rl

Baseline

120000

80000

100000

b_{t-1}

LSTM

out

LSTM

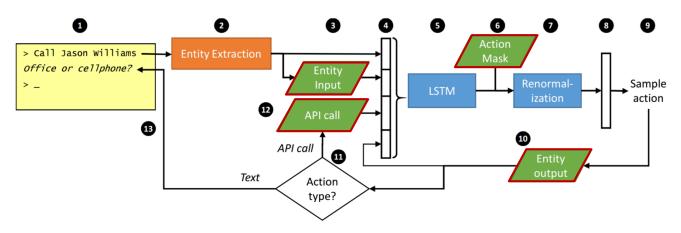
 a_{t-1} (o^{u}_{t-1})

E2E LSTM-Based Dialogue Control

(Williams and Zweig, 2016)

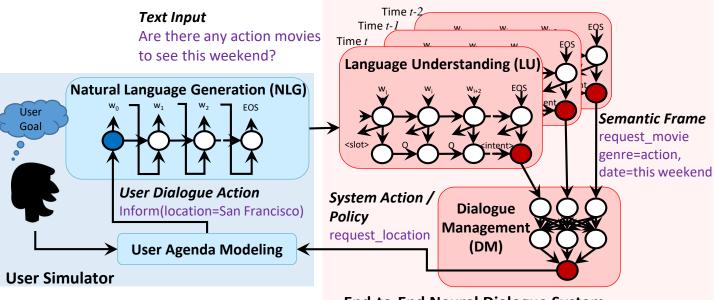
https://arxiv.org/abs/1606.01269

- Idea: an LSTM maps from <u>raw dialogue history</u> directly to a distribution over <u>system actions</u>
 - Developers can provide software including business rules & programmatic APIs
 - ightarrow LSTM can take actions in the real world on behalf of the user
 - The LSTM can be optimized using SL or RL



E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

https://arxiv.org/abs/1703.01008



End-to-End Neural Dialogue System

Idea: supervised learning for each component and reinforcement learning for end-to-end training the neural dialogue system

E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)

https://arxiv.org/abs/1703.01008

□ User goal: Two tickets for "the witch" tomorrow 9:30 PM at regal meridian 16, Seattle.

RULE BASED SYSTEM

User: Can I get 2 tickets for the witch? Agent: Which theater do you want? User: Regal meridian 16 Agent: What time would you like to see it? User: 9:30 pm Agent: What date would you like to see it? User: Tomorrow! Agent: How many people are you? User: Just two adults. Agent: What is your location? User: Seattle! Agent: What kind of video format do you like? User: Oh, any kind is okay. Agent: Do you have any price constraint? User: No, I don't care. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thank vou. Agent: Thank you!

REINFORCEMENT LEARNING SYSTEM

User: Can I get 2 tickets for the witch? Agent: What date would you like to see it? User: Tomorrow Agent: Which theater do you prefer? User: Regal meridian 16 Agent: What is your location? User: Seattle Agent: What time would you like to see it? User: 9:30 pm. Agent: Great - I was able to purchase 2 tickets for you to see the witch tomorrow at regal meridian 16 theater in Seattle at 9:30 pm. User: Thanks. Agent: Thanks! 9.0 Rate RL Agent

The system can learn how to efficiently interact with users for task completion

Simulation Epoch

200

100

Evaluation

Outline

- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

Dialogue System Evaluation

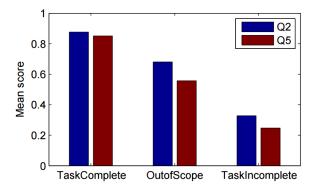
- Dialogue model evaluation
 - Crowd sourcing
 - User simulator
- Response generator evaluation
 - Word overlap metrics
 - Embedding based metrics

Crowd Sourcing for Dialog System Evaluation (Yang, et.al. 2012)

102

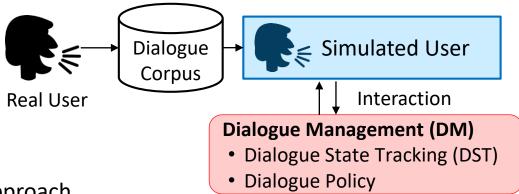
http://www-scf.usc.edu/~zhaojuny/docs/SDSchapter_final.pdf

Q1	Do you think you understand from the dialog
	what the user wanted?
Opt	1) No clue 2) A little bit 3) Somewhat
	4) Mostly 5) Entirely
Aim	elicit the Worker's confidence in his/her ratings.
Q2	Do you think the system is successful in providing
	the information that the user wanted?
Opt	1) Entirely unsuccessful 2) Mostly unsuccessful
	3) Half successful/unsuccessful
	4) Mostly successful 5) Entirely successful
Aim	elicit the Worker's perception of whether the dialog
	has fulfilled the informational goal of the user.
Q3	Does the system work the way you expect it?
Opt	1) Not at all 2) Barely 3) Somewhat
	4) Almost 5) Completely
Aim	elicit the Worker's impression of whether the dialog
	flow suits general expectations.
Q4	Overall, do you think that this is a good system?
Opt	1) Very poor 2) Poor 3) Fair 4) Good 5) Very good
Aim	elicit the Worker's overall impression of the SDS.
Q5	What category do you think the dialog belongs to?
Opt	1) Task is incomplete 2) Out of scope
	3) Task is complete
Aim	elicit the Worker's impression of whether the
	dialog reflects task completion.



The normalized mean scores of Q2 and Q5 for approved ratings in each category. A higher score maps to a higher level of task success

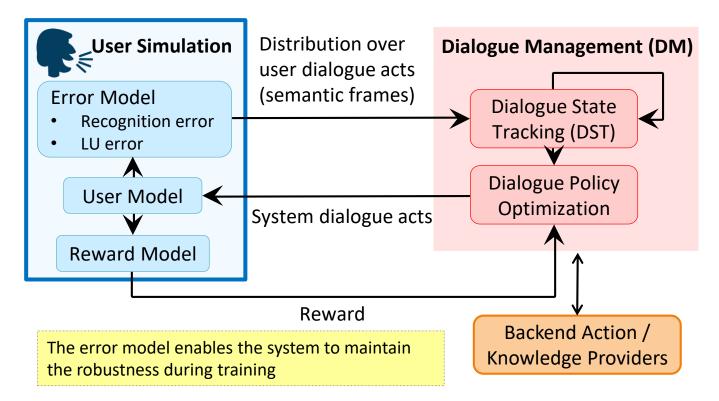
 Goal: generate natural and reasonable conversations to enable reinforcement learning for exploring the policy space



- □ Approach
 - Rule-based crafted by experts (Li et al., 2016)
 - Learning-based (Schatzmann et al., 2006; El Asri et al., 2016)

Elements of User Simulation

104



Rule-Based Simulator for RL Based System (Li et.al., 2016)

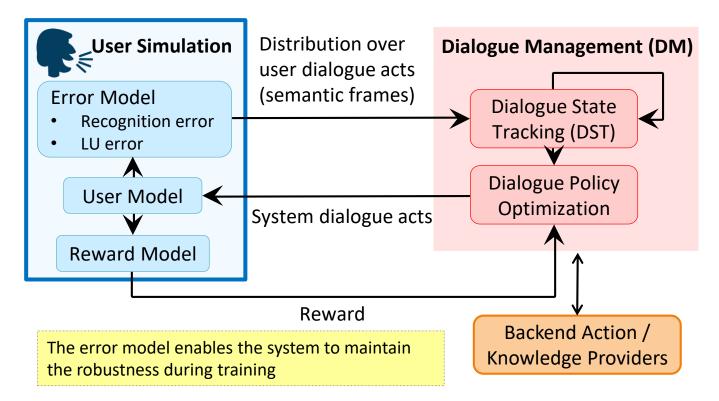
http://arxiv.org/abs/1612.05688

- rule-based simulator + collected data
- starts with sets of goals, actions, KB, slot types
- publicly available simulation framework
- movie-booking domain: ticket booking and movie seeking
- provide procedures to add and test own agent

```
class AgentDQN(Agent):
       def run_policy(self, representation):
           """ epsilon-greedy policy """
           if random.random() < self.epsilon:</pre>
               return random.randint(0, self.num_actions - 1)
           else:
8
               if self.warm_start == 1:
9
                   if len(self.experience_replay_pool) > self.experience_replay_pool_size:
10
                       self.warm.start = 2
11
                   return self.rule_policy()
               else:
                   return self.dqn.predict(representation, {}, predict_model=True)
14
15
       def train(self. batch_size=1. num_batches=100):
16
           """ Train DON with experience replay ""
18
           for iter_batch in range(num_batches):
19
               self.cur_bellman_err = 0
               for iter in range(len(self.experience_replay_pool)/(batch_size));
20
                   batch = [random.choice(self.experience_replay_pool) for i in xrange(batch_size)]
                   batch_struct = self.dqn.singleBatch(batch, {'gamma': self.gamma}, self.clone_dqn)
```

Elements of User Simulation

106



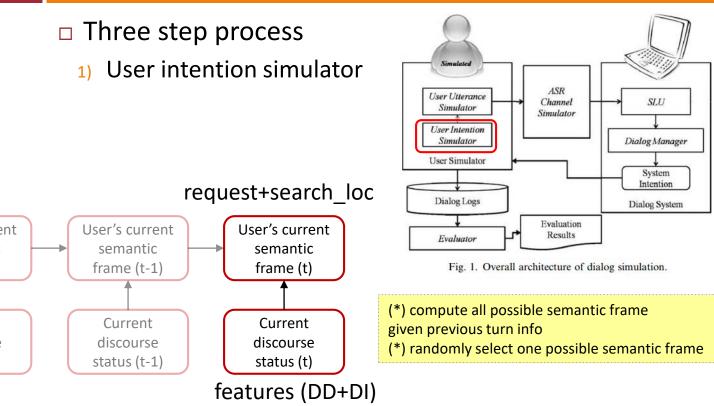
Rule-Based Simulator for RL Based System (Li et.al., 2016)

http://arxiv.org/abs/1612.05688

- □ Rule-based simulator + collected data
- □ Starts with sets of goals, actions, KB, slot types.
- Presents publicly available simulation framework, for the movie-booking domain: movie ticket booking and movie seeking.
- provide procedures to add and test own agent in their proposed framework

Data-Driven Simulator for Automated Evaluation (Jung et.al., 2009)

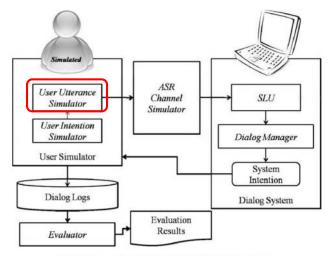
108



Data-Driven Simulator for Automated Evaluation (Jung et.al., 2009)

109

- □ Three step process
 - 1) User intention simulator
 - 2) User utterance simulator



request+search_loc I want to go to the city hall PRP VB TO VB TO [loc_name]

Fig. 1. Overall architecture of dialog simulation.

Given a list of POS tags associated with the semantic frame, using LM+Rules they generate the user utterance.

Data-Driven Simulator for Automated Evaluation (Jung et.al., 2009)

110

- □ Three step process:
 - 1) User intention simulator
 - 2) User utterance simulator
 - 3) ASR channel simulator
- Evaluate the generated sentences using BLUElike measures against the reference utterances collected from humans (with the same goal)

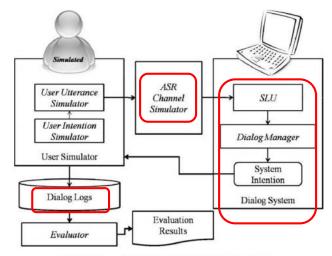
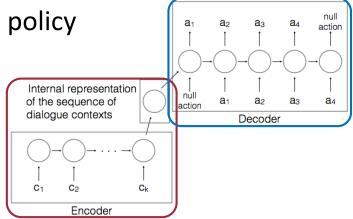


Fig. 1. Overall architecture of dialog simulation.

Seq2Seq User Simulation (El Asri et al., 2016)

https://arxiv.org/abs/1607.00070

- Seq2Seq trained from dialogue data
 - Input: c_i encodes contextual features, such as the previous system action, consistency between user goal and machine provided values
 - Output: a dialogue act sequence form the user
- Extrinsic evaluation for policy



User Simulator for Dialogue Evaluation Measures

Understanding Ability

- whether constrained values specified by users can be understood by the system
- agreement percentage of system/user understandings over the entire dialog (averaging all turns)

Efficiency

- Number of dialogue turns
- Ratio between the dialogue turns (larger is better)

Action Appropriateness

- an explicit confirmation for an uncertain user utterance is an appropriate system action
- providing information based on misunderstood user requirements

How not to evaluate your dialog system (Liu et.al., 2017)

- How to evaluate the quality of the generated response ?
 - Specifically investigated for chat-bots
 - Crucial for task-oriented tasks as well
- Metrics:
 - Word overlap metrics, e.g., BLEU, METEOR, ROUGE, etc.
 - Embeddings based metrics, e.g., contextual/meaning representation between target and candidate

https://arxiv.org/pdf/1603.08023.pdf

Dialog Response Evaluation (Lowe et al., 2017)

- Problems of existing automatic evaluation
 - can be biased
 - correlate poorly with human judgements of response quality
 - using word overlap may be misleading
- Solution
 - collect a dataset of accurate human scores for variety of dialogue responses (e.g., coherent/uncoherent, relevant/irrelevant, etc.)
 - use this dataset to train an automatic dialogue evaluation model – learn to compare the reference to candidate responses!
 - Use RNN to predict scores by comparing against human scores!

Towards an Automatic Turing Test

Context of Conversation

Speaker A: *Hey, what do you want to do tonight?*

Speaker B: *Why don't we go see a movie?*

Model Response

Nah, let's do something active.

Reference Response

Yeah, the film about Turing looks great!

¹¹⁵ Part IV

Recent Trends on Learning Dialogues

Outline

- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

Dialog State Tracking Challenge (DSTC)

(Williams et al. 2013, Henderson et al. 2014, Henderson et al. 2014, Kim et al. 2016, Kim et al. 2016)

117

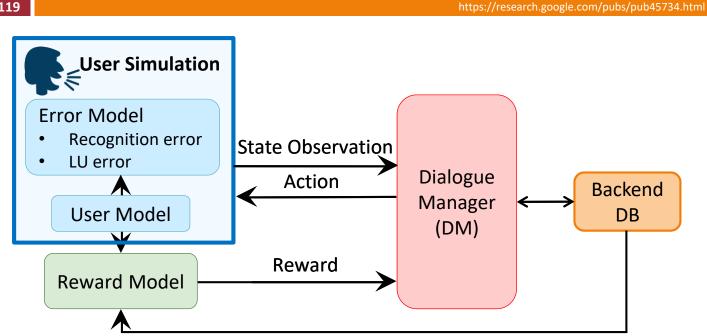
Challenge	Туре	Domain	Data Provider	Main Theme
DSTC1	Human- Machine	Bus Route	CMU	Evaluation Metrics
DSTC2	Human- Machine	Restaurant	U. Cambridge	User Goal Changes
DSTC3	Human- Machine	Tourist Information	U. Cambridge	Domain Adaptation
DSTC4	Human- Human	Tourist Information	I2R	Human Conversation
DSTC5	Human- Human	Tourist Information	I2R	Language Adaptation
DSTC6				

DSTC renames as **Dialog System Technology Challenges**

Interactive RL for DM (Shah et al., 2016)

118 https://research.google.com/pubs/pub45734.html Task-level Action Reward Action + Feedback Implicit Explicit Immediate Feedback No stupid, I am asking if First Wok is rated at least 3 stars? Frustration Repetition

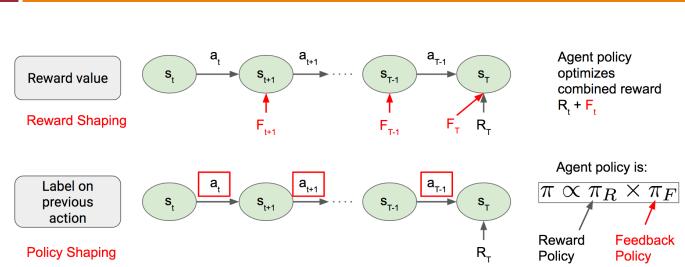
Interactive RL for DM (Shah et al., 2016)



Use a third agent for providing interactive feedback to the DM

119

Interpreting Interactive Feedback (Shah et al., 2016)



https://research.google.com/pubs/pub45734.html

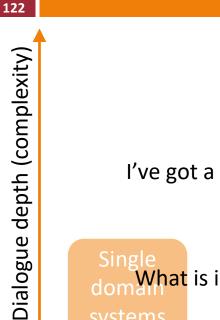
Policy Shaping for RL (Shah et al., 2016)

https://research.google.com/pubs/pub45734.html

Feedback label	$f_{(s,a),t} \in \{-1,+1\}$		
Feedback delta for action a in state s	$\delta_{s,a} = \sum_t f_{(s,a),t}$	ate of feedba	ack
Estimate of optimality	$P_F(a s) = \frac{C^{\delta_{s,a}}}{C^{\delta_{s,a}} + (1-C)^{\delta_{s,a}}}$	C=0.95	
of action a in state s		$\delta_{s,a}$	$P_F(a s)$
		-3	0.000145
Feedback policy	$\pi_F(s,a) = P_F(a s)$	0	0.5
Overall policy	$\pi \propto \pi_R imes \pi_F$	+3	0.999854

Griffith, S., Subramanian, K., Scholz, J., Isbell, C., and Thomaz, A. L. (2013). Policy shaping: Integrating human feedback with reinforcement learning. In Advances in Neural Information Processing Systems, pages 2625–2633.

Evolution Roadmap



I've got a cold what do I do?

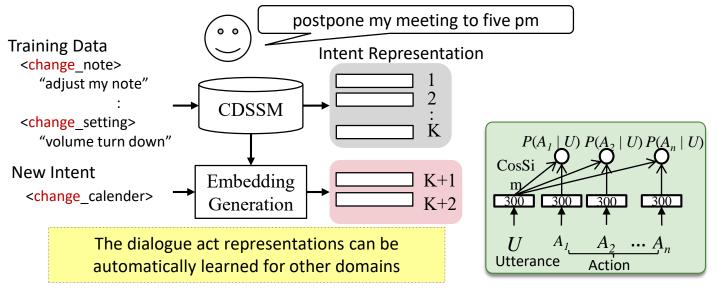
Dialogue breadth (coverage)

Intent Expansion (Chen et al., 2016)

123

http://ieeexplore.ieee.org/abstract/document/7472838/

- Transfer dialogue acts across domains
 - Dialogue acts are similar for multiple domains
 - Learning new intents by information from other domains



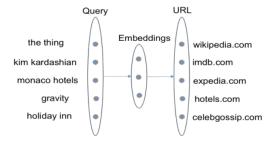
Zero-Shot Learning (Daupin et al., 2016)

https://arxiv.org/abs/1401.0509

Semantic utterance classification

124

Use query click logs to define a task that makes the networks learn the meaning or intent behind the queries



 $\mathcal{L}(X,Y) = -\log P(Y|X) + \lambda H(P(C|X)).$

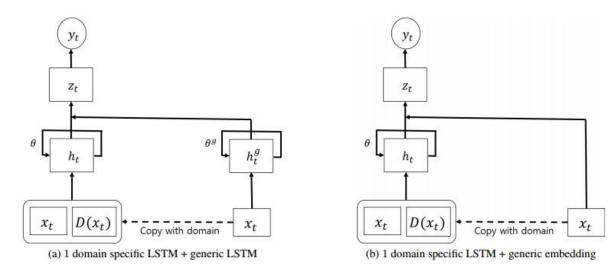
Depiction of the deep network from queries to URLs.

- The semantic features are the last hidden layer of the DNN
- Use Zero-Shot Discriminative embedding model combines *H* with the minimization of entropy of a zero-shot classifier

Domain Adaptation for SLU (Kim et al., 2016)

http://www.aclweb.org/anthology/C/C16/C16-1038.pdf

- Frustratingly easy domain adaptation
- Novel neural approaches to domain adaptation
- Improve slot tagging on several domains

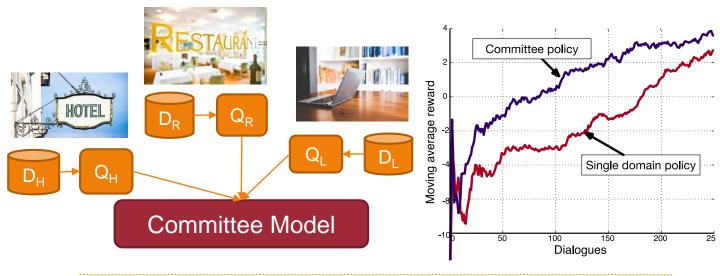


Policy for Domain Adaptation (Gašić et al., 2015)

126

http://ieeexplore.ieee.org/abstract/document/7404871/

Bayesian committee machine (BCM) enables estimated
 Q-function to share knowledge across domains



The policy from a new domain can be boosted by the committee policy

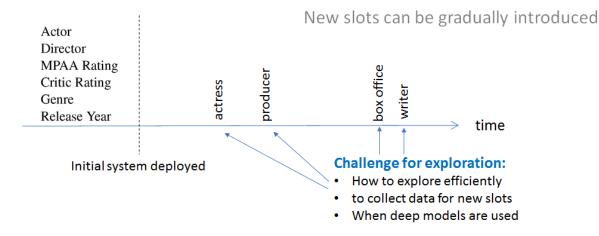
Efficient Exploration for Domain Expansion (Lipton et al., 2016)

(Lipton et al., 20

127

http://arxiv.org/abs/1608.05081

- Goal : dialogue domain extension
- Most goal-oriented dialogues require a closed and welldefined domain
- Hard to include all domain-specific information up-front



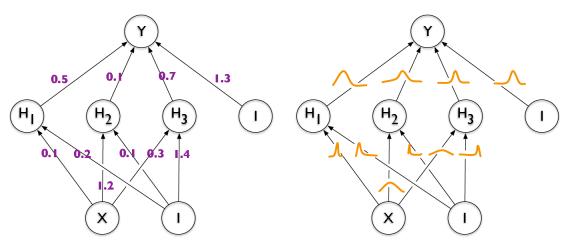
Efficient Exploration for Domain Expansion

(Lipton et al., 2016)

128

http://arxiv.org/abs/1608.05081

Bayesian by back-propogation



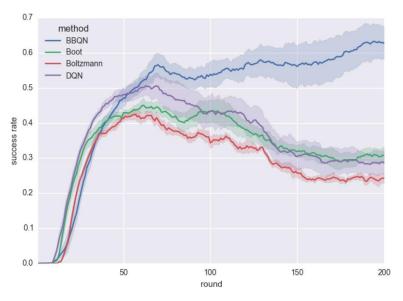
Maintain pointestimates of weights Maintain posterior distribution of weights

Efficient Exploration for Domain Expansion

(Lipton et al., 2016)

http://arxiv.org/abs/1608.05081

Bayes by Backprop Q-Network (BBQ)



Weight posteriors are maintained

- Combine RL and Bayes-by-BP
- Use variational inference to scale up

Thompson sampling for exploration [a.k.a. "posterior sampling"]

Efficient exploration accelerates policy optimization

Evolution Roadmap

130

Empathetic systems I feel sad...

I've got a cold what do I do?

Common sense system

Tell me a joke.

What is influenza?

Knowledge based system

Dialogue breadth (coverage)

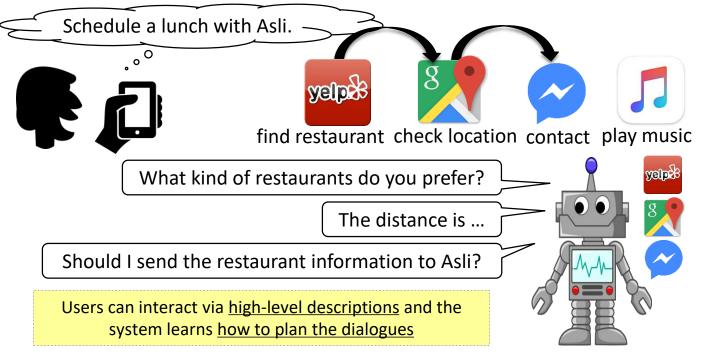
High-Level Intention for Dialogue Planning

(Sun et al., 2016; Sun et al., 2016)

131

http://dl.acm.org/citation.cfm?id=2856818; http://www.lrec-conf.org/proceedings/lrec2016/pdf/75_Paper.pdf

High-level intention may span several domains



Empathy in Dialogue System (Fung et al., 2016)

Embed an empathy module

132

Recognize emotion using multimodality

Generate emotion-aware responses

USER: Awful. The hotel was EMOS: Sorry to hear that. Hope EMOS: How was your bad and it was raining all your next vacation is more last vacation? the time. excitina! awful ASR text the hotel was bad Long Short Term Memory Нарру Time domain raw audio Sneech USFR 1643.816.9.-246.-383. OUFRY speech Feature map and Facial Expressions image convolution vision **Emotion Recognizer**

Zara - The Empathetic Supergirl

https://arxiv.org/abs/1605.04072

recognition

(index):1728 (index):1729 "recognition": "Race: Asian Confidence: 65.4275000000001 Smiling: 3.95896 Gender: Female Confidence: 88.9369", "race": "Asian", "race confidence": "65.4275000000001", "smiling": "3.95896", "gender": "Female". "gender confidence": "88.9369"

Visual Object Discovery through Dialogues (Vries et al., 2017)

https://arxiv.org/pdf/1611.08481.pdf

 Recognize objects using "Guess What?" game
 Includes "spatial", "visual", "object taxonomy" and "interaction"

Is it a person?	No
Is it an item being worn or held?	Yes
Is it a snowboard?	Yes
Is it the red one?	No
Is it the one being held by the person in blue?	Yes

Is it a cow?	Yes
Is it the big cow in the middle?	No
Is the cow on the left?	No
On the right ?	Yes
First cow near us?	Yes

Challenges

Outline

- Introduction and Background
 - Neural Networks
 - Reinforcement Learning
- Deep Learning Based Dialogue System
 - Spoken/Natural Language Understanding (SLU/NLU)
 - Dialogue State Tracking (DST)
 - Dialogue Policy
 - Natural Language Generation (NLG)
 - End-to-End Learning for Dialogue Systems
- Evaluation
- Recent Trends on Learning Dialogues
- Challenges
- Conclusion

Challenges in Dialogue Modeling - I

136

- Semantic schema induction (Chen et al., 2013; Athanasopoulou, et al., 2014)
 - No predefined semantic schema
 - How to learn from data?

Tractability, and dimensionality reduction methods

Learning with large state action spaces

End-to-end learning methods

- Learning when the user input is complex NL utterance
- Learning with humans or KBs ?
- Learning under domain shifts

Challenges in Dialogue Modeling - II

Multiple-State hypothesis

- Tracking a distribution over multiple dialog states can improve dialog accuracy
- How does current dialog systems deal with this?

Proactive v.s. reactive approaches to dialog modeling

How to build DM models when the agent is proactive (i.e., does not wait for the user but sends messages and drives the conversation)

Localization, personalization, etc.

How to deal with issue pertaining to place, temporal and personal context. Mostly dealt on speech side. How about DM side for when learning the policy?

Hierarchical RL approach to policy learning actually works?

- When are they useful?
- How about for open domain systems (like chit-chat) Are they powerful?

Challenges in Dialogue Modeling - III

Chat-Bot challenges

Consistency: Keep similar answers in spite of different wordings

- Human: what is your job?
- Machine: I am lawyer
- Human: what do you do ?
- Machine: I am a doctor
- Quick domain-dependent adaptation: specially from unstructured data (Yan et.al, 2016)
- Personalization: handling profiles, interaction levels, and keep relevant context history (Li et al., 2016)
- Long sentence generation: most sentence are short or common phrases

Challenge Summary

139

Human-Robot interfaces is a hot topic but several components must be integrated!

Most state-of-the-art technologies are based on DNN

- Requires huge amounts of labeled data
- Several frameworks/models are available

Fast domain adaptation with scarse data + re-use of rules/knowledge

Handling reasoning

Data collection and analysis from un-structured data

Complex-cascade systems requires high accuracy for working good as a whole

Conclusion

Briefly...

- We introduced recent deep learning approaches that are used in building dialogue models
- We highlighted the main components of dialogue systems and new deep learning architectures used for these components
- We talked about the challenges and new avenues for future research
- □ We provide all the material online!

http://deepdialogue.miulab.tw

References

142

The full list of references can be found in: http://deepdialogue.miulab.tw

Acknowledgement

143

We thanks Tsung-Hsien Wen, Pei-Hao Su, Li Deng, Sungjin Lee, Milica Gašić, Lihong Li for sharing their slides

¹⁴⁴ Thanks for Your Attendance!

